A NOTE ON CERTAIN SECONDARY COHOMOLOGY OPERATIONS

By AntHONY HUGHES AND EMERY THoMAS*

1. The main result

Secondary cohomology operations have played an important role in recent
years in homotopy theory. (See, for example, [2], [8], [12].) This note concerns a
method of computation, due to Mahowald-Peterson, which applies to certain
operations. Their original result is as follows. According to Adem [2], one has a
relation

Sq’8q" = 0,

which holds on integral cohomology classes of degree <n -+ 1. Denote by & a
secondary operation associated with this relation [1]. Let X be a space, let SX
denote the (reduced) suspension of X, and let s: H*(X) =~ H*(SX) denote the
suspension isomorphism. Now let v € H "(X) (mod 2 coefficients). Then & is
defined on su (since Sq”(su) = su < su = 0), and Mahowald-Peterson [8] show
that ® can be chogen so that

s(u < Sq’u) € ®(su).

Similar results have been obtained by Mahowald [7], with Sq” replaced by Sq*
and Sq?. These computations have played important roles in three applications:
immersions of manifolds [8], Whitehead products [7], and vector fields on mani-
folds [12]. ’ : . :
We prove in this note a theorem which includes as special cases the computa-
tions mentioned above. '
Suppose we have a relation of the form

(%) Sq"Sq" + Sq""Sq* + 21 = 0,

with the following properties.

(1.1) The relation holds on (mod 2) classes of degree <2t + n.

(1.2) Each operation 8; vanishes (for dimensional reasons) on classes of degree
<n.

(1.3) 2t < n.

(1.4) When ¢ is odd, Sq’ is replaced by 8"Sq"™, where 5* denotes the Bockstein
coboundary operator from mod 2 coefficients to integer coefficients.
(We show in an appendix, §7, that such a relation exists.)
Let & be a secondary cohomology operation, defined on classes of degree
2t 4+ n — 1, associated with relation (*). We will prove
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2 A. HUGHES AND E. THOMAS

TaeorEM 1.5. Let u € H"'(X) be a class such that Sq'(u) = 0. Then ® is
defined on s™'(u), and ® can be chosen (independently of X) so that

(258" — 84" u) € 2(s™(w),
where the summation runs fromj = 0toj =t — 1.

Here s*, 7 > 0, denotes the iterated suspension isomorphism, defined by

i—1

s" = identity, sf=s0s, 1> 1
Let @X denote the loop space and
o: H¥(X) — H*(2X)
the loop homomorphism (of degree —1). Set
¢’ = identity, o' =ocod" Y, i1

Corresponding to the operation & defined on classes of degree 2¢ + n — 1, has one
the operation o'® defined on classes of degree 2t + n — 1 — 4, %2 > 0. Recalling
the relation between the operators s and ¢ (see 6.2), one has at once

CoOROLLARY 1.6. Let ® be the operation, and u the class, given in 1.5. Then, for
022,

s (20:8q%u « Sq*7u) € B (s'u).
" Remark 1. If () is a stable operation (i.e., the relation holds on classes of all

degrees), then the operation ® in 1.5 can be regarded as belonging to the stable
operation determined by (*).

Remark 2. The proof of Theorem 1.5 follows in broad outline the method of
Mahowald [7], but the details are different. We are indebted to M. Mahowald
for pointing out that a somewhat more general result has been obtained by L.
Kristensen (Math. Scand., 12 (1963), page 76). However, the method.of Kris-
tensen is rather different. (Operations are defined via cochains.)

Remark 3. By applying Sq' to relation (*) one obtains a relation beginning
with Sq***'8q", and Sq'® is then an operation associated with this relation. (One
assumes now that n -+ ¢ is even.)

Remark 4. Hughes [17] has proved Theorem 1.5 for the case ¢ odd without
assuming (1.4).

2. The join construction

For spaces A, B we denote by A * B the join of A and B. (See [16]). Points |
in the join will be written (a, ¢, b), witha € A, b € B, 0 < ¢t < 1. The join
A * B can be regarded as a proper triad (see [9]), with the two subspaces of the

triad intersecting in A X B (which we regard as embedded in A * B by (a, b) —
(a, ,b)). Thus we have a Mayer-Vietoris coboundary operator

A:HY(A X B) > H™(A+B), g¢=>0.
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Suppose now that 4, B have integral homology of finite type; let H*( ) denote
reduced cohomology with coefficients in a fixed field. One then has (see [9]):
A:A*(A) ® H*(B) ~ H*(A  B). |
Given classes w € H*(4), v € H*(B), we set
(2.1) u*v = A(u ®v) in H*(A % B).

Let A be an H-space with multiplication m: A X A — A. By the Hopf con-
struction we obtain a map u: A * A — SA, given by

(2.2) wla, b, d') = (m(a, d'), 1).

Regarding SA as a proper triad (the upper and lower cones intersect in A, em-
bedded in SA by a |- (a, 1)), we see that u is a triad map. The Mayer-Vietoris
coboundary for the triad SA4 is simply the suspension s. Thus we have the
following commutative diagram:

H* (4 X A) 2 B4 * 4)
(23) ]m* Iﬂ*
HY(4) —— H¥SA) .

Recall that a class w € H*(4) is called primitive if -
mMu=u®1l+1Qu
If u and v are both primitive, then
m(w) =u®vEtrQutw®l+1Q un
But A(ww ® 1) = 0 = A(1 ® w), and so by 2.3 we have:

ProrosiTiON 2.4 Let u and v be primitive classes tn H*(A) (mod 2 coefficients).
Then

prs(uww) = u v + v
In the next section we apply this to A = QX.

3. The fiber of a map

Let B and C be spaces (with basepoint *) and f: B — C a basepoini preserv-
ing map. Define PC to be the space of paths A on C such that A\(1) = =. Let
E; be the subspace of B X PC consisting of pairs (b, 1) such that f(b) = A(0),
and let p:E; — B denote by projection (b, \) 1— b. If we regard f as a fiber map
(e.g., see [5]), its fiber is E; with p playing the role of fiber inclusion.

Given a space X define a canonical map ¢: SQX — X by

c(w, t) = w(t),

where » € 8X, 0 < ¢ < 1. We now state the result of Barcus-Meyer [3] on the
fiber of ¢, E.. By the above definition E. is the space of pairs ({w, &}, N), such
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that
w(t) = >‘(0);

where w € QX, A € PX,0<¢t< 1.

We wish to define a homotopy equivalence OX * QX — E.. For this we use
the following notation: given a path p on X and numbers 0 < ¢ < b < 1, define
a new path u(a, b) by setting

w(a,b)(t) = w((b—a)t+a), 0<Lit<L1.
Thus u(a, b) is a path on X from u(a) to u(b). Now define
k:9X *49X — E,
by
(v, 1], w(2¢, 1)), 0<1t<
(Iuv, 8, (0, 20=1)7), 3 <

Here u, v € X, ur denotes the usual product of pé;ths, and »(0, 2t — 1)7" de-
notes the inverse path. We leave it to the reader to check that k is well-defined.

k(p, t,») = { <1

TraeoreM 3.1 (Barcus-Meyer). k is a homotopy equivalence.
Proof. Define h:E, — QX » QX by
h([w) t]) )‘) = (w(O) i)l, A )‘—lw(t: 1))'

The fact that h and k are homotopy inverses can now be checked by using the
formulae on pages 904905 of [3].
We set
p=pok2X 02X — S0X.
In other words,
I‘(a: 12 B) = (aB, t), .
a, 8 € @X. By Theorem 3.1, up to homotopy u can be regarded as a fiber inclu-
sion.

On the other hand, if we let m: 02X X @X — 09X denote the multiplication
in the H-space QX (i.e., m(a,8) = af), then u is simply the map defined by
2.2. Let u € H*(@X) be a primitive class (mod 2 coefficients). Then Sqi(u) is
also primitive, 7 > 0, and so by 2.4 we obtain:

CoroLLARY 3.2. Let u € H*(QX) be a primitive class. Then, for 4,j > 0,
p*s(Sq'u « Sq’u) = Sq'u * Sq’u + Sq’u * Sq'u.
4. Secondary operations
Recall the relation given in §1:

(%) 8q”8q"” + Sq™*'Sq’ + XiaiBi = 0.
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By hypothesis 1.2 we obtain a relation
(%) Sq*8q" + 8q™**8q" = 0,

which holds on mod 2 classes of degree <n. :

Let ® denote a secondary operation associated with (x), defined on classes of
degree n + 2¢ — 1. Let ¥ denote an operation associated with (*x), defined on
classes of degree n. Theorem 1.5 is an immediate consequence of the following
result.

TaEoREM 4.1. Let X be a space. The operations ® and ¥ can be chosen, inde-
pendently of X, to have the following two properties.
(a) Letu € H"(X) be a class such that Sq'u = 0. Then ¥ is defined on su and

s( 2. 8q'u < Sq*u) € ¥(su),
vhere the summation runs from 0 to t — 1.
(b) {(¥(su)} = o"7®(su),
vhere the brackets indicate that the indeterminacy s that of the right hand side.

The rest of the paper is devoted to the proof of 4.1. In this section we construct
;he universal examples for the operations, considering first the case ¢ even, in
relation ().

We adopt the following notation. For each integer s > 1, let K(s) = K(Z,, s),
with fundamental class «, € H*(K(s)). (All cohomology will now be with mod 2
soefficients.) Let '

C(s) = K(s + degB1) X --- X K(s + deg 8,),

where 8, - - - , B8, are the operations occurring in relation (*). Let p(s):V(s) —
K(s) denote the principal fibration with classifying map

(8a'u, Buts, =+ + , Brta) 1K (8) = K(s + t) X C(s).

Define 8, = p(s)*w € H*(V(s)), and let a(s): W(s) — V(s) denote the principal
jbration with Sq"3, as classifying map. If s < 2t + n — 1, the space W(s) is the
space of the universal example for operations associated with (*). (The com-
yosite map p(s) o a(s):W(s) — K(s) is a fiber map with QK (s + ¢) X QC(s) X
2K (n + s) as fiber.) Notice that we can take W(s — 1) = QW (s).

Similarly, let ¢(s):Y(s) — K(s) denote the principal fibration with Sq's, as
Jlassifying map. Set ¢ = g(s)*w, and let b(s):Z(s) — Y(s) be the fibration
vith Sq”e, as classifying map. If s < n, the space Z(s) is the space of the uni-
rersal example for operations associated with (*x). Again, we can take

Y(s—1) = QY(s), Z(s — 1) = QZ(s).

Suppose now that ¢ is odd. The universal examples for the operations are then
ronstructed in the same way, except that K (s + ¢) is now replaced by K(Z, s + ¢)
wnd Sq‘e, by 6*Sq‘ .. . We leave the changes to the reader to carry out. (In what
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follows we will use the notation for the case ¢ even, and refer to the case ¢ odd
only if there is a difference in the way the proof is carried out.)

Consider now the following commutative diagram, with the notation explained
below:

b(n)

Z(n) ¥(n) — I > K(n) __ Sd'w | K(n +t)
; b f
W(n) a(n) > V('n) p(n) K(n) (Sq‘ln, ﬂln) K(n +t) X C(n)-

Here i is the natural inclusion (choosing a basepoint * in C(n)). Set

= (B, '+, By)- By hypothesis i, = 0 and so we can take B, to be the
constant map K(n) — % € C(n). Thus the right hand square commutes, and so
the map f is naturally defined (ef. [13]). Now f*8(n) = ¢(n) and sof*(Sq"s(n)) =
Sq"e(n). Thus the map g is again the natural map defined for mappings between
principal fibrations.

The following two facts are immediate consequences of the deﬁmtlon of
secondary operations [1].

Lemma 4.2. (a) Let ¢ € H™ M (W(n + 2t — 1)) be a universal example for
the operation associated with (*), defined on classes of degree n + 2t — 71." Then

¢ ___l o_2t—16 € HZu-}-ﬂt—l(W(n))

is @ universal ezample for the operation associaled with (%), defined on classes of
degree m.
(b) Let ¢ be given as in(a). Then

v =g € H""(Z(n))

s a universal example for the operation associated with (*x).
(In (a) we identify W(n) with @ "W(n + 2t — 1).)

5. Proof of 4.1. We continue with the notation of the preceding sectlon Con-
sider the following diagram:

QY (n) » Q¥ (n) —F— K(2n — 1)

- J
(51) SQY(n) —}l——> Z(n)
jc lb(n)
Y(n) = Y(n) <= K(2n).

Now Sq"¢; = € « €, and $0 ¢*(Sq”e,) = 0. Thus ¢ lifts to a map h as shown,
such that b(n) o b ~ ¢. By §3, 2Y(n) * 2¥(n) has the homotopy type of the
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fiber of ¢, with u as fiber inclusion, so thereis a map k as shown with,jok ~h o u
(7 denotes the fiber inclusion).

By construction Y(n) is (n — 1)-connected and w.(¥Y(n)) = Z,. Thus
QY (n) * QY (n) is (2n — 2)-connected (see [16]) and

Ton—1(QY (n) * QY (n)) = Z,.

Clearly €, 1 * €,-1 is the fundamental class. (Recall that Y(n — 1) = QY (n)
‘and e,; = 0ey.)

LEMMA 5.2. k¥ ton_1 = €n1 * €n1 .

Proof. By construction of the fibration b(n), .1 transgresses to 8q”e. , as
then does k*u,_; by naturality. But' Sq”e, # 0 and s0 k*is_1 # 0, which im-
plies E*in = €1 * €n_1.

Now let

$ € H"THW(n + 2t — 1)),
¢ — 0_2t-—1<5 E Hn+2t—l<w(n))’
¥ =g'¢ € H"™(Z(n)),

be classes as given in 4.2. By 4.2(b) ¢ represents the operation ¥ associated
with relation (#*), and so by definition,

7 = 8q™un € H*™™ K (2n — 1)).
Thus by 5.1 and 5.2, ' '
(5.3) WY = '8 o1 = Sq* (ens * €ns).

Now by 2.1, €n-1 * €1 = A(en— @ €n). Clearly A commutes with the Sq'’s
and so by the Cartan formula,

(54) Sq*(en * €aa1) = Z P qut_jen_l -+ Sqw—jen_l * Sq €1,

where the summation runs from 0 to ¢ — 1. (Recall that Sq‘e,1 = 0).
On the other hand by 3.2, forj > 0,

(5.5) u's(Sq’ens « Sq" ) = SqPens * 84" s + 8q™ Vens * Sqlens .
Set
w= 2. quen_l - Squ—jeﬂ_l ,

in H*"**7%(QY (n)), where the summation runs from 0tot — 1. By 5.3-5.5 we
then have

(5.6) wH (R Y — sw) = 0.

Now the Serre exact sequence [10] for the fibration ¢ holds through dimension

1 See Appendix II, §8.
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3n — 2. But
2n+ 2t -1 < 3n — 2,

sinee 2¢ < n by 1.3. Thus by exactness (recalling that x is homotopic to the fiber
inclusion) we obtain by 5.6: there is a class v € H*"**7(Y(n)) such that

(5.7) K = sw + c*.

PROPOSITION 5.8. There are classes d € H2v21Y (n) and e € H>H-2(K(n +
2¢ — 1)) such thai

a) d s decomposable
b) v = d + g(n)*s* ().

We prove 5.8 in the following section. Using it we now prove Theorem 4.1.
Proof of Theorem 4.1. Define
¢ = ¢ — (p(n) o a(n))*e € H*"'"H(W(n + 2t — 1)),
and take & in 4.1 to be the operation éiven by the class ¢'. Set
v =g""7% € H""7(Z(n)),

and take ¥ in 4.1 to be the operation given by the class ¢'. With this choice of
®, ¥, 4.1(b) is now satisfied.
Notlce that by the diagram in §4, p(n) e a(n) ocg = ¢(n) o b(n), and so

. ¥ = ¢ — (g(n) o b(n))*e*(e).
Therefore, by 5.7, 5.8, and the commutativity of 5.1,
BY = sw + ¢ — c*q(n)*e* N (e) = sw + c'd.
But d is decomposable by hypothesis, and so ¢*d = 0. Thus
BY = sw.
Since c*en = 80€n1 = 8€n1, (see 6.2), this means, by 5.1, that
8w € V(8ep—).

Now SY(n — 1) (=82Y¥(n)) is the universal example for the class u given in
4.1, and so from the definition of w we see that ¥ satisfies 4.1(a), which com-
pletes the proof.

6. Proof of 5.8. Consider the fibration p(n):

K+t — 1) —— ¥(n) 22, k(n),

where ¢ denotes the fiber inclusion. Let v € H****'¥(n)) be the class given in
5.7. As a first step towards proving 5.8 we have

Lemma 6.1. i% = 0.
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We begin the proof by giving a specific echoice for the map h which occurs in
diagram 5.1. By definition Z(n — 1) is the total space of the fibration with
8q"en—. as classifying map. But Sq"e,—y = 0, and so up to homotopy type we
have ‘

Zin—1) =Y(n —1) X K(2n — 2).

Letd:Y(n — 1) — Z(n — 1) denote the canonical inclusion, and 7: Z(n — 1) —
Y(n — 1) the projection. Notice that

wd = identity, and = ~b(n — 1) = Qb(n).

Recall that if we are given spaces A, B and a map f:A — QB, there is asso-
ciated canonically a map

g:84 - B
given by g(a, t) = f(a)(t). Now Z(n — 1) = QZ(n). Let
h:8Y(n — 1) — Z(n)

denote the map corresponding to d. Since 7d = identity and since = ~Qb(n — 1),
one readily shows that

b(n) oh ~c,

the canonical map associated to 1: Y (n) = Y(n). In other words, in diagram 5.1
we have given a specific choice for the map A. o
Let f:A — QB, g:SA — B be maps related as above. One then has (see [1])

(62) / fro =g,

on cchomology.
By 5.7 we have

SR = w + s7¢™,
and so by 6.2 and the definition of 2 and ¢ we obtain
(6.3) oy = o + ov.

Consider now the following commutative diagrams:
K@n—1) X K(n 4+t —1) —L— Z(n)
' Pr Jb(n)
K(n+1t—1) > Y(n)

K(n —2) X K(n—t—2) —  ¥(n — 1) X K(2n — 2)
d Id .
Kn—1t—2) v y Y(n — 1),
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Here j is the fiber inclusion for the fibration ¢(n) ¢ b(n):Z(n) — K(n), = is the
projection, 7 = @4, j = Qj, and d' = d|K(n — ¢ — 2). We have identified
QZ(n) with Y(n — 1) X K(2n — 2), and so the spaces in the right hand dia-
gram are all considered to be the loops of the appropriate spaces in the left hand
diagram. .

. By definition, oy is a class in H*"***(Z(n — 1)) such that

j’*alll = Sqmtzn_2 R14+1Q Sqﬂ-Hln—p-z = Sq“cz,._z ®1,
since Sq"**in_s_s = 0. Therefore |
*d*op = d'**ey = 0,
and so by 6.3,
*w 4 %o = 0.

By definition w = 2_; Sq%ens « Sq** e ; since ¢ *ep—y = 0 and since ¢ *o =
oi', we obtain: _
a(i*) = 0.

We now must consider separately the two cases, ¢ odd and ¢ even. Suppose
first that ¢ is odd. Then *» is a class in H*"** Y (K(Z, n + t — 1)), (see §4),
but by Serre [11] ¢ is a monomorphism in this dimension, and so i*» = 0 as
claimed. Suppose, on the other hand, that ¢ is even. Then i*» is a class
in A" Y(K(n + ¢t — 1)). By Serre [11], the kernel of ¢ in degree 2n + 2t — 1
is generated by '  Sq't, where ¢ = tn4s; . Therefore
(64) o v = a(/ < SqY),

where a € Z, .
Consider now the extended fiber sequence given by p(n) [5]:
K(n—1) —L) Kn+t—1) AN Y(n) —2(—72-» K(n).

The map % can be regarded as a fiber map with £ as fiber inclusion, where £ is
given by £ = Sq‘i._1. Hence,

(0 O 8qY) = 8q'ma © 8q ma # 0,

since ¢ is even (by 1.3)). But by exactness, £*:*» = 0, and so @ = 0 in 6.4. Thus
+*v = 0, which proves 6.1.
To simplify matters we adopt the following notation; fix n and set

Y =Y(n), K = K(n), F=Kn+t—1),
L= tn, T = Sq‘tn, g = q(n).

In order to prove 5.8 we need to refer to results from another paper [15]. There
we have defined morphisms

v:H(Y) N Kernel * — H'(Y # F),
r:H (Y $ F) - H"(K)/I;,
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where 0 < j < 2n + 2t — 1, and where I; = 0if 7 < 2n + 2t — 1 and Isny9e
denotes the (linear) subspace of H*"**(K) spanned by z’.

. These morphisms have the following properties.

(6.5). The following sequence is exact:

H™ ™ (K) —2— (n) H*™™7 (Y) N Kernel i*

_L) H2n+2t—1 (Y#F) __T__) H2n+2i (K)/(x2).

(6.6) Given classes u and v in H*(Y) such that s*» = 0 and deg u + deg v <
2n 4+ 2t — 1, then

- v(u < v) = u®i*.

(6.7) Given classes v in H*(F) and w in H*(K) such that deg v + deg w S
2n + 2t — 1, then

(¢"w @ v) = w < #(v),
where -# denotes the Serre transgression operator for the fiobration

q

| Fy- LK
Using this material the proof of 5.8 follows at once from

LemMA 6.8. Letw € H*" ™ (Y #F) bea class in the kernel of . Then there is a
decomposable class d € H™™7(Y) N Kernel ¥ such that

v(d) = w.
Assuming this for the moment we prove 5.8. -

Proof of 5.8. Let v be any class in H*"***7(Y) N Kernel ¢*. By the exactness
of 6.5, rv(v) = 0, and so by 6.8 there is a decomposable class d; such that

‘ v(dy) = »(v).
Set v, = v — d,. Then »(»;) = 0, and so again by exactness there is a class
e € H"7(K) such that ¢g*e; = v, . By Serre [11] there is a decomposable class
dy € H*""(K) and a classe € H*"™%(K(n + 2t — 1)) such that.
= d2 + 0'2‘—1(9).
Set d = d, 4+ ¢*ds. We then have
v = d + q*a_ﬂ—-'l(e)’

which completes the proof of 5.8. (We have proved in 6.1 that if v is the class
given in 5.8, then » € Kernel 7*.)

We are left with proving 6.8. For this we need the following lemmas about
vector spaces.

LemMma 6.9. Let U, V, and W be vector spaces and let .V — W be a linear map.
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Setf=1® a:U®V —UQW. Then
, Kernel 8 = U @ Kernel a.
For proof see, for example, [6, 5.9.8]. We will need the following special case.

LevMa 6.10. Let U, {V, W3}, 1 < i< n, be vector spaces, and let a:V; — W
be linear maps, 1 < 7 < n. Set

P=UQ® (Vi@ --- & Va), Q=UQ (W, ® - --- @W,),
and define B:P — Q by |
U® (U1, ,0) > u® (aw, -+, aun).
Then, .
Kernel 8 = U @ (Kernel a; @ --- @ Kernel a,).

Let R be a Z;-polynomial algebra and let M be the linear subspace spanned by
a set of generators for R. Let S and 7 be subspaces of M such that S N T = 0.
Finally, let m be any element in M, and let (m®) denote the (linear) subspace
of R generated by m’. Define a map

v:8 ® T — R/(m’)
by s ® t — {st}, where the brackets denote the coset of st in R/(m").
LemMMA 6.11. The linear map v s injective.
The proof is elementary and is left to the reader.
Proof of 6.8. Recall that H*(K) is a Z,-polynomial algebra on generators given

by admissible sequences of Steenrod operators applied to the fundamental class.

(See Serre [11].) In particular, the cohomology of K through dimension 2n — 1

is spanned by generators. Define a subspace S of H*(K) by 8 = (> 2.

H'(K))'® (subspace of H"**(K) spanned by all generators except x).
Then by Serre {10],

(6.12) ¢F 18~ DM (Y).

Similarly, define ,

T = (subspace of H*(K) spanned by z) ® (D ih., H(K)).
By 1.3, n + 2t < 2n, and so T (as well as 8) is a linear subspace of H*(K)
spanned by generators. Define

v:8 @ T — H*K)/(z"),

u ® v— {w}.
According to 6.11, v is injective. Let
#;:H'(F) — H*(K),
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0 <5< n+41t— 2 denote the Serre transgression. Define
B:8 @ (LI H(F) > 8®T
by
U® (vo, =+ ,0) > u® (FageVo, * ; Fagaeis),
where v; € H"""7*(F), 0 < ¢ < ¢. By Lemma 6.10,
(6.13) Kernel 3 = S ® (Kernel #,4:1 @ --- & Kernel #,52,1).

On the other hand, given classes 4 € S and v € H’(F), such that j + degu =
2n + 2t — 1, we have by 6.7, i '

(¢*u @ v) = {u < #(v)} = v8(u ® v).

Therefore, since v is injective and ¢* is an isomorphism in 6.12, it follows by 6.13
that

Kernel 7 in dimension 2n + 2t — 1
= Y el HPTY) ® Kernel 7.

Using 6.14 we now can prove 6.8. Suppose then that w € H*"** (Y # F) is a
class in the kernel of 7. By 6.14 we can write w as a sum of terms of the form
u @ v, where u € H*(Y),v € H*(F),#() = 0, and deg u + deg v = 2n +
2t — 1. In particular deg w < n + t; thus » is in Image ¢* and so ¢*u = 0. (We
" use here the fact that z > 0 and that Sq'z # 0 when ¢ is even. Thus ¢* is sur-

jective through deg n 4 t.) Since deg v < n + 2¢ — 1, it follows by Serre [10]
that . '

(6.14)

v =15, whered € H¥*(Y).
But by 6.6,

and so w can be written as a sum of terms of the form »(v 7), where 'y = 0.
Since © - 7 is decomposable, the proof of 6.8 is complete.

7. Appendix I

Let t and n be positive integers such that 2t < n. By Adem [2] we have the
following relation:

2ty m atiat_ Sfn—1—14 2n—iqy <
- 8q78q" + Sq""8q =Z % — 9 Sq Sq'.
i=0 (]

The fact that there is a relation (*) satisfying (1.1)—( 1.4), is then an immediate
consequence of the following lemma.

LemMA 7.1. Let b and a be positive integers with'b > 2a. Then
quSqa = Z'Yiai + GSqHa,

where ¢ = 0 or 1, and where each operation 8; 7s zero on classes of degree <b — a.
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Proof: Again by Adem [2],
a—1 o
a __ 2a b—a b—a—l—i b+-a—1 4
Sq’Sq” = 8q™8q +§_:0( 9 — % )Sq Sq’.
Since Sq” ™ is zero on classes of degree <b — a, the lemma follows at once by an
inductive argument on a. (To start the induction we note that with ¢ = 1,
Sq°Sq' = Sq°Sq"™ + 8q"™.) We leave the details to the reader.
8. Appendix IT
We stated in §5 that Sq"e, 5 0; we give the proof in this section. By consider-
ing the Serre exact sequence for the fibration
K(n+t—1)— ¥(n) (OB K(n),

we see that Sq"e, = 0 if, and only if, there is an element « in the mod 2 Steenrod
algebra such that

(%) ' oSq* = Sq™.
TraEOREM 8.1. Let n and T be positive integers, with t < n, and let o be an element
ofthemod2Steenrodalgebrasuchthatdega—-n—t If Lo
oSq’ = Sq°,

then 2t > n. 4
By hypothesis 1.3, 2t < n and hence (*) cannot hold, for our choice of » and .

Thus Sq"e, # 0, as asserted in §5.
The proof of 8.1 will follow from a more techmcal result. For any positive

integer g, consider its dyadic expansion:
g=2"4+ .- +2, 0<Zi<--- <y
Define
o =1, Mg =17
(If ¢ = 2 then o(q) = k = A\(q)). We will prove
ProrosITION 8.2. Let n, t and « be as in 8.1 and suppose that () holds. Then

(:L) =1mod2 and o(f) > Nn — t).

Assuming this we see that 8.1 follows at once. For if (?) = 1 and o(t) >

Nn — t), then in particular 2 > n, as is easily seen by writing out the dyadic
expansions for n and i.

To prove 8.2 we show first that if () holds then (n

t) = 1 mod 2; for this we

use the cohomology of the stable rotation group SO. Recall that H*(SO) has a
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simple system of generators hy, ks, ---, hj, -+ where h; has degree j, such
that
(8.3) Sq'h; = (’) hivi-

(See [4].) Thus
Sq"hn = hen # 0.
If (%) holds, then

haw = aSq'hn = (?)ah,,.;.g,

and so <;7') = 1 mod 2 as claimed.
To show that ¢(f) = AMn — i), we argue by assumlng the oppos1te That 1 ls,
we assume now that )

(%) <:") = 1mod2 and o(f) < An —¢),

and show that this implies that (*) cannot hold. Let
g=20(t), h=x1, k=\n).
Thus,
=24 ... + 24
n=e+2" +--- + 2%

where either ¢ = 0 or ¢ > 0 and Me) < g. Since o(t) < NMn — t), we have
k > g. Define @ to be the integer obtained from n by “filling” in all missing
powers of two between ¢ and k. Thus

Q=e+2°+2°" 4 ... 4257 4 25
Now (g) = 1 mod 2, and so by 8.3,
Sq"he = Rayq.
We prove

Lemma 8.4. Let n and t be integers satisfying (#+). Then for all sets of positive
integers (a, b, ---,d) suchthata + b+ --- +d = n — ¢ we have

Sq°8q” - - - 8q°Sq‘he = 0.

Since a, in (), must be a sum of monomials of the form Sq° - - - Sq° given
above, this shows that
szq'hq = 0,

which means that (%) cannot hold. Thus we are left with proving 8.4.
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Proof of 8.4. Notice that
Q+2°=2""+e

and so

Q+t=2""+P+e
where P = t — 2°. Let (a, b, --- , d) be integers as in 8.4. We suppose now
that -

8q°8q” - - - 8q°8q'he = hnta-

and show that this then leads to a contradiction.
By 8.3, since 2*™ > 7, we must have

(8-5) (P;;e)‘_—_—'ly"'x<P+e+‘i+”.+b>Eli

all mod 2. Now for any positive integer s, let

a(s) = number of ones in the dyadic expansion of s.

(We set a(0) = 0.) It is easily seen that if (:) = 1, then a(r 4+ s) < a(s),
and so by 8.5 we have '
(8.6) aP+e+d+--- +b+4+a) <(P+e).
Buf ‘ L k
a(P +¢e) = a(P) + ale), and a(P) = «(t) — 1.
Moreover,

P+ed+d+---+b+a=n—2"+¢
and so by 8.6 we obtain

(8.7) a(n — 2° + ¢) < a(t) + ale) — 1.
On the other hand, A(e) < g and so A\(2¢) < g. Thus,
(8.8) _ a(n —2° +e) = a(n) — 1.

Finally, because A(n — t) > o(t), one easily shows that
a(t) + a(e) < a(n) — 1.
Thus, by 8.7 and 8.8, we have
a(n) — 1 < a(n) — 2,
which is a contradiction. This completes the proof.
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