RESULTS CONCERNING THE SCHUTZENBERGER-
WALLACE THEOREM

By ANTHONY CONNORS SHERSHIN

The principal purpose of this paper is to extend, dualize and simplify algebraic
results due to J. R. Bastida and given in references [1] and [2]. The extensions
are manifold in character and include what is termed the “relative’ case with
respect to Green’s Relations (whereas Bastida treats only the “absolute” case)
and, in addition, results of a non-discrete type are presented which Dr. Bastida
does not consider. As to the duality, Bastida examines one-half of the possible
left-right duality and in section 2 conditions are given under which the strue-
tures obtained by reversing the multiplication are topologically and algebraically
the same. Simplicity is introduced because in the preliminary propositions those
properties of H-slices which are truly necessary for the validity of the arguments
are isolated. It is then shown that the Schutzenberger-Wallace Theorem is a
consequence of these extensions of Bastida’s results.

Moreover, under the assumption that S is compact, in the first section it is
shown that the Dubreil semigroups (a8)a"™/&(a) and a“>(Sa)/F(a) are
iseomorphic. In section 2 it is then indicated that these Dubreil semigroups are
extensions of the Schutzenberger groups in the sense that each Schutzenberger
group is a subgroup of a Dubreil semigroup.

§1

This initial section will present introductory material including an important
result which is due to P. Dubreil in its algebraic setting.

1.1. DerFNiTION. A topological semigroup S is a nonnull Hausdorff space
together with a continuous associative multiplication. Precisely, a semigroup is
such a function m:S X S — S that

(1) 8 is a nonnull Hausdorff space,
(ii) m is continuous, and
(iii) m is associative;i.e., for each z, y, zin S, m(x, m(y, 2)) = m(m(z, y),
2). :

At times it will be necessary to distinguish between a semigroup and its non-
topological counterpart, an algebraic semigroup. It is common usage to say that
a semigroup is compact if S is a compact space and to say that a subset of S is
closed if it is closed in a topological sense.

1.2 DerFiniTIONS. The empty set will be designated by O. If X and Y are
subsets of S, then XY = {win S; XwNY = O}, XY = {win §; Xw C Y},
YX = {win S;wX NY # 0O}, and YX™ = {win S;wX C ¥}.

It is noted that if X is a singleton set, then XY = X"y and YX =
yxt=i.
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The next resﬁlt is but a fragment of a result due to A. D. Wallace, another
part of which is found in [4].

1.3 ProrosiTioN. If Y is closed, then XY s closed.

Proof. It is easily verified that X™@¥ = N o Y and since the function
acX
la: S — 8 defined by la(s) = as is continuous, we have that (la) ™(¥) = oY
is closed and, consequently, the desired result follows immediately.

1.4 DeFviTION. Letting ¥ be a subset of S and A be the diagonal of Y X Y,
then an equivalence relation & C Y X Y is a closed congruence on Y if and only if
A& U A C &and §isclosed in ¥ X ¥ with respect to the relative topology.

The next two results are well known and are stated here without proof. (The
reader may refer to [5] and [7].)

1.5 ProrosITION. If S is compact or discrete, if & s a closed congruence on S
and if ¢: 8 — S/S 1s the canonical map, then there is a unique continuous function
u such that the diagram

S/6 X 8/6 £ 8/8

o] I

SX8§ —— 8
m

18 analytw and thus 8/& 1is a semigroup and ¢ is a continuous homomorphzsm

1.6 THEOREM (Sierpinski). If a:4 — B .and §:4 — C are onto functwns with
the property that a(a;) = a(az) if and only if 0(a) = 0(0,2) then in the diagram
there exist mutually inverse functions f and g such that g = 6 and f8 = o. Further-
more, if A, B and C are semigroups and a, 8 are morphisms, then f, g are isomor-
phisms; if, in addition, A is compact, B, C are Hausdorff and «, 6 are continuous,
then f, g are iseomorphisms.

B

1.7 DerFiniTiONs. Throughout this study, and in particular the next theorem,
we will make frequent use of the following functions: If ¢ € S and B < S we
will define ra: B — S by ra(b) = ba and la:B — S by la(b) = ab. It is noted that
the image of lais aS N Sa if B = a“™(8a), because if z is in a8 N Sa, say
z = as = sa, then there exists an element in ¢ Y(8a), namely s, such that
z = as and, consequently, la maps a“™(Sa) onto aS N Sa. Moreover, s’ €
(a8)a*™ and z = §'a so that ra maps (a8)a™™ onto a8 N Sa.

1.8 Tarorem (Dubreil). If S is compact or discrete, a € S and if we define
C(a) = {(z, 9); %, ¥ € (a8)a"™ and za = ya} and F(a) = {(u, v); 4, v €
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a“(8a) and au = av}, then €(a) and F(a) are congruences on the semigroups
(a8)a™ and o™ (Sa), respectively. If ¥ and ¢ are the appropriate natural homo-
morphisms in the diagram, then f, g and h are such homeomorphisms that f¢ = ra,
ge = la and g_'f = h; moreover, h is an isomorphism.

(aS)a""/S(a) > 27 (Sa)/F(a)

/ \/T

(a8)a™” — aS N Sa TG a™"(Sa)

Proof. The sets "™ (Sa) and ( aS)a("D are nonempty because a € a“(Sa) N
(aS)a‘™. The fact that a“™(Sa) is closed follows from (1.3), since S is com-
pact and Hausdorff, and it is immediate that a"™(Sa) is an algebraic semi-
group; in a similar fashion (a8)a‘™ is a closed semigroup. It is clear that §(a)
is an equivalence and a right congruence on a""(Sa). If u, z, ¥y € a"(Sa)
and ax = ay, then for some s € S, aux = sax = say = auy and, consequently,
F(a) is also a left congruence. To see that §(a) is closed we merely note that
F(a) = @ (8a) X a™(8a)) N [(la) X (la)]*(A), where A is the diagonal
of 8§ X S, and that (la) X (la) is confinuous. Therefore, in view of (1.5),
a"(8a),/§(a) is a semigroup. Clearly, o(z) = ¢(y) if and only if la(z) =
la(y). Since la maps a™>(Sa) onto a8 N Sa, in view of Sierpinski’s result we
see that such a homeomorphism g exists.

Arguments which are dual to the preceding ones yield the other half of the
diagram and, clearly, h = ¢ ~!f is a homeomorphism.

If cisin (aS)a( Vit is easy to see that f(¢(¢)) = ca since fyy = ra and hence
that g f(¥(c)) = g ‘(ca) = g '(an) = o(n) for some n € a“(Sa), the last
equality holding due to the analyticity of the right-hand side of the diagram.
Now, if b, ¢ are in (a8)a"™ and m, n are elements of "™ (Sa) such that ba = am
and ca = an, it follows that bca = ban = amn and therefore g f(:[z(b)xb(c)) =
g f(W(bc)) = g'(bca) = g (amn) = o(mn) = o(m)e(n) = g f(Y(b))-

g f(¥(c)) and, consequently, h is an iseomorphism.
§2 |

The principal purpose of this section is to extend, dualize and simplify results
given by J. R. Bastida in [1] and [2]. 4, B and T will denote subsets of a semi-
group 8, ¢ will be an element of S and D = ¢4 N B.

2.1 DerFmniTION. If S is a semigroup and A and T are subsets of S, then one
defines L(A,T) = AUTA,R(A,T) = AUAT and H(A, T) = R(4, T) N
L(A, T). When the context clearly indicates which subset T is under considera-
tion, then reference to T is usually omitted, that is, we write L(A; T') = L(A4),
etc. Moreover, for T C S, one defines the Relative Green (equivalence) Rela-
tions, £ = {(,9); L(z) = L(y)}, ® = {(z,¥); R(z) = R(y)} and 3 = £ N R.
For z € S, we will let H,(T) denote the 3¢(T)-class (or slice) containing z;
here again reference to T' is omitted if the context is clear.
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* 2.2 ProposiTiON. If A c L(a) for all e € A and B C L(b) for all b € B
and if D is nonempty, then A C Sb for all b € B.

Proof. If we letb € Bandd € Dandifb = d, then 4 C L(cd) = L(cb) C Sb;
if b # d, then d € Th and hence A < L(cd) < Sb.

2.3 ProrosITION. If X and Y are subsets of S such that O = X C Y and #f
YUY = YUY, then XX < YHUY.

Proof. The hypothesis that X is nonempty is needed to ensure that XX <
XX andsoXCY implies that X Hiy - xH0y - y0y = yHiy,

2.4 ProrositioN. If y € 8 such that ¥y < D™B N A™A, then y"™y
D'™D; moreover, if also y € yS, then D'™'D is nonempty.

Proof. If z € 4y Py, then Dz € B and ¢(Dz) = (cD)z C Az C A so that
Dz < ¢ A and, consequently, Dz D, ie.,z € D™D, -
The second half of the result follows because y € ¥ if and only if ¥y = O.

2. 5COROLLARY If A C L(a) foralla € A, O = B — L(b) for all b € B
and if B™®B = BB, then b c D™D for all b € B; moreover, if, in addi-
tion, b € bS, then D™ 1]D 18 nonempty.'

Proof. We will satlsfy the hypothesis of the first part of (2.4): Since B“"B =
BB, it follows that b6 c b*’B < B“’B.= B""Bc D" B and if D is
nonempty we have 4 < Sb by (2.2) so that fora € 4, z € b b we obtain
ax = (sb)xz = s(bx) = sb = a, for some s € S, and, consequently, %
AU 4. Tt is noted that the conclusion also follows if D is empty for then D™D =
S. .

'2.6 ProPOSITION. If a € A C R(a) and if A a is nonemipty, then @€ af.

Proof. If z € A a we have a = a'z for some o € A so that if @ = o the
result is mlmedla.te and if @ > @, then & = at for some ¢ € T since A < R(a)
and hence ¢ = o'z = (at)x = a(ta:)

It is noted that if A is nonempty the statement 4 ¢ = [ is unplled by the
co(n(li)ltlon O#aPAcC{s€8;AC As,forthen OO0 = {s€ S;a € As} =
A a. : :

2.7 DEFmN1TION. For any A € S'and y € 8, let us define &(4, y) = {(u, v);
u,v € ATA and yu = yo} and M(4, y) = {(u,v);u,v € AA"™ and uy = vy}.

2.8 ProrosrrION. If AFIY4 5= EI then &(A4, y) is a congruence on A™VA
if and only if yu = yv implies that y'u = y'v for aly € y(A[“”A) ,

Proof. For brevity and clarity, let & = &(4, y) in this proof. If & is a con-
gruence on A4, then (A& U &A) C & where A is the diagonal of A™™"4 X
AH’A and thus, lettmg w € A™4 and (u, v) € &, we have ywu = yww so
that y'u = y'v for all y in y(A[ 14),



SCHUTZENBERGER-WALLACE THEOREM ) 25

Conversely, if the condition holds, namely, yu = v implies that y'u = 3'»
for all 4/ in y(A"A4) and if w € A™V4, (u, v) € S, then the condition implies
that (yw)w = (yw)v because yw is in y(AT"A) and therefore & is a left con-
gruence on ATVA. It is evident that & is a right congruence.

2.9 CororLrLarY. Ifbisin BNbS,if A C L(z) forallzin A, 4f O # B < L(x)
Sor all x in B, of BYB = BE”B and if D is nonempty, then S(D, b) is a con-
gruence on DD and S(D, b) = &(D, b') for b’ € B.

Proof. In view of (2.5) the hypothesis implies that D™D is nonempty so that
in order to prove that &(D, b) is a congruence on D™D it suffices to show that
the condition of (2.8) is satisfied. In the case that B is a singleton set, say B =
{b}, we have from (2.3) that 5(D"™D) < b(B™B) < B = {b} so that the condi-
tion is trivially satisfied. If card B > 1, then it follows that b isin Sb and thus
that B  Sb. Letting (u,v) € &(D,b) andb’ € b(D"™D) wehavebd' € b(b* ™ B)
C B c Sb since D7D < 5B so that if b’ = sb we obtain b'u = (sh)u =
s(bu) = s(bv) = (sb)v = b'v and therefore the condition of (2.8) holds.

Momentarily fixing distinct elements b and b’ in B and letting (%, ») be an
element of &(D, b), we use the fact that B C L(b) to obtain bu = (tb)u =
t(bu) = i(bw) = (th)v = b', where ¢t € T’ so that (u, v) is also in S(D, b').
Clearly, in a similar fashion we have &(D, b') c &(D, b).

2.10 Proposrrion. A™™4 < (24)7(z4) for all z € 8.
Proof. Ity € A™"4, then (z4)y = x(4y) C z4 so that y isin (z4)7(z4).

2.11 ProrosiTioN. For any elements x, y and z € S, i x € Sy, then &(4,y) C
&(z4, x).

Proof. If (u, v) € &(4, y), then in view of (2.10) it remains only to verify
that zu = av: Letting 2 = sy we have s(yu) = (sy)u = zu and in a similar
manner s(yv) = zv sothat zu = aw.

2.12 CoroLLARY. If A C L(a) for all a in A, if B C L(b) for all b € B and
i1 D is nonempty, then &(D, b) C &(eD, a) where a € A and b € B.

Proof. The hypothesis is that of (2.2) so that A < 8b and therefore in view of
(2.11) the conclusion is evident. '

2.13 ProrosITioN. If A, B and D are nonempty sets such that A < L(a) for
all a € A and B C L(b) for allb € B, if A4 = A"™4 and B“B = B™B
and if b € bS for some b € B, then &(cD, a) is a congruence on (¢D)™™(cD)
forany.a € A. '

Proof. In view of (2.5) we have D™D » O and so (¢D)™™(¢D) is nonempty
since D™D < (¢D)™™(¢D). We will now verify that the condition of (2.8)
is satisfied : In the case that A = {a} it follows from (2.3) that a[(cD) HleD)] =
{a} and as a result the condition is trivially fulfilled.

If card A > 1, then we obtain @ € Sa and, therefore, A C Sa. Letting (u, v) €
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&(cD, a) and d € a[(cD)"™(cD)] we have o m a(A™4) < Sa since
(cD)H](cD) C AH]A by (2.3). Consequently, if ' = sa, then we see that
a'u = sau = sav = a'v and thus the condition of (2.8) holds.

The next result is well known and it is due to B. J. Pettis; consequently, its
proof is omitted.

2.14 ProrosItioN. If a compact semigroup s algebraically a group, then it is a
topological group.

2.15 Prorosition (Induced Homomorphism Theorem). If « and 8 are con-
gruences on semigroups A and B, respectively, such that A C B and o C §, then
in the diagram, where f and g are the appropriate canonical maps and < is the in-
clusion map, there exists a homomorphism ©* such that the diagram is analytic.

i ;
A/a — B/B

s

A——,———*B
1

Proof. This proposition follows from an evident extension of the version of the
Induced Homomorphism Theorem given in [3] and its corollary there.

2.16 Lemma. If APA © A™4 and if B“’B < BY™B, then D™D <
DYUD and, consequently, D"™D = d“D for all d in D provided that D is non-
empty.

Proof. First of all, it is clear that D™D < B™”B < B"™B. Since we may
assume that D™D is nonempty, say ¢ € DD, then, using the fact that
¢D c A, we have that (At N A) D (¢Dt N ¢D) D ¢(Dt N D) 5 . Again
noting that ¢D C A, it follows that cDt C At C A so that Dt C ¢“P4. As a
result, Dt C ¢ A N B = D and so ¢ € DD,

The second conclusion follows from the fact that DYip =n {d™D;d € D} c
d™D c U {d“D;d € D} = D D.

2.17 TurorEM. (a) Let S be compact or discrete and A and B be nonempty sets
satisfying these three conditions:
(i) A c'L(a) forallain A,
(ii) B < L(b) N R(b) for allb € B,
(i) A4 = A4 and BB = BB
If card B > 1 and if D is both nonempty and closed, then this diagram is cmalytzc

D"'D/S(D, d)
g I‘,
D «—— DD

1d
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where D™D /&(D, d), for d in D, is a topological group, ¢ is the canonical map
and g is a homeomorphism.
(b) If, in addition, card A > 1, the preceding analytic diagram may be exlended:

1d

DD » D
EN e
D"'D/&(D,d)
n l’v le
(cD)""(cD)/S(cD, cd) ,
7 |

-1 R
(cD)» (cD) ) — ¢D

where (cD)[_ll(cD) /&(eD, cd) 18 a topological group, a is a canonical map, m s
a homeomorphism and v is a continuous epimorphism.

Proof. We will consider only the case where S is compact since the situation
where S is discrete follows in a similar manner with the topological results
omitted.

Since card B > 1 and B € R(b) for all b in B, it follows that d € dS for
each d € D and so, by (2.5), D™D is nonempty. Using (1.3), D™D is closed
and compact because D is closed and S is compact. It is immediate from (2.9)
that &(D, d) is a congruence on D™D for any d € D and, moreover, &(D, d)
i closed because it is easily verified that &(D, d) = (D™D X D™D) N
(ld X 1d)™*(A) and so D™D/&S(D, d) is a compact topological semigroup by -
(1.5). With (2.14) in mind we proceed to show that D™™D/S(D, d) is alge-
braically a group:

We may select an element g of d“d because d“®d is nonempty if and only
if d is in dS. Then, since D C L(d) we have dz € L(d) for z € D™D and so it
is easily verified that dz =. dzg. Since D™D is a semigroup we have (z, zq) €
&(D, d) and thus ¢(z) = o(x)e(q) so that ¢(g) is a right unit for o(x). If
d = dx we have d = dxx and if d # dz, then d = dxt for some ¢ € T because
B c R(b) for all b € B so that in either case there is an element z’ such that
d = daz’ and, consequently, dg = dzz’. In view of (2.16), =’ is in D™D and
therefore ¢(q) = o(z)¢( #') indicating that ¢(z) has a right inverse.

In order to show that D Z DY™D/&(D, d) we will make use of Dubreil’s
result, that is, (1.8): Card B > 1 implies that B € L(d) < Sd and thus using
(2.3) we have D™D < d“B < d“(8d). The fact that DD < D™D
implies that the restriction of Id to D"™D has as its image D, for if d’ € D and
d = d we know that dd is nonempty and if d’ # d, d’ = dt for some t € T
so that in either case d’ = di’ and thus ¢ € DD < D™D, the other inclusion
is clear because D™D < d“’D implies that d(D™™D) < D. Therefore,
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o(D™D) I D because go = ld where g is the appropnate homeomorphlsm of
(1.8).

To prove the second part of the theorem we begin by proving the existence of a
continuous epimorphism v. Since D™D < (D)™ (D) and &(D, d)
&(cD, cd), the Induced Homomorphism Theorem gives us the existence of a
function v such that v¢ = ai where 7 is the inclusion map. ¢ is closed because it
is continuous, D™D iscompact and D™ D/&(D, d) is Hausdorff from a result
in [6] and thus since it is also true that ¢ is an onto function and ai = g is
continuous, we have that v is continuous from another result in [6]. It is clear
that v is a homomorphism and so it remains to verify that it is an onto fune-
tion: If Y is an element of (¢D)"™(e¢D)/S(cD, cd) and y is in ¥, then cdy = cd’
for somed’ € D.If d = d’ and ¢ is in d"d, then cdy = cd = cdg and it follows
that (y, ¢) is in &(cD, cd) so that v(o(q)) = Y. If d 5 d’, then for some ¢ € T
we see that d’ = dt because B C R(d) and we note that t € DD = DD,
Then, since cdy = cdt, it is true that (y, ¢) is in &(eD, cd) and it follows that
v(e(t)) = Y. We conclude, therefore, that v is an onto function.

It is next noted that (cD) = (eD) is nonempty because DD (eD)"™(cD)
and that in an analogous manner to the proof of the first part of the theorem it is
easy to verify that (¢D)"™(c¢D) is closed and compact, that &(cD, cd) is a
closed congruence on (¢D)"™(cD) and, hence, that (cD)H](cD) /&(eD, ed)
is a topological semigroup. Then, since D" D/&(D, d) is a group and v is an
epimorphism, it follows that (¢D) “(¢D)/S(¢cD, cd) is a topological group.

As in the proof of the first part.of the theorem, we will use Dubreil’s result in
order to obtain ¢D I (¢D)™(eD)/S(cD, ¢d): Card A > 1 implies that 4
L(cd) © Scd and thus using (2.3) we find that (¢D)™(¢D) C (ed) T 4
(ed)(8cd). If d' € D and if d = d, then (cd)“™(cd) is nonempty since
 d“Vd is nonempty and if d’ % d, then d' = dt for some ¢ € T and hence cd =

cdt so that in either case cd’ = ¢cdt’ and ¢ isin DD < D™D < (D)™ (cD);
the other inclusion is clear because (¢D)™(¢D) < (¢d) ™ (cD) implies that
cd[(cD)[_u(cD)] C ¢D. Therefore, ol(eD)T 1](cD)] i homéomorphic to ¢D
since mg = I(cd) where m is the appropriate homeomorphlsm, namely, g, of
(1.8). :

2.18 ProposiTioN. Under the hypotheses of (2 17), ’Lf T i a. subsengroup
then B, D and cD are contained in 3C-slices. :

Proof. T* < T implies that 3¢ = {{z,y) €8 X S; H(z) = H(y)} and so for
b€ B,H, = {x € 8; H(z) = H(b)}. It then follows that, since B < R(b) ﬂ
L(b) = H(b) forb € B, we have B C H,. Clearly, D C H, because D C B.
~"Next we notice that ¢cD C A < L(a) fora € 4 and, in particular, cD < L{cd)
for d € D. Also, we find that ¢cD C ¢B C ¢R(b) = R(cb) for b € B so that
¢D C R(cd) for d € D. Consequently, cD € L(cd) N R(cd) H(cd) ford € D

and it follows eagily that ¢cD C H,,.

2.19 TaeorEM. Suppose S is compact or discrete and let us define K = Hw™ N
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J where w € S and where H and J are nonempty sets in S satisfying these three
conditions:
(i) H C R(h) forallh € H,
(ii) J < R(z) N L(z) forall z € J,
(iii) HH™ = HH"™ and JJ = JJ"1,
If card J > 1 and if K s both nonempty and closed, then this diagram is analytic:

KK™/m(K, k)

N

KK™ — K
rk

where KK™ /MK, k), k € K, is a topological group, ¢ 1s the canonical map and
f 18 a homeomorphism.

Proof. All the results preceding (2.17) may be easily “dualized” so that this
theorem may be proved in a manner analogous to the proof of (2.17).

2.20 TuEOREM. If the hypotheses of part (a) of (2.17) and (2.19) hold and #f
d is in D N K, then we naturally speak of the results of (2.19) as being the “mirror
image”’ of the results in part (a) of (2.17) in view of this analytic extension of
Dubreil’s diagram,

KK/ c (dS)d“’/@ - d78d)/F 5 DD/

AL RN / P

KK™ < (dS)d“” —> dsnsd e d“%sd) o D™D

where for brevity M = M(K, d), §F = F(d), € = @(d) and S = &(D, d) and v
1s the restriction of ¥ to KK U /M and simalarly for ¢. Moreover, if D = K, then
in the diagram the restriction of h to KK /I 4s an iseomorphism ’U)vth zmage

D™ Dp/@.

Proof. The first part of this theorem follows easily from the results of (1.8),
(2.17) and (2.19). In addition, from (2.19) we see that the restriction of f to
KK™ /9% is K and from (2.17) we find that g"(D) = D"D/& and from
Dubreil’s result we recall that & = g~'f is an iseomorphism, so that putting these
remarks together the conclusion follows because h(KK™/9t) = ¢ f(KK™™/

M) =g (K) = ¢ (D) = D'D/&.

In view of its position in the diagram, an 1seomorphlsm such as that expressed
in (2.20) is known as ‘“turning the corner.”

The next theorem has been presented in its algebraic context for 7 = § in
[1] and it formed the cornerstone of that work. It is in view of this last remark
that we attach the author’s name to the theorem in its presentation. This result
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is also important to me because it served as the prime motivation of this paper.
Also, subsequent to this theorem it will be shown that a well-known theorem, due
originally to M. P. Schutzenberger and to A. D. Wallace in its present formula-
tion, follows in part as a corollary.

2.21 Lemma. H,""H, = H,""H, for w in 8.

Proof. The reader may find the proof of this result in [5] where it is shown to be
a consequence of Green’s Lemma.

2.22 TaEoreM (Bastida). Let S be compact or discrete, T be a closed subset of )
Sand D = ¢""H, N H,. If card H, > 1, card H, > 1 and D is nonempty, then
this diagram is analytic:

1d . D

EN &
© D"™D/8(D,d)

n l‘y ie

(D)™ (cD)/S(cD, cd)

4 N

=1 N
(cD) (cD)‘ Ted) > ¢D

D[—l]D

where d s in D, D™D/&(D, d) and (¢D)"™(cD)/S(cD, cd) are topological
groups, ¢ and a are canonical maps, g and m are homeomorphisms and v s a con-
tinuous eptmorphism.

Proof. We will easily verify that the hypotheses of (2.17) are fulfilled, where
H, and H, will be A and B, respectively. In view of (2.21) and because H, and
H, are 3C-slices, we have that (i), (ii) and (iii) of (2.17) hold. If S is compact
and T is closed, then H, and H, are closed so that ¢ H, is closed and, conse-
quently, D is closed. Therefore, it may be seen that all the hypotheses of (2.17)
are satisfied and hence this proposition now follows as an immediate corollary.

2.23 TureorEM (Schutzenberger-Wallace). If S zs compact or discrete, if T is a
closed subset of S and if y is an element of S such that card H, > 1, then H, 1s
homeomorphic to the topological group, v H,/S(H, , y), and the groups v H,/
&(H,,y) and Hy ™ /MM(H, , y) are iseomorphic.

Proof. Using the dual of (2.21) we see that card H, > 1 implies that H, H," ™
is nonempty so that letting H, = H, in (2:22) and ¢ be an element of H,H,™,
we have D = ¢ H, N H, = H, because H, C ¢ H, . The first part of this
theorem now follows as a corollary to (2.22) since we have that y" ™ H, =
H,""H, from [5].
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In a similar manner we may choose an element w in H," “H, so that the set
K of (2.19) and (2.20) is H, . Therefore, by (2.20), we may turn the corner and
find that y"™H,/S(H, , y) and Hy ™ /MM(H, , y) are iseomorphiec.

* ¥ ok
I am grateful to Dr. A. D. Wallace for his comments.
UNIVERSITY OF SOUTH VFLORIDA, U. S. A.
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