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1. Introduction 

It is well known that some homotopy equivalent manifolds are not even 
homeomorphic. Such examples of lo.w dimensional smooth manifolds are lens 
spaces. Examples of high dimensional simply-connected, non-smooth manifolds 
are given in [4, Theorem 4]. However, it is not known whether high dimensional 
smooth, simply-connected, homotopy equivalent manifolds are homeor.cphic. 
In this note we shall establish two theorems on cobordant homotopy equivalent 
manifolds with a highly-connected trn,ce. In some cases the homotopy equivalent 
manifolds are only different from a connected-sum of a homotopy sphere. The 
first theorem which is a generalization of [9] is to deal with the non-simply
connected manifolds. The second theorem deals with two non-vanishing relative 
homology of the trace. These results are outgrowths of the study of N,,vikv;'., 
paper [2] and I. Tamura's paper (6]. 

2. Preliminaries 

lvfanifolds considered here are to be compact, oriented, connected, and differ
entiable. Let G, ,r be respectively homotopy group of middle dimension :.i,d 
fundamental group of a manifold N 2k. Let S( G) be the set of fa,miEcs of generators 
of G, and S(,r) be the set of subset of ,r. We define [S(G), S(-w)] to be certam 
class of functions from S(G) to S( 1r) as follows: Let [S/, S/, • • • , S/j be a 
collection of immersed spheres in N 2k representing a set of generators of 0. For 
dimensional reason, we may assume the singularities are isolated double points. 
On each sphere we connect the singularities by a tree, a contractible 1-cornplex. 
If a point Pis a self-intersection of the sphere, we allow two branches of the tree 
to meet at the point. The totality of these trees forms a I-complex Kin N. The 
homotopy class of each component of K defines an element in the fundament:1,l 
group of N, up to an inner automorphism of 1r. A function in [S( G), S( ,r)] is 
trivial if for some choices of immersed spheres representing a set of generator oi 
G, the resulting K gives only the identity element in ,r. 

3. Theorems 

THEOREM 1. Let M/k-I and M/k-i, (k ~ 3), be two homotopy equivalent mani
folds with fundamental group 1r, satisfying the following hypotheses: 

i) There is a manifold N 2k with boundary aN = ,W2 U -Mi and i: M2--+ N, 
the inclusion is (k - 1)-connected, i.e., 1riN, M2) = 0, for q = 1_, 2, 
• • • , (k - 1). 

ii) There is a continuous map g: N--+ M 2 such that g I M2 is !he iderdity and 
g I M1 is the homotopy equivalence. 

Then ,r"(N, M2) can be realized in N by a handle body if and only if [S,rk(N, M2 ), 

S( 1r)] contains a trivial function. If this holds, then Mi is h-cobordant to M2 1J ~, 
where 11 is the connected-sum and ~ is a homotopy sphere. 
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Note that if 1r = 0, Z2, Za, Z4, Z6 or Z (cyclic groups), the Whitehead tor-
sions are trivial, in turn, h-cobordant manifolds are diffeomorphic. 

THEOREM 2. Let M/k and M/k be two 2-connecled homotopy equivalent mani
folds with k > 4, satisfying the following hypotheses: 

i) There·is a 2-connected manifold N2H 1 with boundary aN = M2 U -M1 
and the relative homology groups Hq(N, M 1 ; Z) = Z + Z + • • • + Z for 
q = k, k + 1, and isomorphic to 0 for other q. 

ii) The same as in theorem 1. 
Then M1 is diff eomorphic to M2 ~ ~-

COROLLARY. If k = 3, 5, 6, 7 Mod 8, the conclusion of theorem 2 is that M 1 

is diffeomorphic to M2 . 
4. Proofs of theorems 

Proof of theorem 1. By the hypothesis 2, the homotopy and the homology exact 
sequences of pairs (N, M1) and (N, M2) split (see [9]). By the Whitney imbed
ding theorem we can realize 1rk(N, M2), which is regarded as a subgroup of 
7rk(N), by immersed spheres with only isolated double points as singularities. 
On each sphere we connect these singularities by a tree. The totality of these 
trees is a I-complex in N. It is clear that these spheres have no singularities in 
the complement of a neighborhood of K. Since [S1rk(N, M 2), S(1r)] contains a 
trivial function, K is contractable in N. By the lemma 2.7 of [5], there exists a 
2k-cell E containing K. For dimensional reason, there is no danger of E meeting 
the non-singular parts of the spheres. E is only a regular neighborhood of a cone 
of K. E serves as the 2k-cell of the handle body, and the non-singular parts of 
immersed spheres ( the complements of neighborhoods of the trees) together 
with their small normal neighborhoods in N as handles form a handle body. 
The boundary of this handle body is a homotopy sphere by a lemma of Wall 
[p. 169, 8]. The lemma says that the boundary of a (k - 1)-connected 2k-handle 
body is a homotopy sphere if the intersection pairing is non-singular. Since the 
handle body is simply-connected, we can lift the handle body to the universal 
covering space N of N. Remove the interior of the handle body and a path con
necting it to M2 • We also remove the corresponding parts in N. Now M1 and 
M2 fl! ~ are h-cobordant because their universal covering spaces are homotopy 
equivalent by a theorem of Whitehead. 

Proof of theorem 2. By the homology hypothesis there is a Morse function de
fined on N with indices compatible with the homology [6]. Let us ·assume tem
porarily that Hk(N, M1; Z) = Z, only one copy of infinite cyclic group. Then 
the Morse function implies that N is obtained from thickening M1 with two 
handles attached on one side of it. That is, N = M 1 X [0, 1] ,.___, [Dk X DH 1] ,.___, 

<p 'I] 

[DH1 X Dk], where <p: aDk X Dk+i - M 1 X { 1} a disjoint differentiable imbedding 
which attaches a handle to M1 X {ll, and '17:aDH1 X Dk - M1 X [O, I] ,.___, 

<p 

[Dk X Dk+ 1] likewise. Since <p does not kill any homotopy group 11'k-1(M1), <pis 
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null-homotopic. 7/ cannot be onto the first handle otherwise it contradicts to 
the fact that H1r.(N, M1 ; Z) is free. 7/ is also null-homotopic because it does not 
kill any 1ik{M1). By the Haefilger's theorem [1, theorem d'existence] we can 
find a differentiable k-disk in M1 X [O, 1] bounding q,( aD1r. X { O}) in N. This 
handle together with a neighborhood of the disk form a Dk+i_bundle over a 
k-sphere. Since 7/ is null-homotopic, we may assume 11( aDH 1 X { O}) covered by a 
(k + 1)-disk {O} X DH 1 of Dk X D1c+1 which is the normal neighborhood of the 
previous k-disk. This is a plumbing manifold. Its boundary is a homotopy 
sphere 2: by Milnor [2]. Remove the interior of this plumbing manifold and a 
path connecting it to M2. Examining the Mayer-Vietoris sequence, we see that 
M1 and M2 I 2: are h-cobordant; therefore diffeomorphic. If Hk(N, M1) = 
H1r.+1(N, M1) is isomorphic to more than one copy of Z, we simply pair them ~y 
duality and remove them in the same xnanner. 

Proof of the corollary. Take two copies of Dk-bundle H1 over a (k+ 1)-sphere 
and identify their boundaries. That is to form a double. Now we remove a disk 
from one of the ( k + 1 )-spheres and remove also the fibres over the disk. Then 
the resulting manifold is Dk X Dk+1 U H, which has a standard sphere as bound
ary. On the other hand; if k = 3, 5, 6, 7 Mod 8, any DH 1-bundle H"' over k
sphere is trivial by Bott's stable homotopy theorem. The plumbing manifold 
H"' I H, = D.,. X D1c+1 UH, . This argument is due to I. Tamura in [7, lemma 2]. 

Added in proof. Our theorem 2 overlaps a theorem of R. DeSapio (Almost dif
feom,orphisms of manifolds, Pacific J. Math. 26 (1968) p. 56). However, our corol
lary to the-theorem is still outstanding. An example of two 8-dimensional homo
topy equivalent, but not homeomorphic, smooth manifolds was discovered by 
R. Lashof and M. Rothenberg (On the Hauptvermutung, Triangulation of Mani
folds, and h-cobordism. Bull. Amer. Math. Soc. 72 (1966) 104o-43). 
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