SOME HOMOTOPY EQUIVALENT MANIFOLDS

BY YUEN-FAT WONG

1. Introduction

It is well known that some homotopy equivalent manifolds are not even homeomorphic. Such examples of low dimensional smooth manifolds are lens spaces. Examples of high dimensional simply-connected, non-smooth manifolds are given in [4, Theorem 4]. However, it is not known whether high dimensional smooth, simply-connected, homotopy equivalent manifolds are homeomorphic. In this note we shall establish two theorems on cobordant homotopy equivalent manifolds with a highly-connected trace. In some cases the homotopy equivalent manifolds are only different from a connected-sum of a homotopy sphere. The first theorem which is a generalization of [9] is to deal with the non-simplyconnected manifolds. The second theorem deals with two non-vanishing relative homology of the trace. These results are outgrowths of the study of Novikov's paper [2] and I. Tamura's paper (6].

2. Preliminaries

Manifolds considered here are to be compact, oriented, connected, and differentiable. Let G , π be respectively homotopy group of middle dimension and fundamental group of a manifold N^{2k} . Let $S(G)$ be the set of families of generators of *G*, and $S(\pi)$ be the set of subset of π . We define $[S(G), S(\pi)]$ to be certain class of functions from $S(G)$ to $S(\pi)$ as follows: Let $[S_1^k, S_2^k, \cdots, S_r^k]$ be a collection of immersed spheres in N^{2k} representing a set of generators of G. For dimensional reason, we may assume the singularities are isolated double points. On each sphere we connect the singularities by a tree, a contractible 1-cornplex. If a point P is a self-intersection of the sphere, we allow two branches of the tree to meet at the point. The totality of these trees forms a 1-complex K in N . The homotopy class of each component of K defines an element in the fundamental group of N, up to an inner automorphism of π . A function in [S(G), S(π)] is trivial if for some choices of immersed spheres representing a set of generator *oi G*, the resulting *K* gives only the identity element in π .

3. Theorems

THEOREM 1. Let M_1^{2k-1} and M_2^{2k-1} , $(k \geq 3)$, be two homotopy equivalent mani*folds with fundamental group* π , satisfying the following hypotheses:

- i) *There is a manifold* N^{2k} with boundary $\partial N = M_2 \cup -M_1$ and $i: M_2 \to N$, *the inclusion is* $(k - 1)$ *-connected, i.e.,* $\pi_q(N, M_2) = 0$, *for* $q = 1, 2$, \cdots , $(k-1)$.
- ii) *There is a continuous map g:* $N \rightarrow M_2$ *such that g | M₂ is the identity and* $g \mid M_1$ *is the homotopy equivalence.*

Then $\pi_k(N, M_2)$ can be realized in N by a handle body if and only if $[S_{\pi_k}(N, M_2),$ $S(\pi)$] *contains a trivial function. If this holds, then* M_1 *is h-cobordant to* $M_2 \nless \Sigma$, *where* $*$ *is the connected-sum and* Σ *is a homotopy sphere.*

Note that if $\pi = 0$, Z_2 , Z_3 , Z_4 , Z_6 or Z (cyclic groups), the Whitehead torsions are trivial, in turn, h-cobordant manifolds are diffeomorphic.

THEOREM 2. Let M_1^{2k} and M_2^{2k} be two 2-connected homotopy equivalent mani*folds with k* > 4, *satisfying the following hypotheses:*

i) There is a 2-connected manifold N^{2k+1} with boundary $\partial N = M_2 \cup -M_1$ and the relative homology groups $H_q(N, M_1; Z) = Z + Z + \cdots + Z$ for $q = k, k + 1,$ *and isomorphic to* 0 *for other q.*

ii) *The same as in theorem* 1.

Then M_1 *is diffeomorphic to* $M_2 \nless \Sigma$.

COROLLARY. If $k \equiv 3, 5, 6, 7 \text{ Mod } 8$, the conclusion of theorem 2 is that M_1 *is diffeomorphic to M2* .

4. **Proofs of** theorems

Proof of theorem 1. By the hypothesis 2, the homotopy and the homology exact sequences of pairs (N, M_1) and (N, M_2) split (see [9]). By the Whitney imbedding theorem we can realize $\pi_k(N, M_2)$, which is regarded as a subgroup of $\pi_k(N)$, by immersed spheres with only isolated double points as singularities. On each sphere we connect these singularities by a tree. The totality **of** these trees is a 1-complex in N . It is clear that these spheres have no singularities in the complement of a neighborhood of *K*. Since $[S_{\pi_k}(N, M_2), S(\pi)]$ contains a trivial function, K is contractable in N . By the lemma 2.7 of [5], there exists a $2k$ -cell E containing K. For dimensional reason, there is no danger of E meeting the non-singular parts of the spheres. *E* is only a regular neighborhood of a cone of K. E serves as the $2k$ -cell of the handle body, and the non-singular parts of immersed spheres (the complements of neighborhoods of the trees) together with their small normal neighborhoods in *N* as handles form a handle body. The boundary of this handle body is a homotopy sphere by a lemma of Wall [p. 169, 8]. The lemma says that the boundary of a $(k-1)$ -connected 2k-handle body is a homotopy sphere if the intersection pairing is non-singular. Since the handle body is simply-connected, we can lift the handle body to the universal covering space \tilde{N} of N. Remove the interior of the handle body and a path connecting it to \tilde{M}_2 . We also remove the corresponding parts in *N*. Now M_1 and $M_2 \nless 2$ are h-cobordant because their universal covering spaces are homotopy equivalent by a theorem of Whitehead.

Proof of theorem 2. By the homology hypothesis there is a Morse function defined on N with indices compatible with the homology $[6]$. Let us assume temporarily that $H_k(N, M_1; Z) = Z$, only one copy of infinite cyclic group. Then the Morse function implies that N is obtained from thickening M_1 with two handles attached on one side of it. That is, $N = M_1 \times [0, 1] \cup [D^k \times D^{k+1}]$ \cup φ η

 $[D^{k+1} \times D^k]$, where $\varphi \colon \! \partial D^k \times D^{k+1} \! \to \! M_1 \times \{1\}$ a disjoint differentiable imbedding which attaches a handle to $M_1 \times \{1\}$, and $\eta : \partial D^{k+1} \times D^k \to M_1 \times [0, 1]$.

 $[D^k \times D^{k+1}]$ likewise. Since φ does not kill any homotopy group $\pi_{k-1}(M_1)$, φ is

 φ

20 YUEN-FAT WONG

null-homotopic. η cannot be onto the first handle otherwise it contradicts to the fact that $H_k(N, M_1; Z)$ is free. η is also null-homotopic because it does not kill any $\pi_k(M_1)$. By the Haefliger's theorem [1, theorem d'existence] we can find a differentiable k-disk in $M_1 \times [0, 1]$ bounding $\varphi(\partial D^k \times \{0\})$ in *N*. This handle together with a neighborhood of the disk form a D^{k+1} -bundle over a k-sphere. Since η is null-homotopic, we may assume $\eta(\partial D^{k+1} \times \{0\})$ covered by a $(k + 1)$ -disk $\{0\} \times D^{k+1}$ of $D^k \times D^{k+1}$ which is the normal neighborhood of the previous k-disk. This is a plumbing manifold. Its boundary is a homotopy sphere Σ by Milnor [2]. Remove the interior of this plumbing manifold and a path connecting it to M_2 . Examining the Mayer-Vietoris sequence, we see that M_1 and $M_2 \ast \Sigma$ are h-cobordant, therefore diffeomorphic. If $H_k(N, M_1)$ = $H_{k+1}(N, M_1)$ is isomorphic to more than one copy of *Z*, we simply pair them by duality and remove them in the same manner.

Proof of the corollary. Take two copies of D^k -bundle H_n over a $(k+1)$ -sphere and identify their boundaries. That is to form a double. Now we remove a disk from one of the $(k + 1)$ -spheres and remove also the fibres over the disk. Then the resulting manifold is $D^k \times D^{k+1} \cup H_n$ which has a standard sphere as boundary. On the other hand, if $k \equiv 3, 5, 6, 7 \text{ Mod } 8$, any D^{k+1} -bundle H_{φ} over *k*sphere is trivial by Bott's stable homotopy theorem. The plumbing manifold $H_{\varphi} \# H_{\eta} = D^k \times D^{k+1} \cup H_{\eta}$. This argument is due to I. Tamura in [7, lemma 2].

Added in proof. Our theorem 2 overlaps a theorem of R. DeSapio *(Almost diffeom,orphisms of manifolds,* Pacific J. Math. **26** (1968) p. 56). However, our corollary to the theorem is still outstanding. An example of two 8-dimensional homotopy equivalent, but not homeomorphic, smooth manifolds was discovered by R. Lashof and M. Rothenberg *(On the Hauptvermutung, Triangulation of Manifolds, and h-cobordism.* Bull. Amer. Math. Soc. **72** (1966) 104o-43).

DEPAUL UNIVERSITY, CHICAGO, ILLINOIS

REFERENCES

- [1] A. HAEFLIGER, *Plongements differentiables de variétés dans variétés*, Comment. Math. Helv., **36** (1961), 47-82.
- (2] J. MILNOR, *Differentiable structure.~ on spheres,* Amer. J. Math., 81 (1959), 962-72.
- [3] S. P. NoVIKOV, *Diffeomorphisms of simply connected manifolds,* Dok!. Akad. Nauk. SSSR, **143** (1962), 11-12 = Soviet Math. Dokl., **3** (1962), 540-43.
- [4] S. P. NoVIKOV, *Homotopic and topological invariance of crrtain rational classes of Pontrjagin,* Dokl. Akad. Nauk. SSSR, **162** (1965) 1268 = Soviet Math. Dokl., **6** (1965)' 854.·
- [5] P. PENROSE, J. H. C. WHITEHEAD, and E. C. ZEEMAN, *lmbedding of manifolds in Euclidean space,* Ann. of Math., **73** (1961), 613-22.
- (6) S. SMALE, *On structure of manifolds,Amer.* J. Math., **84** (1962), 387-99.
- [7] I. TAMURA, *On the classification of sufficiently connected manifolds,* (mimeographed notes), 1964.
- **[8]** C. T. C. WALL, *Classification of* (n *1)-connected 2nmanifolds,* Ann. of Math., **75** (1962), 163-89.
- [9] Y. F. Wong, A theorem on homotopically equivalent $(2k + 1)$ -manifolds, Proc. Amer. Math. Soc., **16** (1965), 1022-25.