SOBRE IDEALES DE FUNCIONES p-ADICAS ENTERAS Y POLINOMIOS DE APROXIMACION

POR IGNACIO CANALS Y FRANCISCO TOMÁS

§1

El objeto de este trabajo es demostrar que en el anillo A de las funciones enteras de n variables p-ádicas (esto es, en el anillo de series de potencias en n variables con coeficientes en Q_p que son convergentes para todas las colecciones de valores de las variables) con la topología compacta de orden r, un ideal cerrado es localmente determinado de orden r, para r finito o infinito.

Se demuestra, además, en §4, utilizando un resultado de este trabajo, que existen sucesiones de polinomios cuyas derivadas de orden $\leq r$ tienden, uniformemente sobre todo compacto, a cualesquiera funciones continuas de Q_p^n en Q_p dadas de antemano, hecho bien conocido para r = n = 1 (ver [3]).

Se entiende por localmente determinado lo siguiente. Para cada $a=(a_1,\cdots,a_n)\in Q_p^n$ sea M_a el ideal máximo de los elementos de A que se anulan en a y sea $A_{a,r}$ el anillo A/M_a^{r+1} , si $r<\infty$, o el completado de $A/M_a^\infty=A$ con la topología M_a -ádica, si $r=\infty$. O sea que $A_{a,r}$ es el anillo de polinomios truncados de grado r en x_i-a_i , si $r<\infty$, y el anillo de series de potencias formales en x_i-a_i , si $r=\infty$. Sea $\pi_{a,r}:A\to A_{a,r}$ el homomorfismo obvio; entonces $\pi_{a,r}(f)$ es la parte del desarrollo de Taylor de f con centro en a de grado a0 (el desarrollo de Taylor completo si a1). Dado un ideal a2 de a3, sea a4, el ideal generado por a4, o y sea a5, y sea a6, y sea a7, y sea a8, y sea a9, a9, a9, a9, a9, a9, sea a9

Se recuerda que una base para los abiertos de la topología compacta de orden r de A consta de los conjuntos

$$(1) \begin{cases} g: \left| \frac{\partial^{s_1+\cdots+s_n}f(a)}{\partial x_1^{s_1}\cdots\partial x_n^{s_n}} - \frac{\partial^{s_1+\cdots+s_n}g(a)}{\partial x_1^{s_1}\cdots x_n^{s_n}} \right|_p \\ < \epsilon \quad \text{para todo} \quad a \in K \text{ y } s_1 + \cdots + s_n \leq N \end{cases},$$

para cada $\epsilon > 0$, $f \in A$, $K \subseteq Q_p^n$ compacto y N natural $\leq r$, siendo $| \cdots |_p$ la valuación p-ádica.

El resultado en cuestión es el análogo de un resultado de Whitney sobre funciones diferenciables [1] y de uno de Cartan sobre funciones holomorfas [2].

Variando ligeramente las hipótesis, por ejemplo suponiendo que A consta de las series de potencias que convergen en un polidisco, o que consta de las funciones que se representan como series de potencias en la vecindad de cada punto, o de las funciones de clase C^r , se pueden enunciar resultados análogos que podrían demostrarse de manera parecida o que resultan triviales.

La demostración se basa en el siguiente resultado. Denótese por Z_p el anillo de

valuación de Q_p . Sea, para $x \in Z_p$,

$$f(x) = \begin{cases} 0 & \text{si} & |x|_p < 1, \\ 1 & \text{si} & |x|_p = 1. \end{cases}$$

LEMMA. Para cada entero no negativo s existen polinomios $f_n \in Q_p[x]$ que tienden a funiformemente en Z_p y cuyas derivadas de orden m tienden a cero uniformemente en Z_p , para $1 \leq m \leq s$.

El lema, que se demostrará en §3, se usará en la forma siguiente:

Proposición 1. Sea $a=(a_1, \dots, a_n) \in Q_p^n$; para $s, t \in \mathbb{Z}, t > s, \epsilon > 0$, $N \in \mathbb{Z}, N \geq 0$, existe $\varphi \in Q_p[x_1, \dots, x_n]$ tal que

(i)
$$|\varphi(x)-1|_p < \epsilon \quad para \quad x \in a + p^t Z_p^n$$

(ii)
$$|\varphi(x)|_{p} < \epsilon \quad para \quad x \in (a + p^{s}Z_{p}^{n}) - (a + p^{t}Z_{p}^{n}),$$

(iii)
$$\left| \frac{\partial^{s_1 + \dots + s_n} \varphi(x)}{\partial x_1^{s_1} \cdots \partial x_n^{s_n}} \right|_p < \epsilon \quad para \quad x \in a + p^s Z_p^n,$$

$$1 \le s_1 + \dots + s_n \le N.$$

La demostración de esta proposición a partir del lema se hará en §2. A continuación se demuestra la afirmación principal sobre ideales a partir de la proposición.

Se quiere demostrar que $I = \overline{I} \Rightarrow I = I_r$, o sea, puesto que $I_r \geq I$, que $f \in I_r \Rightarrow f \in \overline{I}$, esto es, que toda vecindad de f de la forma (1) interseca a I, si $f \in I_r$, pero esta hipótesis significa que $\pi_{a,r}(f) \in I_{a,r}$ para todo $a \in Q_p^n$, de donde:

a) Si r es finito, existe $\psi_a \in I$ con $\pi_{a,r}(f) = \pi_{a,r}(\psi_a)$, puesto que $I_{a,r} = \pi_{a,r}(I)$, de donde $D^s f(a) - D^s \psi_a(a) = 0$ para $s_1 + \cdots + s_n \leq r$, siendo

$$D^{s}f(a) = \frac{\partial^{s_1 + \dots + s_n} f(x)}{\partial x_1^{s_1} \cdots \partial x_n^{s_n}} \Big|_{x=a};$$

b) Si $r = \infty$ existen $\varphi_1, \dots, \varphi_t \in A_{a,\infty} y \psi_{a,1}, \dots, \psi_{a,t} \in I$ con $\pi_{a,\infty}(f) = \varphi_1 \pi_{a,\infty}(\psi_{a,1}) + \dots + \varphi_t \pi_{a,\infty}(\psi_{a,t});$

pero φ_i es la clase de una sucesión de Cauchy $\{\varphi_{i,1}, \varphi_{i,2}, \cdots\}$ de elementos de A (con la topología M_a -ádica), y $\pi_{a,\infty}(f)$ es la clase de la sucesión de Cauchy $\{\sum_{i=1}^t \varphi_{i,n}\psi_{a,i}\}$ $n=1, 2, \cdots$. Por lo tanto existe, para cada N, un elemento $\psi_a = \sum_{i=1}^t \varphi_{i,n}\psi_{a,i} \in I$ tal que

$$D^s f(a) - D^s \psi_a(a) = 0$$
 para $s_1 + \cdots + s_n \leq N$.

Por lo anterior dada cualquier r existe, para cada N natural $\leq r$ y $a \in K$, una función $\psi_a \in I$ con

$$D^s f(a) - D^s \psi_a(a) = 0$$
 para $s_1 + \cdots + s_n \leq N$,

y, por la continuidad de f y ψ_a y de sus derivadas, para cada $\epsilon_1 > 0$ existe un entero $t_a \geq 0$ tal que

$$|D^s f(\xi) - D^s \psi_a(\xi)|_p < \epsilon_1$$

para todo $\xi \in a + p^{t_a} Z_p^n$. Puede existir otra función ψ_a que cumpla la misma desigualdad para otro $t_a \geq 0$, pero se supondrá que la ψ_a que se está considerando es una que hace t_a mínimo. Como entonces la aplicación de K en Z que transforma a en t_a es continua, existe $t \in Z$ con la propiedad siguiente. Para cada $a \in K$ existe $\psi_a \in I$ con

$$|D^s f(\xi) - D^s \psi_a(\xi)|_p < \epsilon_1$$

para todo $\xi \in a + p^t Z_p^n = a + V_t$.

Dos vecindades de la forma $a + V_t$ son ajenas o coinciden; sean, pues, $x^{(1)}$, \cdots , $x^{(N)} \in K$ con $\bigcup_{i=1}^{N} [x^{(i)} + V_t] \supseteq K y x^{(i)} \notin x^{(j)} + V_t$ para $i \neq j$.

Sean ahora, según la proposición $1, \varphi_i \in Q_p[x_1, \dots, x_n] \subseteq A$ una función que cumple i), ii), y iii) para $a = x^{(i)}$. Sea

$$\varphi = \sum_{i=1}^n \varphi_i \psi_i.$$

donde $\psi_i = \psi_{x^{(i)}}$. Como $\varphi \in I$ falta únicamente comprobar que $\varphi \in V$. Pero, en efecto, sea $\xi \in K$, $\xi \in x^{(i)} + V_t$:

$$D^{s}f(\xi) - D^{s}\varphi(\xi) = D^{s}f(\xi) - (D^{s}\psi_{i}(\xi))\varphi_{i}(\xi) - \sum_{j\neq i} (D^{s}\psi_{j}(\xi))\varphi_{j}(\xi) - \Delta,$$

donde Δ es suma de productos de una derivada de ψ_j por una derivada de φ_j de orden > 0; y se tiene

$$|\Delta|_n < \epsilon' C_1$$

para alguna constante $C_1.$ Además $\mid \varphi_j(\xi)\mid_p < \epsilon'$ para $j \neq i,$ y

$$\left|\sum_{j\neq i} (D^s \psi_j(\xi)) \varphi_j(\xi)\right|_p < \epsilon' C_2$$
.

Por último,

:14

$$|D^s f(\xi) - (D^s \psi_i(\xi)) \varphi_i(\xi)|_p$$

$$\leq \operatorname{Max} |D^{s}f(\xi) - D^{s}\psi_{i}(\xi)|_{p}, |(D^{s}\psi_{i}(\xi))(1 - \varphi_{i}(\xi)|_{p}) \leq \operatorname{Max} (\epsilon_{1}, \epsilon'C_{3}).$$

Para valores adecuados de ϵ_1 y ϵ' se obtiene el resultado.

Se demuestra que el lema implica la proposición 1.

Para cada $\epsilon'' > 0$, $1 \le i \le n$, existe un polinomio g_i que cumple con

i')
$$|g_i(x_i) - 1|_p < \epsilon''$$
 para $x_i \in a_i + p^t Z_p$,

ii')
$$|g_i(x_i)|_p < \epsilon''$$
 para $x_i \in (a_i + p^s Z_p) - (a_i + p^t Z_p)$,

(iii')
$$\left|\frac{\partial^{s_i}g_i(x_i)}{\partial x_i^{s_i}}\right|_p < \epsilon'' \quad para \quad x_i \in a_i + p^s Z_p \quad \text{y} \quad 1 \leq s_i \leq N.$$

En efecto, por el lema existe $h \in Q_p[x_i]$ que cumple

$$|h(x_i) - 1|_p < \epsilon_1 \quad \text{si} \quad x_i \in pZ_p,$$

$$|h(x_i)|_p < \begin{cases} \epsilon_1 & \text{si} \quad x_i \in Z_p - pZ_p, \\ C' & \text{si} \quad x_i \in Z_p, \end{cases}$$

$$\left|\frac{\partial^{s_i}h(x_i)}{\partial x_i^{s_i}}\right|_p < \epsilon_1 \quad \text{si} \quad x \in Z_p \quad \text{y} \quad 1 \le s_i \le N.$$

La función h_k , $k = 0, 1, \dots$, definida por $h_k(x_i) = h(p^{-k}x_i)$ cumple

$$|h_k(x_i) - 1|_p < \epsilon_1 \quad \text{si} \quad x_i \in p^{k+1}Z_p$$

$$|h_k(x_i)|_p < \begin{cases} \epsilon_1 & \text{si} \quad x_i \in p^k Z_p - p^{k+1}Z_p \\ C_{k,1} & \text{si} \quad x_i \in Z_p \end{cases}$$

$$\left|\frac{\partial^{s_i}h_k(x_i)}{\partial x_i^{s_i}}\right|_p < \begin{cases} \epsilon_1 p^{-kN} & \text{si} \quad x_i \in p^k Z_p \\ C_{k,2} & \text{si} \quad x_i \in Z_p \end{cases}$$

$$(1 \le s_i \le N)$$

Dado $\epsilon_2 > 0$, la función $h'(x_i) = \prod_{k=0}^{t-s-1} h_k(x_i)$ cumple, para ϵ_1 suficientemente pequeño :

$$|h'(x_{i}) - 1|_{p} = |(h_{0}(x_{i}) - 1)h_{1}(x_{i}) \cdots h_{t-s-1}(x_{i}) + (h_{1}(x_{i}) - 1)h_{2}(x_{i}) \cdots h_{t-s-1}(x_{i}) + \cdots + (h_{t-s-1}(x_{i}) - 1)|_{p}$$

$$\leq \epsilon_{2} \quad \text{si} \quad x_{i} \in p^{t-s}Z_{p},$$

$$|h'(x_{i})|_{p} \leq \epsilon_{2} \quad \text{si} \quad x_{i} \in Z_{p} - p^{t-s}Z_{p},$$

$$\left|\frac{\partial^{s_{i}}h'(x_{i})}{\partial x_{i}^{s_{i}}}\right|_{p} \leq \epsilon_{2} \quad \text{si} \quad x_{i} \in Z_{p} \quad \text{y} \quad 1 \leq s_{i} \leq N.$$

La función $h''(x_i) = h'(p^{-s}x_i)$ cumple, para ϵ_2 suficientemente pequeña, $|h''(x_i) - 1|_p < \epsilon_2 < \epsilon'' \quad \text{si} \quad x_i \in p^t Z_p ,$ $|h''(x_i)|_p < \epsilon_2 < \epsilon'' \quad \text{si} \quad x_i \in p^s Z_p - p^t Z_p ,$ $\left| \frac{\partial^{s_i} h''(x_i)}{\partial x_i^{s_i}} \right|_p < \epsilon_2 p^{-sN} < \epsilon'' \quad \text{si} \quad x \in p^s Z_p \quad \text{y} \quad 1 \leq S_i \leq N.$

Finalmente, tomando $g_i(x_i) = h''(x_i - a_i)$, es claro que se cumplen i'), ii') y iii').

Sean ahora $\varphi_i(x_1, \dots, x_n) = g_i(x_i)$; la función buscada en la proposición 1 es $\varphi(x) = \varphi_1(x) \cdot \dots \cdot \varphi_n(x).$

En efecto, φ cumple i), ii) y iii):

Si
$$x_i \in a_i + p^i Z_p$$
 para $i = 1, 2, \dots, n$,

$$\begin{aligned} |\varphi(x) - 1|_p &= |g_1(x_1) \cdots g_n(x_n) - 1|_p \\ &= |g_1(x_1) \cdots g_n(x_n) - g_2(x_2) \cdots g_n(x_n) + g_2(x_2) \cdots g_n(x_n) \\ &- g_3(x_3) \cdots g_n(x_n) + \cdots + g_n(x_n) - 1|_p \\ &\leq \operatorname{Max} (|g_1(x_1) - 1|_p |g_2(x_2) \cdots g_n(x_n)|_p, \cdots, |g_n(x_n) - 1|_p) \\ &\leq \operatorname{Max} (\epsilon'', \cdots, \epsilon'') < \epsilon \end{aligned}$$

para $\epsilon'' < 1$ suficientemente pequeño.

Si $x_i \in a_i + p^s Z_p$ para todo i, y $x_j \in (a_j + p^s Z_p) - (a_j + p^t Z_p)$ para algún índice j,

$$|\varphi(x)|_p = |g_1(x_1)|_p \cdots |g_n(x_n)|_p < \epsilon'' C^{n-1} < \epsilon,$$

por ii') y porque $|g_i(x_i)|_p$ está acotado en $a_i + p^s Z_p$ para cada i. Por último, para

$$x_i \in a_i + p^s Z_p$$
, $1 \leq Si \leq N$,

$$\left|\frac{\partial^{s_1+\cdots+s_n}\varphi(x)}{\partial x_1^{s_1}\cdots\partial x_n^{s_n}}\right|_p = \left|\frac{\partial^{s_1}g_1(x_1)}{\partial x_1^{s_1}}\right|_p \cdots \left|\frac{\partial^{s_n}g_n(x_n)}{\partial x_n^{s_n}}\right|_p \le \epsilon''^{\nu}C^{n-\nu} < \epsilon,$$

donde ν es el número de índices i tales que $s_i \neq 0$.

§3

Se demuestra el lema.

En un campo cualquiera K, sean a_0 , \cdots , a_n elementos diferentes dos a dos y sean $f(a_i) \in K$ los valores asociados a los a_i por una función f. Se comprueba a continuación que para cada s < m existen $A_{j,1}, \cdots, A_{j,s}$, para $j = 0, \cdots, n$, tales que el polinomio

$$f_m(x) = \sum_{j=0}^n f(a_j)(1 + A_{j,1}(x - a_j) + \cdots + A_{j,s}(x - j)^s) \prod_{i \neq j} \frac{(x - a_i)^m}{(a_j - a_i)^m}$$

toma los valores $f_m(a_i) = f(a_i)$ y $f_m^{(q)}(a_i) = 0$ para $1 \le q \le S$, $i = 0, \dots, n$. La primera parte de la afirmación es inmediata. Se determinan los $A_{j,i}$ que hacen que se cumpla la segunda parte.

Sean

$$\psi_{j}(x) = 1 + A_{j,1}(x - a_{j}) + \cdots + A_{j,s}(x - a_{j})^{s},$$

$$\varphi_{j}(x) = \prod_{i \neq j} \frac{(x - a_{i})^{m}}{(a_{j} - a_{i})^{m}}.$$

Entonces $\varphi_j^{(q)}(a_k) = 0$ para $k \neq j, 1 \leq q \leq s < m$. La segunda afirmación equivale a

$$f(a_j) \left[\psi_j(a_j) \varphi_j^{(q)}(a_j) + \binom{q}{1} \psi_j'(a_j) \varphi_j^{(q-1)}(a_j) + \cdots + \psi_j^{(q)}(a_j) \varphi_j(a_j) \right] = 0$$

para cada j, que se cumple, independientemente de los valores $f(a_i)$, si los segundos factores son cero, o sea, haciendo $1 = A_{k,0}$, si

$$A_{k,0} \varphi_k^{(q)}(a_k) + \binom{q}{1} A_{k,1} \varphi_k^{(q-1)}(a_k) + \cdots + A_{k,q} \varphi_k(a_k) = 0,$$

de donde, puesto que $\varphi_k(a_k) = 1$,

(1)
$$A_{k,q} = -\sum_{i=0}^{q-1} {q \choose i} A_{k,i} \varphi_k^{(q-i)}(a_k), q=1, \dots, s.$$

La siguiente expresión de $\varphi_j^{(q)}(x)$ para cualquier $q \leq nm$ será útil:

$$(2) \quad \varphi_j^{(q)}(x) = \sum_{\substack{i_0 + \dots + i_j + \dots + i_n = q \\ 0 \le i_t \le m}} \left(\prod_{i_0 = 1}^{n} \left(\prod_{i_0 = 1}^{n} \left(\prod_{i_0 = 1}^{n} \left(\prod_{i_0 = 1}^{n} \prod_{i_0 = 1}^{n} \left(\prod_{i_0 = 1}^{n} \prod_{i_0$$

$$\left[C_{i_0}, \dots, i_n \left(\prod_{s \neq j} \left(\prod_{r=0}^{i_s-1} (m-r)\right)\right) \varphi_j(x) \frac{1}{\prod_{s \neq j} (x-a_s)^{i_s}}\right]$$

donde los C_{i_0,\dots,i_n} son números naturales.

Sea $K = Q_p$, n = p - 1, $a_k = k$, $m = p^t$ y f como en la hipótesis del lema. Se supone $p^t > s$ y se cambia la notación, denotando por f_t lo que antes se denotaba por f_{p^t} . Bastará comprobar que, para $\operatorname{ord}_p \Delta \geq 1$,

$$\operatorname{ord}_{p}\left(f_{t}^{(q)}(j+\Delta) - f_{t}^{(q)}(j)\right) \geq t$$

para $q = 0, \dots, s; j = 0, \dots, p-1$. Como $f_t^{(q)}(j + \Delta) - f_t^{(q)}(j)$ es la suma finita $[f_t^{(q+1)}(j)]/[1!]\Delta + [f_t^{(q+2)}(j)]/[1!]$ $[2!]\Delta^2 + \cdots$, bastará ver, puesto que $\operatorname{ord}_p \Delta^n - \operatorname{ord}_p(n!) > 0$, que

$$\operatorname{ord}_{p} f_{t}^{(q)}(j) \geq t$$
 para $q \geq 1$.

De (2) se obtiene, puesto que ord_p (k-i) = 0 para $k \neq i, 0 \leq k, i \leq p-1$, que

(3)
$$\operatorname{ord}_{p} \varphi_{j}^{(q)}(k) \geq t \quad \text{para} \quad q \geq 1.$$

(La fórmula (2) solo es válida si $q \leq (p-1)p^t$, pero la desigualdad (3) también es válida para $q > (p-1)p^t$, ya que, en ese caso, $\varphi_i^{(q)} = 0$).

Usando este resultado en (1):

$$\operatorname{ord}_{p} A_{k,q} \geq t$$
 para $q \geq 1$,

de donde

(4)
$$\operatorname{ord}_{p} \psi_{j}^{(q)}(k) \geq t \quad \text{para} \quad q \geq 1.$$

Combinando (3) y (4) con la expresión

$$f_t^{(q)}(k) = \sum_{j=0}^{p-1} \left[f(j) \sum_{r=0}^{q} \binom{q}{r} \psi_j^{(r)}(k) \varphi_j^{(q-r)}(k) \right]$$

se obtiene el resultado, teniendo en cuenta que

$$\operatorname{ord}_{p} \psi_{j}(k) \geq 0, \quad \operatorname{ord}_{p} \varphi_{j}(k) \geq 0.$$

§4

Proposición 2. Dadas cualesquiera funciones continuas

$$f_{\nu_1,\dots,\nu_n}: Q_p^n \to Q_p \text{ para } 0 \leq \nu_1 + \dots + \nu_n \leq r,$$

existe una sucesión de polinomios $\{f_m\}\subseteq Q_p[x_1,\dots,x_n]$ tales que $(\partial^{\nu_1+\dots+\nu_n}f_m)/(\partial x_1^{\nu_1}\dots\partial x_n^{\nu_n})$ tiende uniformemente a f_{ν_1,\dots,ν_n} en todo compacto de Q_p^n .

Bastará demostrar que para cada compacto K y cada $\epsilon > 0$ existe un polinomio $f \in Q_p[x_1, \dots, x_n]$ tal que $|D^r f(\xi) - f_{\nu_1, \dots, \nu_n}(\xi)|_p < \epsilon$ para todo $\xi \in K$, puesto que para cada K compacto existe s entero tal que $K \subseteq p^s Z_p^n$.

Para cada $a \in K$ encontramos $f_a(x) \in Q_p[x_1, \dots, x_n]$ tal que $D^r f_a(a) = f_{\nu_1,\dots,\nu_n}(a)$ para $\nu_1 + \dots + \nu_n \leq r$. Sea $V_a = a + p^{t_a} Z_p^n$ una vecindad de a tal que para $\xi \in V_a$ se cumpla $|D^r f_a(\xi) - D^r f_a(a)|_p < \epsilon$ para $0 \leq \nu_1 + \dots + \nu_n \leq r$, y $|f_\nu(\xi) - f_\nu(a)|_p < \epsilon$, donde $f_\nu = f_{\nu_1,\dots,\nu_n}$. Por ser K compacto la cubierta $\{V_a\}_{a \in K}$ tiene una subcubierta finita $\{V_{a(i)}\}$ $i = 1, 2, \dots, N$, y podemos considerar que $V_{a(i)} \cap V_{a(i)} = \emptyset$ si $i \neq j$, pues si no fuera así una vecindad estaría contenida en la otra y se podría suprimir una de ellas.

Sea s entero tal que $K \subseteq p^s Z_p^n$ (y entonces $K \subseteq a^{(i)} + p^s Z_p^n$ para $i = 1, 2, \dots, N$). Sea $f_i = f_{a^{(i)}}$. Por ser K compacto existe C > 0 tal que $|D^r f_i(\xi)|_p < C$ para $\xi \in K$, $0 \le \nu_1 + \dots + \nu_n \le r$, $i = 1, 2, \dots, N$. Por la proposición l existen $\varphi_i(x) \in Q_p[x_1, \dots, x_n]$ tales que, haciendo $t_i = t_{a^{(i)}}$,

- 1) $|\varphi_i(x) 1|_p < \epsilon C^{-1}$ para $x \in a^{(i)} + p^{t_i} Z_p^n$,
- $|\varphi_i(x)|_p < \epsilon C^{-1} \quad \text{para} \quad x \in a^{(i)} + p^s Z_p^{\ n} (a^{(i)} + (a^{(i)} + p^{t_i} Z_p^{\ n}),$
- (3) $|D^{\nu}\varphi_i(x)|_p < \epsilon C^{-1}$ para $x \in a^{(i)} + p^s Z_p$, $1 \leq \nu_1 + \cdots + \nu_n \leq r$.

Veamos que el polinomio

$$f(x) = \sum_{i=1}^{n} \varphi_i(x) f_i(x)$$

cumple las condiciones dadas. En efecto:

$$\Delta = |D^{\nu}f(\xi) - f_{\nu}(\xi)| p \le$$

 $\operatorname{Max} \left\{ \operatorname{Max}_{1 \leq \mu_1 + \dots + \mu_n \leq r, \mu_i + \rho_i = \nu_i} \left\{ \left| D^{\mu} \varphi_i(\xi) \cdot D^{\rho} f_i(\xi) \right|_{p} \right\}.$

Para $\xi \in K$ existe q tal que $\xi \in a^{(q)} + p^{tq}Z_p^n$, $\xi \notin a^{(i)} + p^{t_i}Z_p^n$ si $i \neq q$, y obtenemos que

$$\Delta \leq \operatorname{Max} \{ \epsilon, \ \operatorname{Max}_{i \neq q} \{ | \varphi_i(\xi) \cdot D^r f_i(\xi) |_p \}, \ | \varphi_q(\xi) \cdot D^r f_q(\xi) - f_r(\xi) |_p \}$$

$$\leq \operatorname{Max} \{ \epsilon, | (\varphi_q(\xi) - 1) D^r f_q(\xi) + D^r f_q(\xi) - f_r(\xi) |_p \}$$

$$\leq \operatorname{Max} \{ \epsilon, | D^r f_q(\xi) - D^r f_q(a) |_p, \ | f_r(a) - f_r(\xi) |_p \} < \epsilon$$

ESCUELA SUPERIOR DE FÍSICA Y MATEMÁTICAS DEL IPN INSTITUTO DE MATEMÁTICAS DE LA UNAM

REFERENCIAS

- H. WHITNEY. On ideals of differentiable functions. Amer. J. Math., 70 (1948), 635-58.
 H. CARTAN. Idéaux et modules de fonctions analytiques de variables complexes. Bull. Soc. Math. France, 78 (1950), 29-64.
- [3] K. Mahler. An interpolation series for continuous functions of a p-adic variable. J. reine angew. Math., 199 (1958), 23-34.