
A NOTE ON CERTAIN SECONDARY COHOMOLOGY OPERATIONS 

BY ANTHONY HUGHES AND EMERY THOMAS* 

1. The main result 

Secondary cohomology operations have played an important role in recent 
years in homotopy theory. (See, for example, [2], [8], [12].) This note concerns a 
method of computation, due to Mahowald-Peterson, which applies to certain 
operations. Their original result is as follows. According to Adem [2], one has a 
relation 

Sq2sq" = O, 

which holds on integral cohomology classes of degree ~n + 1. Denote by 4> a 
secondary operation associated with this relation [1]. Let X be a space, let SX 
denote the (reduced) suspension of X, and let s:H*(X) ~ H*(SX) denote the 
suspension isomorphism. Now let u E H"- 1(X) (mod 2 coefficients). Then: 4> is 
de:finedonsu (since Sq11(su) = su '-' su = O), and Mahowald-Peterson [8] show 
that if> can be chooen so that 

s(u -...., Sq2u) E if>(su). 

Similar results have been obtained by Mahowald [7], with Sq2 replaced by Sq 4 

and Sq8• These computations have played important roles in three applications: 
immersions of manifolds [8], Whitehead products [7], and vector fields on mani-
folds [12]. • 

We prove in this note a theorem which includes a.s special ca.ses • the computa-
tions mentioned above. • 

Suppose we have a relation of the form 

with the following properties. 
(1.1) The relation holds on (mod 2) classes of degree <2t + n. 
(1.2) Each operation {Ji vanishes (for dimensional rea.sons) on classes of degree 

~n. 

(1.3) 2t < n. 

(1.4) Whent is odd, Sq' is replaced by a*Sq1- 1, where a* denotes the Bockstein 
coboundary operator from mod 2 coefficients to integer coefficients. 

(We show in an appendix, §7, that such a relation exists.) 
Let if> be a secondary cohomology operation, defined on cla.sses of degree 

2t + n - 1, a.ssociated with relation ( *). We will prove 
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2 A. HUGHES AND E. THOMAS 

THEOREM 1.5. Let u E nn- 1(X) be a class such that Sq'(u) = 0. Then If> is 
21 • 

defined on s ( u), and If> can be chosen ( independently of X) 80 that 

l'( L; Sq;u ....,. Sq2Hu) E <1>(l1( u) ), 

where the summation runs from j = 0 to j = t ...,.. I. 

Here s', i ?: 0, denotes the iterated suspension isomorphism, defined by 

s° = identity, 

Let OX denote the loop space and 

u: H*(X) ---+ H*(nX) 

the loop homomorphism ( of degree· -1). Set 

a-0 = identity, i i-1 
q=qoq' i?: 1. 

Corresponding to the operation If> defined on classes of degree 2t + n - 1, has one 
the operation ui<I> defined on classes of degree 2t + n - 1 - i, i ?: 0. Recalling 
the relation between the operators s and a-( see 6.2), one has at once 

COROLLARY 1.6. Let If> be the operation, and .u the class, given in L5. Then, for 
0 ~ i ~ 2t, 

s'( L, Sq;u ....,. Sq21-;u) E a-21-i<I>(s'u). • 

• R~rk I. H ( *) is a stable operation (i.e., the relation holds on classes of all 
degrees), then the operation If> in 1.5 can be regarded as belonging to the stable 
operation determined by ( *). 

Remark 2. The proof of Theorem 1.5 follows in broad outline the method of 
Mahowald [7], but the details are different. We are indebted to M. Mahowald 
for pointing out that a somewhat more general result has been obtained by L. 
Kristensen (Math. Scand., 12 (1963), page 76). However, the method.of Kris­
tensen is rather different. ( Operations are defined via cochains.) 

Remark 3. By applying Sq1 to relation ( *) one obtains a relation beginning 
with Sq2H1sqn, and Sq11J> is then an operation associated with this relation. (One 
assumes now that n + t is even.) 

Remark 4. Hughes [17] has proved Theorem 1.5 for the case t odd without 
assuming ( 1.4). 

2. The join construction 

For spaces A, B we denote by A * B the join of A and B. (See [16]). Points 
in the join will be written (a, t, b), with a E A, b E B, 0 ~ t ~ I. The join 
A * B can be regarded as a proper triad (see [9]), with the two subspaces of the 
triad intersecting in A X B ( which we regard as embedded in A * B by ( a, b) ---+ 
( a, ½, b)). Thus we have a Mayer-Vietoris coboundary operator 

a: H"(A x B) - H"+1(A * B), q?: o. 
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Suppose now that A, B have integral homology of finite type; let 11*( ) denote 
reduced cohomology with coefficients in a fixed field. One then has (see [9]): 

A: ll*(A) ® il*(B) ~ il*(A * B). 

Given classes u E il*(A), v E il*(B), we set 

(2.1) u * v = A(u ® v) in il*(A * B). 

Let A be an H-space with multiplication m: A X A - A. By the Hopf con­
struction we obtain a mapµ,: A * A - SA, given by 

(2.2) µ,(a, t, a') = (m(a, a'), t). 

Regarding SA as a proper triad ( the upper and lower cones intersect in A, em­
bedded in SA by a I➔ ( a, ½)), we see that µ, is a triad map. The Mayer-Vietoris 
coboundary for the triad SA is simply the suspension s. Thus we have the 
following commutative diagram: 

H*(A X A)~ H*(A * A) 

(2.3) ,17/, * I"* 

H*(A) - H*(SA) . 
s 

Recall that a class u E il*(A) is called primitive if -

m*u = u ® 1 + 1 ® u. 

If u and v are both primitive, then 

m*(uv) = u ® v ± v ® u + UV ® 1 + 1 ® UV. 

But A(uv ® 1) = 0 = A(l ® uv), and so by 2.3 we have: 

PROPOSITION 2.4 Let u and v be primitive classes in B*(A) (mod 2 coejficiimta). 
Then 

µ * s( UV) = u * V + v· * u. 

In the next section we apply this to A = QX. 

3. The fiber of a map 

Let B and C be spaces ( with basepoint *) and f: B - C a basepoint preserv­
ing map. Define PC to be the space of paths X on C such that X( 1) = •· Let 
E1 be the subspace of B X PC consisting of pairs (b,)I.) such thatf(b) = X(O), 
and let p:E 1 - B denote by projection (b, :\.) H b. If we regard/ as a fiber map 
(e.g., see [5]), its fiber is E1 with p playing the role of fiber inclusion. 

Given a space X define a canonical map c:SQX - X by 

c(w, t) = w(t), 

where"' E OX, 0 S t S 1. We now state the result of Barcus-Meyer [3] on the 
fibel" of c, E •. By the above definition E. is the space of pairs ([w, t], >.), such 



4 

that 

A. HUGHES AND E. THOMAS 

w(t) = >-(O), 

where w E OX, >-E PX, 0 ::; t ::; 1. 
We wish to define a homotopy equivalence OX* OX - Ea. For this we use 

the following notation: given a path p. on X and numbers O::; a::; b::; 1, define 
a new path µ.( a, b) by setting 

µ(a, b)(t) = µ((b - a)t + a), 0 ::; t ::; 1. 

Thus µ.(a, b) is a path on X from µ(a) to µ(b). Now define 

k:OX • oX-Ea 

by 

l([µ.11, t], µ(2t, 1) ), 0 ::; t ::; ½ 
k(µ., t, 11) = _1 

([µ11, t], 11(0, 2t-1) ), ½ ::; t ::; 1. 
r 1 

Here p., .,, ,E OX, p.11 denotes the usual product of paths, and 11(0, 2t - 1)- de-
notes the inverse path. We leave it to the reader to check that k is well-defined. 

TmloREM 3.1 (Barcus-Meyer). k is a homotopy equivaknce. 

Proof. Define h:Ec -4 OX• OX by 

h([w, t], >.) = (w(O, t)>., t, >.-1w(t, 1) ). 

The fact that h and k are homotopy inverses can now be checked by using the 
formulae on pages 904-,-905 of [3]. 

We set 

µ. = p a k:OX • OX - SOX. 
In other words, 

µ.( a, t, fj) = ( afJ, t), 

a, fj E OX. By Theorem 3.1, up to homotopy p. can be regarded as a fiber inclu­
sion. 

On the other hand, if we let m: OX X OX - OX denote the multiplication 
in the H-space OX (i.e., m(a,fj) = a/3), then p. is simply the map defined by 
2.2. Let u E B*(OX) be a primitive class (mod 2 coefficients). Then Sq•(u) is 
also primitive, i ~ O, and so by 2.4 we obtain: 

CoROLLARY 3.2. Let u E B*(OX) be a primiiive CUJBB. Then, for i, j ~ 0, ' . . . . . 
p.*B(Sq u -.., Sq'u) = Sq'u • Sq'u + Sq'u • Sq'u. 

4. Secondary operations 

Recall the relation given in §1: 

(•) Sq2'Sq" + Sq"+'Sqc + L, a.fJ, = O. 
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By hypothesis 1.2 we obtain a relation 

(**) Sq21Sqn + Sqn+1Sq 1 = 0, 

which holds on mod 2 classes of degree :::; n. 
Let cJ? denote a secondary operation associated with ( *), defined on classes of 

:legree n + 2t - I. Let '¥ denote an operation associated with ( **), defined on 
~lasses of degree n. Theorem 1.5 is an immediate consequence of the following 
result. 

THEOREM 4.1. Let X be a space. The operations cJ? and'¥ can be chosen, inde­

oendently of X, to have the following two properties. 
(a) Let u E Hn- 1(X) be a class such that Sq'u = 0. Then '1! is defined on su and 

s( L Sqiu '--' Sq21-iu) E '¥(su), 

vhere the summation runs from O to t - l. 

'.b) {'¥(su)l = u2t-1cJ?(su), 

vhere the brackets indicate that the indeterminacy is that of the right hand side. 

The rest of the paper is devoted to the proof of 4.1. In this section we construct 
;he universal examples for the operations, considering first the case t even, in 
:elation ( *). 

We adopt the following notation. For each integers~ l, let K(s) = K(Z 2, s), 
~th fundamental class L, E H• ( K ( s) ) . ( All co homology will now be with mod 2 . 
ioefficients.) Let 

C(s) = K(s + deg /31) X · • · X K(s + deg /3,), 

where {31 , • • • , /3, are the operations occurring in relation ( *). Let p ( s) : V ( s) ---. 
K" ( s) denote the principal fibration with classifying map 

(Sq\,, /31La, • • • , {3,L,) :K(s) ...... K(s + t) X C(s). 

Define o, = p(s)*L• E H•(V(s) ), and let a(s) :W(s) ...... V(s) denote the principal 
ibration with Sqno, as classifying map. Ifs ::s; 2t + n - l, the space W(s) is the 
;pace of the universal example for operations associated with ( *). ( The com­
)Osite map p(s) o a(s) :W(s) -K(s) is a fiber map with nK(s + t) X nC(s) X 
1K(n + s) as fiber.) Notice that we can take W(s - 1) = nW(s). 

Similarly, let q( s) : Y ( s) ...... K ( s) denote the principal fibration with Sq 11, as 
ilassifying map. Set f, = q(s)*,,, and let b(s):Z(s) ...... Y(s) be the fibration 
vith Sqnf, as classifying map. Ifs ::; n, the space Z(s) is the space of the uni­
rersal example for operations associated with ( **). Again, we can take 

Y(s - 1) = nY(s), Z(s - 1) = nZ(s). 

Suppose now that t is odd. The universal examples for the operations are tlwn 
:onstructed in the same way, except that K(s + t) is now replaced by K(Z, s + t) 
md Sq',, by o*Sqt-1,,. We leave the changes to the reader to carry out. (In what 
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follows we will use the notation for the case t even, and refer to the case t odd 
only if there is a difference in the way the proof is carried out.) 

Consider now the following commutative diagram, with the notation explained 
below: 

q(n) Z(n) __ b_( n_)_- Y( n) ---- K(n) Sq'tn • K(n + t) 

lg r li 

W(n) a(n) V(n) ---- p(n) 
• K(n) 

(Sq'i,., f:Ji,.) 
K(n + t) X C(n) . 

Here i is the natural inclusion ( choosing a basepoint * in C ( n)). Set 
{:J = ({31, • • • , {),). By hypothesis f:Jin = 0 and so we can take f:Jin to be the 
constant map K ( n) - * E C ( n). Thus the right hand square commutes, and so 
the mapf is naturally defined ( cf. [13]). Now f*o(n) = E(n) and sof*(Sqno(n)) = 
SqnE(n). Thus the map g is again the natural map defined for mappings between 
principal fibrations. 

The following two facts are immediate consequences of the definition of 
secondary operations [1]. 

LEMMA 4.2. (a) Let <f, E H 2n+41-2(W(n + 2t - 1)) be a universal example for­
the operation associated with ( *), defined on classes of degree n • + 2t - 1. Then 

q, = u21-1ef, E H2n+2t-1(W(n)) 

is a universal exampl,e for the operation associated with ( *), defined on classes of 
degree n. 
(b) Let q, he given as in ( a). Then 

if; = g*q, E H 2"+2t-1(Z(n)) 

is a universal exampl,e for the operation associated with ( **). 
(In (a) we identify W(n) with n21- 1W(n + 2t - 1).) 

5. Proof of 4.1. We continue with the notation of the preceding section. Con­
sider the following diagram: 

flY(n) * flY(n) __ k.._ K(2n - 1) 

t 1;" 

(5.1) SflY(n)--h-Z(n) 

} f(n) 

Y(n) Y(n) S " K(2n). 
q En 

Now SqnEn = En ....., En, and so c*(SqnEn) = 0. Thus c lifts to a map has shown, 
such that b(n) 0 h ~ c. By §3, flY(n) * flY(n) has the homotopy type of the· 
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fiber of c, with µ as fiber inclusion, so there is a map k as shown with, j o k ~ h o µ 

(j denotes the fiber inclusion). 
By construction Y(n) is (n - 1)-connected and 11"n(Y(n)) = Z2. Thus 

QY(n) * QY(n) is (2n - 2)-connected (see [16]) and 

11"2n-1(QY(n) * QY(n)) = Z2. 

Clearly en-1 * En-1 is the fundamental class. (Recall that Y(n - 1) QY(n) 
•. and En-1 = CT En •) 

LEMMA 5.2. k* L2n-1 = €n-l * En-1 • 

Proof. By construction of the fib ration b( n), L2n-1 transgresses to Sq n En , as 
then does k*i2n-1 by naturality. But 1 Sq'\n -,6. 0 and so k*i2n-1 -,6. 0, which im-
plies k* L2n-l €n-1 * En-1 • 

Now let 

cjj E H2n+4t-2(W(n + 2t - 1)), 

cf,= u21- 1¢ E Hn+2t-1(W(n)), 

i/t = g*cf, E Hn+2t-1(Z(n)), 

be classes as given in 4.2. By 4.2(b) i/t represents the operation \Jr associated 
with relation ( **), and so by definition, 

j*f = Sq2 tL2n-1 E H 2n+2t-1(K(2n - 1) ). 

Thus by 5.1 and 5.2, 

(5.3) *h* k*S u S 21( ) µ V' = q L2n-l = q €n-1 * En-1 • 

Now by 2.1, €n-l * €n-l = .::i( En-1 0 €n-1). Clearly .::i commutes with the Sq i's, 
and so by the Cartan formula, 

( ) S 2t( ) """' s j s 2t-j + s 2t-j s j 5.4 q €n-l * €n-l = L..,j q En-1 * q En-1 q En-1 * q €n-1 , 

where the summation runs from Oto t - 1. (Recall that Sq1en-1 = 0). 
On the other hand by 3.2, for j ~ 0, 

( ) * (S i S zt-i ) S ; S 2t-i -t S zt-i S ; 5.5 µ S q En-1 '--' q En-1 = q En:-1. * q En-1 • q En-1 * q En-1 • 

Set 

"""' s j s 2t-j W = L..,; q En-1 '--' q En-1, 

in H 2n+2 t- 2 ( QY ( n)), where the summation runs from O to t - 1. By 5.3-5.5 we 
then have • 

(5.6) 

Now the Serre exact sequence [10] for the fibration c holds through dimension 

1 See Appendix II, §8. 
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3n - 2. But 

2n + 2t - 1 ~ 3n - 2, 

since 2t < n by 1.3. Thus by exactness ( recalling that µ is homotopic to the fiber 
inclusion) we obtain by 5.6: there is a class v E H2n+2t- 1(Y(n)) such that 

(5.7) 

PROPOSITION 5.8. There are classes d E H 2n+21- 1Y(n) and e E H 2n+41-2(K(n + 
2t - 1)) such that 

a) d is decomposahle 
b) v = d + q(n)*a-21-l(e). 

We prove 5.8 in the following section. Using it we now prove Theorem 4.1. 

Proof of Theorem 4.1. Define 

<t/ = tf, - (p(n) o a(n))*e E H 2n-t4H(W(n + 2t - 1)), 

and take <l> in 4.1 to be the operation given by the class t/>'. Set 

if/ = g*u21-1q,1 E sn+2t-l(Z(n)), 

and take v in 4.1 to be the operation given by the class if/. With this choice of 
<l>, v, 4.l(b) is now satisfied. 

Notice that by the diagram in §4, p(n) o a(n) o g = q(n) o b(n), and so 

if/ = y; - (q(n) o b(n) )*o-21-l(e). 

Therefore, by 5.7, 5.8, and the commutativity of 5.1, 

h*if/ = sw + c*v - c*q(n)*u21-1(e) = sw + c*d. 

But dis decomposable by hypothesis, and so c*d = 0. Thus 

h*if/ = sw. 

Since c*En = S<TEn-1 = 8En-1, (see 6.2), this means, by 5.1, that 

8W E V(8En-1). 

Now SY(n - 1) ( =SfiY(n)) is the universal example for the class u given in 
4.1, and so from the definition of w we see that '1i' satisfies 4.l(a), which com­
pletes the proof. 

6. Proof of 5.8. Consider the fibration p(n): 

K(n + t - 1) ___j__ Y(n) p(n) K(n), 

where i denotes the fiber inclusion. Let v E H2n+21-1 Y ( n)) be the class given in 
5.7. As a. first step towards proving 5.8 we have 

LEMMA 6.1. ,,, .. v = o. 



SECONDARY COHOMOLOGY OPERATIONS 9 

We begin the proof by giving a specific choice for the map h which occurs in 
diagram 5.1. By definition Z(n - 1) is the total space of the fibration with 
Sq n E'n-l as classifying map .• But Sq n En-1 = 0, and so up to homotopy type we 
have 

Z(n - 1) = Y(n - 1) X K(2n - 2). 

Let d: Y(n - 1) _,, Z(n - 1) denote the canonical inclusion, and 7r:Z(n - 1) _,, 
Y(n - 1) the projection. Notice that 

7rd = identity, and 71" ~ b(n - 1) = Ob(n). 

Recall that if we are given spaces A, B and a map f:A _,, OB, there is asso­
ciated canonically a map 

g:SA-B 

given by g(a, t) = f(a)(t). Now Z(n - 1) = OZ(n). Let 

h:SY(n - 1) _,, Z(n) 

denote the map corresponding to d. Since 7rd = identity and since 71" ~ Ob( n - 1), 
one readily shows that 

b(n)oh~c, 

the canonical map associated to 1: Y ( n) = Y ( n). In other words, in diagram 5.1 
we have given a specific choice for the map h. 

Letf:A _,, OB, g:SA _,, B be maps related as above. One then has (see [1]) 

(6.2) 

on cohomology. 
By 5.7 we have 

s- 1h*t/; = w + s-1c*v, 

and so by 6.2 and the definition of h and c we obtain 

(6.3) d*rr,/1 = w + UV. 

Consider now the following commutative diagrams: 

K(2n - 1) X K(n + t - 1) ~ Z(n) 

171" i lb(n) 

K(n + t - 1) ----. Y(n) 
., 

K(2n - 2) X K(n - t - 2) ~ Y(n - 1) X K(2n - 2) 

Id' i' rd 
K(n - t - 2) ----- Y(n - 1). 



10 A. HUGHES AND E. THOMAS 

Here j is the fiber inclusion for the fibration q( n) o b( n) : Z ( n) -t K ( n), 'II" is the 
projection, ,,;' == Oi, :/ = Oj, and d' = d I K(n - t - 2). We have identified 
ilZ(n) with Y(n - 1) X K(2n - 2), and so the spooes in the right hand dia­
gram are all considered to be the loops of the appropriate spaces in the left hand 
diagram. 

By definition, ui/t is a class in H2n+z1-2(Z(n - 1)) such that 

:/*ui/t = Sq2',2n-2 ® 1 + 1 ® Sqn+•ia-,-.2 = Sq21t2n-2 ® 1, 

since Sq n+i i.....1-2 = 0. Therefore 

,,;'* d* ui/1 = d'*:/* ui/t = 0, 

and so by 6.3, 
i"*w +,,;'*av= 0. 

B d i::-=t· """' S ; S 2,-.; • J* 0 d • J* y ellllJ. 10n W = £..Ji q En-1 '-' q En-1 j Sl)lCe ~ En-1 = . an SlilCe '& ti' = 
n .. , we obtain: 

v(t11) = 0. 

We now must consider separately the two cases, t odd and t even. Suppose 
first that tis odd. Then i,.11 is a claBs in H2"+2t-1(K(Z, n + t - 1)), (see §4), 
but by Serre [11) ,,. is a monomorphism in this dimension, and so t11 = 0 as 
claimed. Suppose, on the other hand, that t is even. Then i,.11 is a claBs 
in H2•+2t-1(K(n + t - 1) ). By Serre [11), the kernel of,,. in degree 2n + 2t - 1 
is generated by/ -.... Sq1i', where i' = i..+,-.1. Therefore 

(6.4), .. < ' ·s 1 ') iv=ai-.... qi, 

where a E Z2. 
Consider now the extended fiber sequence given by p(n) [5]: 

t • 
K(n - 1) - K(n + t - 1) ~ Y(n) 

p(n) K(n). 

The map i can be regarded aB a fiber map witli ,e aB fiber inclusion, where ,e is 
given by ,e* / = Sq I i..-1 . Hence, 

,e*(i' '-' Sq1/) = Sq'i..-1 '-' Sql+\n-1 ~ 0, 

since t is even (by 1.3)). But by exootness, ,e* i,.v = 0, and so a = 0 in 6.4. Thus 
1,,.11 = 0, which proves 6.1. 

To simplify matters we adopt the following notation; fix n and set 

Y = Y(n), K = K(n), F = K(n + t - 1), 

, = i,. , x = Sq I in , q = q( n). 

In order to prove 5.8 we need to refer to results from another paper [15). There 
we have defined morphisms 

-,,:Hi(Y) n Kernel t-+ H'(Y # F), 

;,.:H1(Y # F)-+ Hi+1(K)/l1, 
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where 0 S j S 2n + 2t - 1, and where I; = 0 if j < 2n + 2t - 1 and / 2,.+21_ 1 

denotes the (linear) subspace of H2n+2t(K) spanned by x2. 
These morphisms have the following properties. 

( 6.5) The following sequence is exact: 

* H 2n+2t-i (K) _g__ (n) H2n+21- 1 (Y) n Kernel i* 

~ H2n+21-l (Y # F) ~ H2n+2t (K)/(x2). 

(6.6) Given classes u and v in B*(Y) such that 1,"*u = 0 and deg u + deg vs 
2n + 2t - 1, then • 

11( U -..., V) = U @ i*v. 

(6.7) Given classes v in B*(F) and win B*(K) such that deg v + deg w s 
2n + 2t - 1, then 

r(q*w © v) = w ....., ~(v), 

where · ~ denotes the Serre transgression operator for the fibration 

F ___:_ Y __L,, K. 

Using this material the proof of 5.8 follows at once from 

LEMMA 6.8. Let w E H 2"+21- 1( Y # F) be a class in {he kernel of r. Then t~re is a 
decomposable class d E H 2"+21-1( Y) n Kernel i* such that • • 

v(d) = w. 

Assuming this for the moment we prove 5.8. 

Proof of 5.8. Let v be any class in H2"+21-1( Y) n Kernel i"*. By the exactness 
of 6.5, r11( v) = 0, and so by 6.8 there is a decomposable class d1 such that 

11(d1) = v(v). 

Set V1 = v - d1 . Then v( v1) = 0, and so again by exactness there is a class 
e1 E H2n+21-1(K) such that q*e1 = v1. By Serre [11] there is a decomposable class 
d2 E H2"+21-1(K) and a class e E H 2"+4 1-2(K(n + 2t - 1)) such that 

e1 = d2 + u21-1(e). 

Set d = d1 + q*~. We then have 

d + * 21-1( ) v= qu e, 

which completes the proof of 5.8. (We have proved in 6.1 that if vis the class 
given in 5.8, then v E Kernel,,;*.) 

We are left with proving 6.8. For this we need the following lemmas about 
vector spaces. 

LEMMA 6.9. Let U, V, and W be vector spaces and let a: V - W be a linear map. 
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Set {3 = 1 ® a: U ® v- U ® W. Then 

Kernel {3 = U ® Kernel a. 

For proof see, for example, [6, 5.9.8]. We will need the follo~ing special case. 

LEMMA 6.10. Let U, { V,}, {W,}, 1 ::; i::; n, be vector spaces, and kt a: V, - W, 
be linear maps, 1 ::; i ::; n. Set 

P = U ® (Vi EB .. • EB Vn), 

and <kfine {3: P - Q by 

Then, 

Kernel {3 = U ® (Kernel a1 EB • • • EB Kernel an). 

Let R ha a Z2-polynomial algebra and let M be the linear subspace spanned by 
a set of generators for R. Let S and T be subspaces of M such that S n T = 0. 
Finally, let m be any element in M, and let (m2) denote the (linear) subspace 
of R generated by m2• Define a map 

-y:S ® T - R/(m 2) 

by s ® t - {st}, where the brackets denote the coset of st in R/ ( m2). 

• LEMMA 6.11. The linear map -y is injective. 

The proof is elementary and is left to the reader. 

Proof of 6.8. Recall that H*(K) is a Zrpolynomial algebra on generators given 
by admissible sequences of Steenrod operators applied to the fundamental class. 
(See Serre [11].) In particular, the cohomology of K through dimension 2n - 1 
is spanned by generators. Define a subspace S of ll*(K) by S = (Lff~- 1 • 

H'( K)) • EB ( subspace of Hn+'( K) spanned by all generators except x). 
Then by Serre [IO], 

(6.12) *·S ,..._, ~n+t (Y) q • ,..._, L.i=n • 

Similarly, define 
T = (subspace of Hn+1(K) spanned by x) EB (L7f!t1+1 H\K)). 

By 1.3, n + 2t < 2n, and so T (as well as S) is a linear subspace of H*(K) 
spanned by generators. Define 

-y:S ® T - H*(K)/(x 2), 

u ® v- {uv}. 

According to 6.11, 'Y is injective. Let 

f;:H\F) - Hi+\K), 
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0 ~ j ~ n + t - 2, denote the Serre transgression. Define 

fJ:S ® (1:7!!t-;:.1H;(F)) -~ ® T 

by 

U ® (vo, • • ·, v,) 1- u ® (fn+t-1Vo, • • • , fn+2t-1V1), 

where v, E Hn+t-H'(F), 0 ~ i ~ t. By Lemma 6.10, 

( 6.13) Kernel /3 = S ® (Kernel fn+t-1 E9 • • • E9 Kernel fn+21-1)-

13 

On the other hand, given classes u E S and v E H\ F), such that j + deg u = 
2n + 2t - 1, we have by 6.7, 

r(q*u ® v) = {u '--' f;(v)} = -yf3(u ® v). 

Therefore, since 'Y is injective and q* is an isomorphism in 6.12, it follows by 6.13 
that 

Kernel r in dimension 2n + 2t - 1 
(6.14) 

= I:7!!t-;:.1 H211+2t-H(Y) ® Kernel f;. 

Using 6.14 we now can prove 6.8. Suppose then that w E H2"+21- 1( Y # F) is a 
class in the kernel of r. By 6.14 we can write w as a sum of terms of the form 
u ® v, where u E ll*(Y), v E 1I*(F), f(v) = 0, and deg u + deg v = 2n + 
2t - 1. In particular deg u ~ n + t; thus u is in Image q* and so i*u = 0. (We 
use here the fact that x r"-0 and that Sq1x ~ 0 when t is even. Thus q * is sur­
jective through deg n + t.) Since deg v ~ n + 2t - 1, it follows by Serre [10] 
that 

But by 6.6, 

·*­v =iv, where ii E fl*(Y). 

and so w can be written as a sum of terms of the form v( u '"" ii), where i'*u = 0. 
Since u '-' ii is decomposable, the proof of 6.8 is complete. 

7. Appendix I 

Let t and n be positive integers such that 2t ~ n. By Adem [2] we have the 
following relation: 

s 2ts n + s n+ts t = ~ (n - 1 - i) s 2t+n-'S i q q q q ~ 2t - 2i q q • 

The fact that there is a relation(*) satisfying (1.1)-(1.4), is then an immediate 
consequence of the following lemma. 

LEMMA 7.1. Let band a be positive integers with b > 2a. Then 

SqbSq" = L 'YiOi + fSqb+", 

where f = 0 or 1, and where each operation ~. is zero on classes of degree < b - a. 
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Proof: Again by Adem [2], 

S 6s a_S ~ 1,-a+~(b-a-l-i)s b+a--s, q q - q q ~ 2a - 2i q q. 

Since Sqb-a is zero on classes of degree < b - a, the lemma follows at once by an 
inductive argument on a. (To start the induction we note that with a = 1, 
Sq6sq1 = Sq2sq1>-1 + E8qH1.) We leave the details to the reader. . .. 

8. Appendix ll 

We stated in §5 that Sq" En ¢ 0; we give the proof in this section. By consider­
ing the Serre exact sequence for the fibration 

K(n + t - 1) ~ Y(n) q(n) K(n), 

we see that Sq•En = 0 if, and only if, there is an element a in the mod 2.Steenrod 
algebra such that 

aSq' = sq•. 

TmloREM 8.1. Let n andl be po8itive i"nt,egers, with t < n, and kt a be an ekment 
of the mod 2 Steenrod algebra BUCh that deg a = n - t. If 

aSq'= Sq", 

then. 2t > n. 
By hypoth~ 1.3, 2t < n and hence ( •) cannot hold, for our choice of n. and t. 

Thus Sq• En ¢ 0, as asserted in §5. 
The proof of 8.1 will follow from a more technical result. For any positive 

integer q, consider its dyadic expansion: 
• i 

q = 2· + · · · + 2 , 0 ~ i < • • • < j. 
Define • 

q(q) = i, >.(q) = j. 

(Ifq == t',thenq(q) == k == >.(q)). We will prove 

PROPOSITION 8.2. Let n, t and a be as i"n 8.1 and suppose that ( •) holil8. Then 

(:) = 1 mod 2 and O'(t) ~ >.(n - t). 

Assuming this we see that 8.1 follows at once. For if (:) = 1 and O'( t) ~ 
>.( n - t), then in particular 2t > n, as is easily seen by writing out the dyadic 
expansions for n and t. • 

To prove 8'.2 we show first that if(•) holds then(:) is: l mod 2; for this we 

use the cohomology of the stable rotation group SO. Recall that H*(SO) has a 
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simple system of generators h1, h2, • • • , h;, • • • where h; has degree j, such 
that 

(8.3) 

(See [4].) Thus 

If ( *) holds, then 

h2,. = aSq'h,. = (;)ah,.+,, 

and so (;) = 1 mod 2 as claimed. 

To show that u(t) 2: X(n - t), we argue by assuming the opposite. That is, 
we assume now that 

(**) (;) = 1 mod 2 and o-(t) < X(n - t), 

and show that this implies that ( *} cannot hold. Let 

g = a-(t), h = X(t), k = X(n). 

Thus, ,. 
t =2g+···+2, 

n=e+2g+···+2\ 

where either e = 0 ore > 0 and X(e) < g. Since u(t) < X(n - t), we have 
k > g. Define Q to be the integer obtained from n by "filling" in all missing 
powers of two between g and k. Thus 

Q = e + 2g + 2uH + ... + 2k-l + 2.,. .• 

Now(~)= 1 mod 2, and so by 8.3, 

Sq "hQ .;,. h,.+<J . 

We prove 

LEMMA 8.4. Let n and t be integers satisfying ( **). Then for all sets of positive 
integers (a, b, • • ·, d) such that a+ b + · • • + d = n - t we have 

SqaSqb • · · SqdSq1hQ = 0. 

Since a, in ( *), must be a sum of monorials of the form Sqa • • • Sq" given 
above, this shows that 

aSq1hQ = 0, 

which means that ( *) cannot hold: Thus we are left with proving 8.4. 
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Proof of 8.4. Notice that 

and so 

Q + t = 2Hl + p + 6 

where P = t - 211• Let (a, b, • • • , d) be integers as in 8.4. We suppose now 
that 

Sq0Sq" • • • Sq"sq1ho = hnH1 • 

and show that this then leads to a ·contradiction. 
By 8.3, since 2H 1 > n, we must have 

(8.5) (pt e) = 1, ... '(p + e + da + ••• + b) = 1, 

all mod 2. Now for any positive integer 8, let 

a( 8) = number of ones in the dyadic expansion of 8. 

(We set a(O) = 0.) It is easily seen that if(;) = 1, then a(r + 8) :s; c.;(8), 

and so by 8.5 we have 

(8.6) 

But· 

Moreover, 

a(P + e + d + · · · + b + a) ~ (P + e). 

a(P + e) = a(P) + a(e), and a(P) = a(t) - 1. 

P + e + d + · · · + b + a = n - 211 + e 

and so by 8.6 we obtain 

(8.7) a(n - 211 + e) ~ a(t) + a(e) - 1. 

On the other hand, >..(e) < g and so >..(2e) :s; g. Thus, 

(8.8) a(n - 211 + e) = a(n) - 1. 

Finally, because >..(n - t) > u(t), one easily shows that 

a(t) + a(e) ~ a(n) - 1. 

Thus, by 8.7 and 8.8, we have 

a(n) - 1 :s; a(n) - 2, 

which is a contradiction. This completes the proof. 

BOSTON COLLEGE, 

UNIVERSITY OF CALIFORNIA, BERKELEY, U.S.A. 



SECONDARY COHOMOLOGY OPERATIONS 17 

REFERENCES 

[1] J. F. ADAMS, On the non-e:i;istence of elements of Hopf invariant one, Ann. of Math., 72 
(1960), 20-104. 

[2] J. ADEM, The relations on Steenrod powers of cohomology classes, in Algebraic Geometry 
and Topology, Princeton, 1957, 191-238. 

[3] W. BARCUS and J.P. MEYER, The suspension of a loop space, Amer. J. Math., 80 (1958), 
895-920. 

[4] A. BOREL, Sur l'homologie et la cohomologie des groupes de Lie compact connexes, ibid., 
76 (1954), 273-342. 

[5] B. ECKMANN and P. HILTON, Operators and cooperators in homotopy theory, Math. Ann., 
141 (1960), 1-21. 

[6] S. EILENBEHG and N. STEENROD, Foundations of Algebraic Topology, Princeton, 1952. 
[7] M. MAHOWALD, Some Whitehead products in Sn, Topology, 4 (1965), 17-26. 
[8] M. MAHOWALD and F. PETERSON, Secondary cohomology operations· on the Thom class, 

Topology, 2 (1964), 367-377. 
[9] J. MrLNOR, Construction of universal bundles II, Ann. of Math., 63 (1956), 43Q-436. 

[10] J.P. SERRE, Homologie singuliere des espaces fibres, ibid., 64 (1956), 425-505. 
[11] ---, Cohomologie mod. 2 des complexes d'Eilenberg-MacLane, Comment. Math. Helv., 

27 (1953), 198-232. 
[12] E. THOMAS, The index of a tangent 2-field, ibid., Comment. Math. Helv., 42 (1967), 

86-110. 
[13] --, Fields of tangent k-planes on manifolds, Invent. Math., 3 (1967), 334-347. 
[14] --, The span of a manifold, Quart. J. Math., 19 (1968), 225-244. 
[15] ---, An exact sequence for principal fibrations, Bol. Soc. Mat. Mex., 12 (1967), 35-45. 
[16] G. WHITEHEAD, Homotopy groups of joins and unions, Trans. Amer. Math. Soc., 83 

(1956), 55-69. 
[17] A. HUGHES, Evaluation of Stable Secondary Operations in Low Dimensions, Thesis, 

University of Notre Dame, (1966). 




