
STEENROD SQUARES AND HIGHER MASSEY PRODUCTS 

BY R. JAMES MILGRAM 

Recently D. Kraines [3] and P. May [5], [6] have studied a system of higher 
order cohomology operations which they call higher Massey products. These 
operations arc of essential importance in studying differentials in spectral se
quences and in studying the cohomology of Hopf algebras [6]. Also the recent 
work of P. May on 2-stage Postnikov systems depends on studying these opera
tions. 

In this paper we study the relations qetween these higher order Massey products 
and the Steenrod algebra Ct (2). More precisely, higher order Massey products 
can be regarded as a direct generalization of ordinary cup products, and if cup 
products and Steenrod squares are connected by the Cartan formula 

Sq;(ab) = ~Sqia·Sqi-jb, 

our main result is a generalized Cartan formula for higher Massey products. As 
an application we calculate the cohomology of certain 2-stage Postnikov sys!ems 
as modules over the Steenrod algebra. 

Let (A1 , • • • , An) E H*(X) be a (matric) Massey product, then our main re
sult states that for each i, another Massey product 

is defined and. 

THEOREM 0: Sq\A1 , • • • , An) C B;. 

Here SQ'(A) is the matrix 

Sq0A 0 

Sq1A Sq0A 

0 

0 

0 

0 

Sq;A SqHA Sq0A 

(if A is an n X m matrix Sq\A)r,s = Sqi(Ar,,)) while SQR\A) 
(Sq;A, Sqi- 1A, · · · , Sq0A) 

SQ/(A) 

If a, bare elements in H*(X) then (a, b) is just a .___,band in this case Theorem 
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0 specializes to 

as one wou]d hope. 

Sqi(a, b) = < (Sq'a, • • • Sq0a) 

= 2:Sqia-Sqi-ib 
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Actually, the proof of theorem 0 shows that the formula is valid in a much 
wider context than merely the cohomology of topological spaces. For example it 
is true for the cohomology of co-commutative Hopf algebras, as for example in 
H*( a(2)) = Exta<2i**(Z2, Z2), Our result is particularly relevant here since 
May has proved in [6] that ever indecomposable in H*(A) (where A is any con
nected, augmented algebra of finite type over a field ~) is a matric Massey prod
uct built up successively from-the elements of H\A) = Ext}·*(~,~). In particu
lar if A is the Steenrod algebra a(2) then H1(A) has a basis consisting of the 
elements denoted by Adams [1] ash;, i = 0, 1, • • · . On the other hand, it fol
lows from Adams calculations in [1] that Sq0(hi) = h.+1, Sq\h;) = (hi)2, and 
Sq;(hj) = 0 otherwise. Thus, in principle, we can evaluate the squaring opera
tions in all of H* ( a( 2)). In particular families of operations ( which appear in 
different dimensions, but for similar reasons) turn out to be related by the itera
tion of Sq0• For example there is the family c0 , c1 , • • • where c, = 
((h;+2)2, h; ,hi+1), and from theorem Owe have easily Sq°(c;) = C.+1. A similar 
formula holds for the d family and the g family, and all other families known to 
the author. 

The paper falls naturally into 2 parts. In the first four sections we review the 
fundamental definitions and constructions needed and apply theorem 0 to study 
the four fold product (a, a, a, a) which turns out to be defined whenever a2 = 0. 
This information is then used to study certain 2-stage Postnikov systems in sec
tion 4. Then, the second part is devoted to the proof of theorem 0. 

We should also mention that Lemma 2.2.2 shows that there are other types of 
inter-relations between Massey products and Steenrod squares, and it would be 
quite interesting to generalize 2.2.2 in some way to higher Massey products. In 
this connection we point out that there can be no interconnection for 4-fold prod
ucts since (a, a, a, a) is independent in general of lower order products. However, 
the author believes that the Massey product (a, b, c, b, a) should contain a 3 or 
4-fold matric Massey product whose entries are Steenrod squares on a, b c, but 
he has no idea as to what the exact formula should be. 

This paper owes a debt to P. May for many helpful conversations over the ma
terial in part 2, and above all to Professor S. MacLane, without whose aid section 
5 and thus the entire proof of theorem O would not have been possible. 

1. Matric Massey Products 

The definitions and main properties of higher Massey products have been given 
in [3] and [5]. In this section we recall the definition and reformulate it in a manner 
better suited to the ends we have in mind. 
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( 1) A 8-algeb~a g over a field S: is an algebra with a boundary operator a and 
an automorphism E: g--+ g which satisfy 

(i) I= 1 
(ii) a(a•b) = (aa)b + (Ea) •ab 

. (iii) OE + EO = 0 
For example, if g is a D.G.A. algebra then in particular it is a a-algebra with 
e(a) = (-l)"aif ahasdimensionn. • 

If 9 is a a-algebra then mt(g) will denote the infinite matrix a-algebra with en
tries in g. More precisely mt(g) consists of all matrices M with a finite number of 
non-zero entries M;,; in g. With respect to the usual matrix multiplication the 
algebra structure is now specified by 

(i) (aM);,; = a(M,,;) 
(ii) ( EM),,; = e(M,,;). 

Passing to homology one has easily that H ( mt( 9)). ~ mt(H ( g)), the isomorphism 
being of algebras. • 

DEFINITION 1.1.1: Let g be a 8-al,gelwa, and suppose a1,2 , a2,a , • • • a,.,,.+1 are 
cycles in g with {a,,;+1} = B, in H(g). Then then-fold Massey product, (Bi, B2, 
• • • , B,.) is ikfined if there exist ekments a,,; with 1 ~ i < j - 1 ~ n, ( i, j) ¢ 

(1, n + 1) in g sati,efying 

aa;,; = L•<k<i' ( Ea;,k). ak,i. 

The chain 

• Li ( Ea1,;) '. a;,n+1 

is a cycle which is not, in general, a boundary and it represents a class in (B1 , 
B1, • • • , B,.). The set of all such classes arising from different choices of the a,,; 
( i < i - 1) is the Massey product. 

It is a result of D. Kraines [3] that different choices of the a,,;+1 give the same 
Massey pr,oduct, so the notion is well defined in homology and depends only on 
the ordered set { B1 , • • • , B,.}. 

There are times when a Massey product defined in mt( H ( g)) actually can be 
thought of as a subset of H ( g) ( this is the case in theorem O). 

Dlll'INITION 1.1.2: H(g) c mt(H(g)) isthe set of matrices M with M1,1 the only 
postible non-zero. entry. If M1 (Mn) is a row (column) matrix, and the Massey 
product (M1, ···,Mn) is defined in mt(H(g)), then the matric Massey product 
(M1, • • ·, Mn) in H(g) is defined as • 

H(g)n(M1, ···,Mn). 

(2) We now reformulate the definition of 1.1 by means of universal models. 
Let I. be the ij-vector space of dimension [n(n - 1)/2] - 1 generated by the 

symbols ( i, j), 1 ~ i < j ~ n + 1, ( i, j) ¢ ( 1, n + 1). In turn, let F,. be the 
free tensor a]gebra T(I. El) J,.) generated by two copies of I •. (If ij = Z2, then 
only one copy of I,. is used). 
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W c make F,. into a differential algebra by setting 

on generators while 

8( i, j) 

a{ e( i, j)) 

- Li<k<i (e(i, k))®(k,j) 

- Li<k<i ( i, k) ® ( e(k,,j)) 

1:[(i,j)] = e(i,j), e[e(i,j)] = +(i,j) 

and 

(if fr' = Z2 then e = id). 

iJa®b = ( aa) ®b + ea@ab 

e(a®b) = e(a)®e(b) 
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F,. is clearly universal for n-fold Massey products in the following sense. Given 
B1, • • • , B,. in H(rf6), the Massey product (B1, • • • , B,.) is defined if and only 
if there is a map of differential algebras 

f:Fn--+@, 

so that f ( i, i + 1) is a cycle representing B; and ( noting that 
0 Li<i<n+1 (e(l,j))(j,n+l) represents anon-zero class UninH(Fn)) (B1, • • • ,Bn) 
is {f *( U,,) l c H(@,) wheref runs over all maps satisfying the above conditions. 

( 3) We now study some subcomplexes of F,. . 

DEFINITION 1.3.1: e(n);,; is the subcomplex of F,. generated by all chains in 
Fn of the form 

e'[(e(i,j1))0(l(j1,j2)) ... 0(/(j,._1,j))l 

with i < j1 < j2 < · · · < j,-1 < j. We make e(n),,; into a graded complex by 
letting er(n);,; be the vector subspace of e(n);,; generated by all r + 2-fold 
tensor products. 

THEOREM 1.3.2: H*( e(n),,;) = 0 if ( i, j) ~ (1, n + l) while H*( e(n)1,n+1) 
is generated by the cycle L1~i<n e( 1, i) 0 (j, n + l). 

Proof: Consider the dual complex Hom ( e( n )i.; , -1:n. It has a basis consisting 
of all (r - 1)-tuples 

(j1, ''' ,i,-1) 

with 1 < j 1 < · · · < Jr-1 < j, or equivalently of all (r - 1)-tuples 

(k1 , • • • , k,-1) 

with 1 :=; -k1 < · • • < k,_1 < j - i. The dual boundary is then given by the 
formula 
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and we may define a contracting homotopy s by the formula 

.. . _ {( 1, k1 , • • • , k,._1), k1 > 1 
s(k1, , kr-1) - . 

. 0 k1 = 1. 

Then, if ( i, j) ~ ( 1, n + 1), we easily check that 

so+ os = I. 
To complete the proof note that 

(e(n + 1)1,n+,) "'e(nh,n+1EBiY 

where the extra iY is generated by (1, n + 1). This complex has trivial homology 
so H.(e(n)1,n+1) is generated by a(l, n + 1). Q.E.D. 

2. Steenrod operations 

In this section we review the construction of the Steenrod operations, and write 
down the various formulas involving the ....,i-products which will be of use in the 
sequel. 

( 1) Let G be a group, then iY( G) is the group-ring .of G over iY, i.e. iY( G) is 
the lj-vector space with one generator for each element of G and 

("'j;fi(gi))("'j;f;(g;)) = "'j;(f.-f;)(gi·g;) f; E iY, Yi E G. 

(From now on 5' = Z2 .) 

DEFINITIQN 2.1: Wis the iY(Z2) free acyclic complex with one generator e; in 
each dimension i ;?: 0 and 

ae; = ( 1 + T)e,-1 

where T is the generator of the group G = Z2 . . 

Corresponding to the diagonal t,.: ij(Z2) -l- iY(Z2) ® iY(Z2) given on generators 
by 111 = 1 ® 1, t,.T = T ® T there is a diagonal map 

A:W--t W®W 

given on generators by 

and 

t,.( Te,) = t,.( T) Li( e;). 

Now let e be any chain complex with a diagonal map 

t,.: e - e® e 

Set T(c®c'):;::: c'®c, (t\= = Z2) so e®e becomes a ij(Z 2) module. 
Finally, suppose there is an iY(Z2) equivariant map 

F:W®e-> e®e 
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satisfying 

F(eo©c) = Ac. 

Then, following [11] there is an induced map 

F:W@1Jcz2>e*@e*-+ e* 
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where e* = Hom ( e, Z2), and we set Sqn-i {a} = Sq.{a} = {F(ei©a©a)), 
where a has dimension n. More generally, on the cochain level we set 

a .__,i b = F( ei©a©b) 

ab = a '--'Ob = F(eo©a©b). 

Note the formulas 

2.1.2 li(a .__,i b) = (lia) '--'• b + a .__,, lib + a .__,i--1 b + b .__,i-1 a 

for i ~ 1, and in particular 

2.1.3 li(a ....,1 b) = (lia) '--'1 b + a ....,1 lib + ab + ba. 

(2) In the topological category where e is the singular chain complex of a 
space X and A is the usual diagonal approximation we also have the "Hirsch 
formula" 

2.2.1 (ab) '--'t c = a(b .__,1 c) + (a .__,1 c)b. 

From this we obtain a curious and important corollary ( to the author's best 
knowledge first obtained by G. Hirsch. • 

LEMMA 2.2.2: Suppose a, b E H*(X, Z2) and ab = 0, then (a, b, a) is defined 
and contains b • Sq1 (a) . 

In particular, if a2 = 0 then (a, a, a) is defined and since a .__, Sq1(a) belongs 
to its indeterminacy it follows that (a, a, a) contains O and (a, a, a, a) is thus de
fined. In the next section we will see that if dim a = n, and if 'Ir,. is the stable 
secondary operation associated with the relation Sq2"- 1Sq" = 0 then 

'¥,. n (a, a, a, a) # fZf. 
Indeed, in the universal example for both these operations it turns out that they 
intersect in a unique element having, therefore, the best properties of each kind. 

Proof of 2.2.2: Let a, b represent a, b and suppose liM = a·__, b, then 

li(M + b '--'la) = b•a 
and 

{Ma+ a(M + b '--'la)} E (a, b, a) 
but 

liM '--'1 a= Ma+ aM + (a•b) '--'la= (Ma+ aM + a(b '--'1 a))+ (a __,1 a)b 

Q.E.D. 
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Remark 2.2.3: For convenience write 

(a, a, • • • , a) as (ac;>), 
'------v------' 

i-times 

then it turns out that if (a<•>) = 0 the next possible non-zero (aw) is (a<8l), and 
it seems reasonable to conjecture that the only possible non-zero (aw) are those 
for which i is a power of 2 ( at least in the topological category). 

To prove this it would be sufficient to know that there was a stable n th -order 
cohomology operation associated to the relation 

S 211-l(m-l)+ls 2•-l(m-l)+l s 2m-1s m q q ... q q 

for each m, n. 

3. The 4-fold products (a<4l) 

The main object of this section is to prove the result (3.3.1) mentioned in 2.2, 
and to examine the indeterminacy of (a<4>). 

( 1) LEMMA 3.1.1: Let F ~ E ~ B be a Serre fibration and suppose that in the 
Leray-Serre spectral sequence 

ex E H2n-1(F, Z2) transgresses to {32 E H2n(B, Z 2) then g = ((1r*fJ)<4>) 

is defined in H*(E, Z2) and oi.2 E j*(g). 

Proof: Let M = B2 where {B} = 1r*(fJ), and we can assume 

{j,,j!A} =a. 

Then 

thus 

ll(A 2 + B2 '--'l A) = B2 '--'l B 2 = B(B '--'l B2) + (B '-'l B2)B 

= /l {B[B 2 '--'2 B + B '-'l (B '-'I B)] 

+ [B2 '--'2B-+ B '-'I (B '-'IB)]B} 

c = A 2 + BL +LB 

is a permanent cycle with{j,,jlc} = a2, where 

£ = B '--'lA + B 2 '--'2B + B '--'l (B '--'IB). 

On the other hand if we put 

these give a defining system for (( 1r *M <4l) and the lemma follows. 
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Now consider the 2-stage Postnikov system En with fiber K ( Z2 , 2n - 1) base 
K(Z 2 , n), and k-invariant i2 (where i is the fundamental class in 
Hn(K(Z2,n),Z2)). If 'Y is the fundamental class on the fiber then 'Y trans
gresses to i2 and it follows that (1r*(i)<4l) is defined and its restriction to the 
fiber includes ')'2. On the other hand, since i2 is in the image of suspension, it fol
lows that En is a stable system, and it is easy to see that ')'2 is also the restriction 
to the fiber of the stable secondary chohomology operation '1t,. based on the rela
tion 

Sq2n-1Sq n = 0. 

However, this fact by itself does not assure us that the intersection of the two 
operations is non-empty in H*(En) (they might differ by elements of lower filtra
tion). We have, in fact: 

THEOREM 3.1.2: '1tn n (,1r*(i/4l) -;6-f25 

Here is the basic idea of the proof. If we look at a special cochain fwhich repre
sents '1t,. in BEn (the classifying space for E,.) then we may evaluate the sus
pension homomorphism u ( see §4.2) on this cochain. Then { u(f)} E '1t,. , and 
we can consider A = c - u(f) (where c is given in the proof of 3.1.1.) It turns 
out that A E im 71', say A = 7r(a). Moreover a is a cocycle which represents an 
element in the image of the Steenrod "slash" homomorphism 

HiS4) / i<4l - H 4n-2(K(Z2, n)). 

( Here S4 is the symmetric group on 4 letters.) 
But this image consists of the two elements (Sqn- 1i)2, (Sq"- 2i)i 2 and 71'* of 

each of them is 0, thus { A} = 0 and the theorem follows. Now we give the details. 
Let {I} represent the fundamental class ( of dimension n + I) in H* ( B <11,.>), 

and let oB = I '--'I I. Then '1tn( {I}) has a representative 

3.1.3 

where K(J) is an operation depending only on I and so that oK + Ko = (I ......,1 I) 
.....,2 ( I .___,1 I). K may bB specified more exactly as follows. 

Given any Z2( S4) free acyclic complex W4 , there is a natural Z2( S4) equivari
ant map constructed by the techniques of acyclic models 

H:W40e- e<4i 

where e is the singular complex of a space or the chain complex of a simplicial 
complex. There is also the natural map 

G:(W0W)0W0 e lQSlF w0w0 e 2 lQSlTQSll (W0e)< 2l FQSlF e<4) 

which is equivariant with respect to the Sylow 2-subgroup of S4, Z2 '\.Z2. In par
ticular, properly understood (W0W)0W is a Z2(Z2\Z 2) free acyclic complex. 
Thus, there is a Z2(Z2'\.Z2) c Z2(S4) equivariant map 

M: (W0W) 0W-+ W, 
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and the diagram 

W4®~ ~ ~<4> 

3.1.4 IM®~/o 

(W®W)®W®~ 

homotopy commutes, with homotopy S. In fact, F. Adams in unpublished work 
has constructed a W4 , maps H, F, M so 3.1.4 actually commutes. We now assume 
that W4 is the one constructed by Adams. There is also the dual diagram 

(W ® W) ® W ® ~*<4> l ~* 

3.1.5 
M®@l Z,(Z,1.1/ 

Finally, there must be a chain k E W4© z2 cs,)Z2 so 

ak = M((e1©e1)®e2©z2(Z2tZ2)Z2) 

since 

Thus· 

liH(k©l®l©l©I) = G((e1©e1)®e2©l©l®l®I) 

= ( / '--"l I) '--"2 (I '-'I I) 

since I is a cocycle, and 

H(k©l®l®l©I) 

is the desired operation K(I). 
Now we study the problem of suspending the various operations on I to opera

tions on u(I), so as to find a representative of '¥non u_(I). The basic idea behind 
this part of the proof follows from ([9] p. 295 formulae 4.1, 4.2, 4.3) which we 
generalize as best we can to fit our more complex situation. 

There is the join operation on simplices uH 1 = ui v A where A is a point in 
general position with respect to u'. Thus on models we have 

• • (4) 
HH1(W418)u' VA) - (u' V A) 

and in W4 there is a map 84 of degree -3 so that 

3.1.6 An H;+1(X©(u1 V A)*©(u2 V A)*©(us V A)*®(u4 VA)* 

= H,(s4(X) ©u/®u/®u/®u/) 
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where u1, • • • , 0-4 are subsimplices of u'. The map 82 on W defined in [9] simply 
maps e, to ei-1 , i > 0, eo --+ 0, and the foll?wing diagram commutes, 

(W®W)®W~W 4 

3.1.7 }2®82®82 }4 

(W®W)®W~W4 

Remark: We freely grant that 3.1.5, 3.1.6, the definitions of 84 and W4 are not 
obvious. 

Now we can complete the proof of 3.1.2. Let i..+1 be the fundamental class in 
BBn and I be a cochain representing it. Then 

ui/1,.(i) 

has as representant (from 3.1.3) 

H(84(k)®ul®ul®ul®ul) + (uB) 2 + (auB) ....,1 (uB) 

and (ul)2 = a( uB). Thus the difference between this representant of ui/1 .. ( i..+1) c 
i/1,.(i) and the representant of (i'4>) given in the proof of 3.Ll. is 

S = H(s4(k)®ul®ul®ul®ul) + ul[((ul) 2 -....,2 ul) + ul '-'l (ul '-'l ul) 

+ [(u/) 2 '-'2 ul + ul -....,1 (ul .,_,1 ul)]ul = fl((94k + h)®u~®: • •. ®ul)], 

where his an appropriate chain in W,. 
We may now assume I = (B1r)1J and hence ul = 1r1 (uJ) where {uJ} = i 

the fundamental class of K ( Z2 , n). Thus by naturality 

S = 1r1fl((s 4k + h)®(uJ®··•®uJ)). 

Finally, (s,k + h) ®uJ® • • • ®uJ is a cycle and simultaneously represents an 
element in H .( S,) and in H*(K ( Z2 , n)). In fact, the latter element is given by 
taking the slash product with i<4> of H •( S,) ; see for example [8] p. 248, and the 
theorem now follows easily as indicated in the outline. 

(2) LEMMA 3.2.1: Let <B = (A1, A2, As, A,) be a 4-fold matric Massey product 
then the indeterminacy of <B is contained in the set of all possibk 3-f 01,d, M a88ey prod-
ucts of the form • 

2.3.2 

Proof: Let A,;, A./ be two different defining systems for <B. Without loss of 
generality we may assume A,,,+1 = A,.,+i'· Then 
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and 
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8(A2& + A2&1) = A2a(Aa& + A351) + (A24 + A241)A45, 

8(Au + A141) = A12(A24 + A241) + (A13 + A131)A34 

thus, if B = A1a + A1a', C = A2, + A241 and D. = Aa& + A351, a defining system 
for 2.3.2 is 

(A12,B) = A12 

and the lemma is .Proved. 

LEMMA 3.2.4; a) Let a, b, c, d E H*( (X), Z2) and suppose a2 = 0 so then 
a>. 

3.2.5 

is defined and contains 0, -
. b) 

3.2.6 <b, a,,, d) (! 0 d 
a C 

0 a 
0 b 

O~d)\ ~ : / 
a b / 

is al8o defined and also contains 0. 

Proof: a) Let 8M = a2, then a defining system for 3.2.5 is 

( )( M+a-...,1a b-...,1a) 
M + a '-'la, a '-'lb ,.. • 0 M + a ,_,1 a 

•• -
( b '-'la ) 
M + a -...,1 a 

(M '-'I a, M '-'1 b + a(a -...,2 b) + (a -...,2 b)a + (a '-'1 a) '-'1 b) 

( . M,._,1a ) 
M '-'lb+ a(a '-'2 b) + (a -...,s b)a + a -...,1 a) -...,1 b 



STEENROD SQUARES AND HIGHER MASSEY PRODUCTS 

and 3.2.5 is represented by 

3.2.7 a\a '-'2 b) + (a2 '-'I a) '-'I b + (a2 -....,1 b) -....,1 a+ (a ___,2 b)a2 

after subtracting 

ll { ( M '-'I b) '-'I a + ( ( b '-'2 a) a) '-'I a + a '-'I ( a( b -....,2 a) ) } 

from the represent of 3.2.5 obtained directly from the defining system above. 
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To complete the proof of 3.2.5 we must show 3.2.7 is cohomologous to 0. In 
fact, I assert that there is a 3-variable operation 0, so 

(ll0+01l)(A®B®C) = A(B '-'2 C) 

+ (A '-'I B) '-'I (; + (A '-'l C) '-'I B + (B '-'2 C)A. 

In order to prove this, it suffices to observe that the right hand side of the above 
equation is a cochain map of degree -2, hence it is homotopic to 0. Now substitut
ing a2 for A, a for B, b for C, ll(A ®B®C) = 0, so ll0(a2, a, b) = (3.2.7) and the 
proof of part a is complete. 

b) For a defining system we use 

( 
d '-'la ) 

(b '-'la, 211, a '-'l d + b ___,1 c, d ___,1 a) b '-'1 d;:; a '-'1 c 

b '-'l a 

and the resultant representant of the Massey product is seen to be the co-
boundary of • 

M '-'I c + ( b '-'I d) '-'1 a. 

This completes the proof of the lemma. As a corollary we have .. if a2 = 0, then 

/ (a b) (a b)(b)\ 
\ 0 a a I 

is defined and contains 0. 

(3) From section 4.1 it follows that in H*(En) the indeterminacy of (i<4l) has 
the form 

where b runs over all elements in H*(En) of dimension n - 1. Thus from 3.2.1 
it follows that indet ( (i"1)) consists of decomposables. Again, in the next section 
it will become clear that there is no primitive decomposable among them. Hence, 
if (i<4l) contains any primitives, it must contain a unique one. On the other hand 
'Yn ( or more precisely o-'¥n+1) contains nothing but primitives since it is a 
stable operation. Thus from 3.1.2 we have 

THEOREM 3.3.1: 'Yn n (i(4)) = 0 consists of a unique element in H*(En' Z2). 
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(4) From our main theorem 

3.4.1 Sq1 (ic'>) c < (i Sq1i) (~ Sfi)(~ Sfi)(Sfi)) 

, which by lemma 3.2.4 (a) contains 0. Again it will follow from the results of the 
next section that the indeterminacy of the right hand side of 3.4.1 runs over 
Massey products having the same form as 3.2.6 with a = Sq1i, b = i. Thus again 
it will appear that the only primitive in the right hand side of 3.4.1 is 0. But 
Sq1(8) is primitive since 8 is and it follows that we have 

THEOREM 3.4.2: Sq1(8) = 0. 

4. The cohomology of En 

The cohomology ring of En was first determined by Kristensen in [4]. Here we 
outline an alternative method for evaluating it, which, in view of 3.1.1, allows us 
to evaluate Massey products. We finish this section by evaluating the action of 
the Steenrod algebra G.(2) in H*(E2) and H*(E 3). Actually, our techniques to
gether with those of Kristensen seem to allow a virtually complete determination 
of the G.(2) action in H*(En) for all n, but we defer the full exposition of these 
results. 

( 1) There is the evident fibering 

K(Z2, 2n - 1) -1_, En 

lr 
K(Z2, n) 

for En and in the resultant Leray-Serre spectral sequence the 82 terms is 

H*(K(Z2, n), Z2)@H*(K(Z2, 2n-1),Z2). 

The generator of the left hand part is i, that for the other is -y. We now describe 
all differentials, and compute the 800 term of the spectral sequence. 

If I is an m-tuple of integers ( ii , · · • , i,,.) with ii 2:: 2i2 2:: • • • 2:: 2m-ii,,. we 
say I can be halved if each i; in 1 is even and we write ½I = ( ½i1 , • • • , ½im). 
Set I I I = L1=1 i; , then we have 

LEMMA 4.1.1: d111+2n(Sq1(-y)) = (Sq1121i) 2 if I can be halved, otherwise 

d111+2n(Sq1-y) = 0. 
Moreover as I runs over all permissible sequences of excess less than 2n - 1, these 
generate all differentials in the spectral sequence . 

. Proof: H*(K(Z2, 2n - 1), Z2) = P(Sc{y) where I runs over all admissible 
sequences of excess less than 2n ··..:... 1. Moreover every generator transgresses to 
the base, and since ~n'Y = i2, the first assertion of 4.1.i follows easily. The second 
statement is proved by a simple induction, assuming 8, = 8,*0@8.°* and showing 
that 8,+1 also decomposes in this way. 



STEENROD SQUARES AND HIGHER MASSEY PRODUCTS 45 

Thus it is easy to see that 

4.1.2 

the exterior algebra on generators Sq J ( i) where J runs over all admissible se
quences of excess less than n. Also 

4.1.3 

a polynomial algebra on generators {SqJ-y} where J has excess less than 2n - 1 
and can not be halved (j*{SqJ-y} = SqJ-y) and also on generators { (SqK-y)2} 
whereK has excess less than2n - 1 and can be halved (j* { (SqK-y)2} = (Sqx-y)2). 

:Finally, we remark that En is a loop space since the k-invariant i2 is in the image 
of suspension. Thus the Serre spectral sequence is a spectral sequence of Hopf
algebras and we have easily 

LEMMA 4.1.4: 800 ** is primitively generated as a Hopf algebra with generators 

{SqJ'Y}, { (SqK-y)2}, SqJ(i) 

as described above. 

Note in particular that since Boo** is th~ graded Hopf-algebra associated to 
JJ*(En) it follows that the only possible primitives in H*(Bn) are either in the 
image of -ir* (and more exactly in 1r* Prim (H*(K(Z2, n), Z2)) or restrict under 
j* to primitives on the fiber. 

Finally, as a consequence of 3.1.1, 3.1.2 we may replace { (SqK-y)2} by a primi
tive in ((Sqx,£)<4)) and we have 

THEOREM 4.1.5: H*(En) = A(1r*(SqJi))0P({Sqx-y}, ((Sq:i'i/ 4))) where 
J, J mn over all permissible sequences of excess less than n and K runs over all 
perrnissibl,e sequences of excess less than 2n - 1 which cannot be halved. Moreover, 
at least the generators 1r*(SqJi), ((SqJi)<4J) can be taken as primitive. 

Now we are able to complete the proofs of 3.3.l and 3.4.2: there are no decom
posable primitives in H*(E,.) in dimensions 4n - 2, 4n - 1 since if there were 
we would also have such decomposable primitives in S,,, , but there are none. 

( 2) The suspension homomorphism 

u:H*(X) - H*- 1(nX) 

is defined as the composition sA * where s is the suspension isomorphism 

S :H*("1;fJX ,..., H*- 1(fJX) 

while A is the adjoint map "1;!2X - X. u is clearly a natural transformation and 
we have the commutative diagram 

H*(En) ~ H*(!2En) 

4.21 r1r* re !21r)* 

H*(K(Z2, n)) ~H*K(Z2, n - 1). 
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rr on the bottom row is known from Cartan's calculations of the cohomology 
of the K(1r, n)'s [2] or from [7] (§4) and the fact that a(2) commutes with rr. 
It is also well known that rr(a) = 0 if a is decomposable (this is even true at the 
cochain level!) . 

LEMMA 4.2.2: Let a E H*i,K(Z2, n), Z2) and suppose rr(a) = 0 in 4.2.1, then 
1r * (a) = 0, if a is primitive. 

Proof: From Cartan's calculations-it follows that a E Ker rr if and only if a is 
decomposable and all indecomposables are primitive. On the other hand, Ker 1r * 
is precisely generated by the decomposable primitives. 

THEOREM 4.2.3: Sq4j(i(4)) = ((Sqii/ 4)). 

Proof: Sq41(i<4)) and ((Sqii/ 4)) are both primitive and both restrict to the 
same element on the fiber, hence from the results of 4.1 

Sq4i(i<4l) = ((SqJi)<4)) + T 

where Tis 11'*(a) with a primitive. On the other hand, 

rr(Sq4i(i(4))) = Sq4\rr(/ 4')) = 0, 

since (i<'>) is decomposable on the cochain level but this implies, since 

rr((SqJi/ 4)) = 0 

also, that 

rr(T) = rr(1r*a) = (il1r)*(rr(a)) = 0. 

But (o.,.)• is a monomorphism so rr(a) = 0 implies 1r*(a) = T = 0 by 4.2.2, 
and the result follows. 

THEOREM 4.2.4: Let n + j be odd, then in H*(En) there is a primitive indecom
posable w; which restricts to Sq21+1 ( 'Y) on the fiber and 

S 4;+2( ,(4)) 2 q 'l, = Wj 

( actually any primitive which restricts to Sq2i+1( 'Y) has this property). 

Proof: w; represents the stable secondary operation on the relation Sq1(Sq n+i) 

evaluated on the class Sqii, and for this reason it may be taken as a primitive. 
As before both w/, Sq4;+ 2(i<4l) restrict to the same element on the fiber and we 
have 

Sq4i+2(i(4)) = (wJ2 + 1r*(a) 

where a is primitive and the theorem follows as before. 
Similarly we have 

THEOREM 4.2.5: Let n + j be even then any el,ement Wf which restricts to Sq2i+1'Y 
on the fiber satisfies 

S 4j+2<•(4)) 2 q 'l, = Wj 
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Proof: cp( wi) = wi® 1 + "J:,a' ®a" + 1 ®w; with either a' or a" having the form 
71" *( a)/3 where a r'=' l, since 

(j*®j*)cp(wi) = cpj*(wi) = Sq2H\,@l + l®Sq 2i+ 1 -y 

Thus ,p(w/) = (<Pwi)2 = w/01 + l®w/ since (1r*a)2 = 0 for any a r'=' 1 in 
H*(K(Z2, n)). Now, the proof goes as before. 

Thus we have 

COROLLARY 4.2.6: Sq2i+i (/ 4l) = 0 for all i ~ 0. 
Hence, we have completely determined the action of the Steenrod algebra on 

(i(4)). 

(3) We now compute the structure of H*(E 2 , Z2) over ct(2). From 4.1 we 
have 

LEMMA 4..:1.1: H*(B 2 , Z2 ) = A(SqJri) ®P(SqR(A), Sq8 (i(4J)) where 

J T = Sq2rSq2r-l • • . Sq2Sql 

Fi is an.:/ monomial of excess S: 3 starting with _2 or 3, and S is any 
rcrrnis-o.iUc rno·nMnt'al of excess less than 6 which can be halved and tl.i,,,_~ not start 
-avdh 2. ilI 1Jteover .f*(:\) == Sq1 ,y. 

Frotn ,:;:.ve· have 

0 1' = Sq2Sq1 i + Sq\-i 

0(>) = :\01 + 7r*(-i)@1r*(i) + l®A 

where cp is !he cornultiplication in H*(Ez). 
But this together with 4.2.4, 4.2.5 gives the complete structure of H*(E 2 , Z2 ) 

over Ct(2). 
( 4) In H*( E'3) we have 

LEMMA 4.3.1: H*(E., Z2) A(Sq11r*(i)) ®P(SqR)-., Sq 8 r, SqT (i<4))) 

where I runs over all permissible sequences of excess less than 3, R runs over all 
permissible sequences of excess 5 or less which start with a number greater than or 
equal to 2, S runs over all permiss1'ble sequences of excess 7 or less which start with 
6 or 7, or Sis 

(2"[2r2-(2'3 + 2} + 1), · • · , 2r2- 1[2r3 + 2], · · · , 2r3 + 2, 2ra-l, • · • , 4) 

r3 > 2 and T runs over all admissible monomials which can be halved, have excess 
less than 8 and clo not begin with 2, 6 ( r restricts to Sq3-y, A restricts to Sq\). 

Again from [4] we have 

LEMMA 4.3.2: (a) cp( r) = r®l + 1r*(Sq\)®1r*(Sq1i) + l®r 

(b) S?(A) = A@l + l®A 
(c) Sq1(A) = 1r*(Sq3Sq1i) 
(d) Sq1(r) = 0 

Next I claim we have the relation 

4.3.3 
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Proof: Both sides restrict to the same thing on the fiber, moreover(/) of both 
sides are equal by 4.3.2. Hence they differ by a primitive T from. the base, but, 
as before, by looking at u of both sides we see that T must equal 0. 

Similarly 

Sq3T = Sq5(A) + Sq1i·Sq3sq 1i 

and from the relation Sq2sq3 = Sq5 + Sq' Sq1 we have 

Sq5T = Sq6Sq3Sq1i + s,::i_2sq1i-Sq 8Sq1i = Sq1(Sq'T), 

and this completes the analysis of H*(Ea), 

5. The set of higher associating homotopies 

( 1) The proof of Theorem O proceeds by constructing representants A for 
Sqi(B1, • • • , B,.), B for (SQ/(B1), SQ\B2), · · · , SQ"(B,._1), SQ/(B,.)) and 
a cochain 'Q so oQ = A + B. The existence of Qin turn depends on certain 
cochain operations which we now construct. 

We assume given two categories e, e' whose objects are non-negatively 
graded chain complexes over Z2 , both of which are representable by acyclic 
models. Further, for each object C E e, C' E e' there are natural transforma
tions 

a:C-C®C 

a' :c' - c' @C' 

both' coassociative. Moreover we assume given a functor 

Ho:e- e' 
carrying models to models satisfying 

fl'Ho = (Ho®Ho)fl 

when restricted to the 0-dimensional parts Co, Co' of the objects. Of course 
Ho®Hofl may not equal a'Ho in higher dimensions, but the two functors will 
certainly be homotopic. More exactly define 

ai,k:C® • • • @C-c@ .. • ®C ...___,__..., 
i times i + 1 times 

as l® • • • ®l®fl®l® • • • ®1 and set 
~ 

kth position 

Similarly u/ = 2':(-1/au'. 
From the fact that fl, a' are coassociative it follows that the iteration satisfies 

5.1.1 



STEENROD SQUARES AND HIGHER MASSEY PRODUCTS 

5.1.2 u, = u;©-1© • • • ©1 + (-1/1© • • • ©l©u._; 
~ '---.------' 

i-j j 

and we have 

THEOREM 5.1.3: There exist functors Hk of degree k, Hk:C - (C'/+ 1 and 

aHk ± Hka = O"k1Hk-l + ( I:~=~ ( -1/-'Hk-r-1©H,)A 
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Proof: If Hk is determined on models it extends by naturality and representa
bility to all of e. We can assume Hk is defined and O (fork ~ 1) on the 0-skele
tons. Now suppose Ho, • • • , Hk-1 are defined on all of e. In order to construct 
Hk it suffices to show 

M = u/Hk-1 + (~=~ Hk-r-i©H,)A 

is a chain map. But 

Ma± aM = u1( I:~ (-1)H..- 1H,,,_,-2©H,)A 

+ L~-l (-l)H'(uk-r-t©l)Hk-r-2©H, 

+ L~-l ( - 1/+r-l( l©u,)Hk-r-2©H, 

" ;+1 + L...( -1) Hk-r-J-2©H;©H, 

+ L( -1r+•Hk-r-1©Hr-a--1©H. = 0 

from 5.1.2 and the theorem follows. 
( 2) Here are explicit formulae in the first few cases: 

0H1 + H10 = A'Ho - Ho©HoA 

0H2 - H20 = (A'©l - l©A 1)H1 + (H1©Ho - Ho©H1)A 

oH 3 +Hao= (A'©l©l - l©A 1 ©l + l©l©A 1)H2 

- (H2©Ho - H1©H1 + Ho©H2)A 

(3) We now suppose we are given a category e 0 of non-negatively graded 
chain complexes with acyclic models, then the objects of e are the tensor products 

W©C 

where C is an object in e 0, and the objects in e' are of the form C©C. Ho is 
the map F of s~ction 2 which gives rise to the .....,, operations. A in e is 
(l©T©l)A©A and A in C' is (l©T©l)A©A. 

Finally, we are interested in the dual complexes 

Homz1 (C, Z2) = C* 

Homz1 (C©C, Z2) = (C©C)* 
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and the dual maps Jt:W®(C®C)*<Ht> ~ c*. Here we have 

(afli + n.-a)(en®i1® "" • ®ii+1) 

4.3.1 
= t1i-1(en® Li xi® • • • ®x;x;+i® • • • ®x.+1> 

+ Lr,;fli-;-1(er®:f1® • • • ®Xi...:;) ._, fl;(T'"e..-;.®ii-;+1® • • • ®:fi+1) 

·( 4) Here are two examples 

8111(en®Zi®:f2) + D1(8(en®z1®i2)) 
4.4.1 -

• ,.,; llo(en®X1·X2) + LrHo(er®X1) ._, Ho(T'"en-r®X2) 

and this is exactly the formula used by Steenrod in [10] to prove the Cartan 
formula for the Sqi. 

D1 is somewhat more myterious however. 

(8112 + fl28)(en®i1®i,®ia) 

4.4.2 
= D1(en®(i1i,®:fa + :f1®:f,ia)) 

+ Lr D~(er®:f1®X2) ._, Do(T'"en-r®X!) 

+ L,Do(e,®:f1) ._, D1(T'"en..:..®x2®:fa). 

From consideration of the first sum in this last example it becomes clear why we 
call the Di higher associating homotopies. 

'(5) We extend the Di to the. matric algebras IDU e*), ID1( e'*) by setting 

(11o[eJi®M®z1N])i,; = 11o(er.®M;,,;®N,.;) 

where M, N are matrices in ID1( e*), and more generally we put 

DJ,(e,.®(M1®N1)® • • • ®(Mi+1®Ni+J)) •. , 

4.5.1 = L, 1, 1 ... ,, ii\,[e,.®(M1(r, 81)®N1(r, 81)) 

® (M2(81, 82)®N2(81, 82))® • • • ®(Mi+;(8i, t)®Ni+i(s,, t))]. 

We may now easily check that 4.3.l holds, except that we replace ordinary cup 
products by matric multiplication. 

6. Theorem O for 3-fold products 

The proof of Theorem O in· full g~nerality is very messy and computational. 
To aid in following it, we now consider the special ease of 3-fold products in 
detail. 

Let an element a of a 3-fold product in e* be defined by means of a map 

h:Fa-+ e*. 



STEENROD SQUARES AND HIGHER MASSEY PRODUCTS 51 

~ ow consider the cochain 

x = fi2(ei®h(I, 2) ®h(l, 2) ®h(2, 3) ®h(2, 3) ®h(3, 4) ®h(3, 4)) 

+ H 1[(e,®h(I, 3) ®h(l, 2)(2, 3) 

+ e,-1®h(I, 3)0h(l, 3))0h(3, 4)®h(3, 4)) 

+ H1[e,®h(l, 2)0h(l, 2)0h(2, 4)0h(2, 3)(3, 4)) 

+ H1[e,-1®h(l, 2) ®h(l, 2) ®h(2, 4) ®h(2, 4)). 

A short calculation gives 

~X = fio(ei-t®h(I,3)h(3,4)®h(l,3)h(3,4) +h(l,2)(2,4))0h((l,2)(2,4)} 

+ Ho(e,®h((l, 3)(3, 4) + (I, 2)(2, 4))0h((l, 2)(2, 3)(3, 4))) 

+ Lr fio(e,®h(l, 3) ®h((l, 2)(2, 3)) 

+ e,-1®h(l, 2)®h(l, 3)) ___, fio(e,_,®h(3, 4)®h(3, 4)) 

+ L,H1(e,®h(l, 2)®h(l, 2)®h(2, 3)®h(2, 3)) 

...., fio(e....,.®h(3, 4) ®h(3, 4)) 

+ L,fio(e,®h(I, 2)®h(l, 2)) ._, [H0(ei-r- 1®h(2, 4)®h(2, 4) 

+ T'ei-r®(h(2, 4)®h(2, 3)(3, 4)))) 

+ Lr Ho(e,®h(l.2) ®h(l, 2)) 

...., H 1(e.-.®h(2, 3)®h(2, 3)®h(3, 4)®h(3, 4)). 

The last 4 sums above represent a defining system for 

{Sqm-i+l RA1 , SQm-Hl A2 , SQm-i+l cAa) 

Thus, to complete the proof for this case, it suffices to show that the first two 
terms on the right above represent Sqm-i+l (a). Let them be A1, A2 then 

ofio(e.:®h((l,.3)(3, 4) + (1, 2)(2, 4))0h((l, 3)(3, 4))) 

= A1 + A2 + fio(e,-1®h((l, 2)(2, 4) + (1, 3)(3, 4))®h((l, 2)(2, 4) 

+ (1, 3)(3, 4)) 

and this completes the proof. 
Notice especially that the proof depends only on the properties of Fa , the 

formal properties of the maps fi,, but not on h. We exploit this fact in the re
mainder of the proof by suppressing h entirely. One other thing which should be 
pointed out is that the cochains used in x can be bigraded by using (1) the 
fi. and (2) the (e;) involved (in fact we need only use i - j), and in terms of 
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the bigrading we can specify 

x = H2(e,©Co 0) + H1(ei©C/ + ei-1©C/). 

Then the remainder of the proof becomes essentially a formal manipulation, 
assuming certain things about fi( C /) ( and u *C /). We develop these notions 
further in the next section. 

7. Normalizing systems 

(1) Let r(n) be the set of ascending sequences of integers 

'Y = (1, 'Y1, ••• ,'Yr,n) 

with 1 ::; 'Y1 < 'Y2 < · · · < 'Yr < n, and for 'Y E r(n) set 

P.,(n) = (e(n)1,1+-rY@(e(n)-y 1+1.·rs+1)2© • • • 
7.1.1 2 2 r+l 

@ ( e(n)-y,+1,n+1) C [( e(n)1,n+1) ] 

( the notation on the right is explained in 1.3). Since e( n) 1,n+i is a graded complex 
(1.3.1) P.,(n) is also graded in the usual way. There is a second way of grading 
the P .,( n) which we now explain. 

DEFINITION 7.1.2: 'Y E r(n) has length r if 

'Y = (1, 'Y1, .. • , -y., n). 

The set of-y E r(n) of length r is denoted r,(n). 

DEFINITION 7.1.3: P,+1Cn) = L-Yer,cnl P-y(n) 

P(n) = Lr P,(n). 

We say an element X E P,(n) has bi-degree (r, k) if it has dimension k (from the 
grading of e(n)1,n+1), and we write 

P(n)(r, k) 

for the set of all elements of bi-degree ( r, k). 
The map u * is defined in §5 and we have 

7.1.4 u*:P(n)(r, k) - P(n)(r - 1, k + 4) 

At the same time a® is defined using the boundary for e(n)1,n+1 give:i;i. in §1.2, 
and we have 

7.1.5 

7.1.6 

7.1.7 

a®:P(n)(r, k) - P(n)(r, k + 1) 

Note also that the minimum dimension of an element in P(n)(r, *) is -2r. 
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Moreover for each 'Y there is only one generator of minimum dimension, namely 

(1, 'Y1 + 1)2® • • • ®('Yr+ 1, n + 1)2, 

which is invariant under the interchange operator 

T = T® ••• ®T 

r times 

( 2) For technical reasons it is necessary to enlarge P( n) somewhat. We first 
define <'.l(nh,n+1 as e(n)1,n+1 together with the - 1 dimensional generator 
(1, n + 1) and we set 

o(l, n + 1) = L1=2 (1,j)(j, n + 1). 

Now, if we replace e(n)1,n+1 by <'.l(n)1,n+1 in 7.1.1, 7.1.3 we obtain the closed 
bigraded complex P(n). Note that P(n)(r, s) = P(n)(r, s) for r > 1, and 
H.(P(n)(l, *)) = 0 while H.(P(n)(l, *)) has one generator 
(~(1, j)(j, n + 1))®2• 

On the other hand 

for r > 1. 

(3) DEFINITION 7.3.1: An open normalizing system N of length n is a system of 
elements C / E P ( n) so O ~ i, j < n - 1 and 

(1) C/ E P(n)(n - i, 3i -j- 2n) • 

(2) a®C/ = u*c/-1 + (1 + T)C;-i' 

(3) Co0 = (1, 2)®2 ®(2, 3)®2 ® • • • ®(n, n+ 1)®2• 

The associated closed normalizing system JV for P(n) is the open system above 
together with elements in P(n) 

Con-1, . 0. 'c,._ln-1 

which continue to satisfy 7.3.1 (1), (2) above. 
Note that Ci+/ = 0 j > 0-for dimensional reasons. Similarly C! is invariant 

under T for each i, and if Cn_t- 1 ~ 0 then it must equal (1, n + I) ®(1, n + 1), 
that is, if a normalizing system exists at all. Note also that if { C /} forms a 
normalizing system N then so does { T( C /)} as well as { T\ C /)}. Thus a normal
izing system is not, in general, unique. 

LEMMA 7.3.2: For each n ;?: 2 there exist normalizing systems N, G of length n. 

Proof: Since C/ E P(n)(n - i,3i - j - 2n) and P(n)(n - i, *) has trivial 
homology (since i < n - 1) it suffices to show by induction that 

o®(u*c/- 1 + (1 + T)C;-i°) = 0. 
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But a®[u*c/-l + (1 + T)C;_/] = u*(u*c/- 2 + (1 + T)C;-1H) + 
(l+T)[u*(C;-1H) + (1 + T)C;_/] = (u*(l + T) + (1 + T)u*)(C;-1i-l) = 0. 

Thus since Co0 is in all cases given, we can start the induction and this shows 
the existence of N. iv is obtained similarly since H.(P(n)(l, *)) = 0. This 
completes the proof. 

( 4) Here are two examples of closed normalizing systems. For n = 2 

Forn = 3 

C0° = ((1, 2)©(1, 2))©((2, 3)©(2, 3)) 

C/ = (1, 3)©(1, 2)(2, 3)' 

C/ = (1, 3)©(1, 3) 

C/ = ((1, 3)©(1, 2)(2, 3))©((3, 4)©(3, 4)) 

+ ((1, 2)©(1, 2))©((2, 4)®(2, 3)(3, 4)) 

C/ = ((1, 3)®(1, 3))0((3, 4)©(3, 4)) 

+ ((1, 2)©(1, 2))©((2, 4)©(2, 4)) 

C/ = ((1, 3)(3, 4) + (1, 2)(2, 4))©(1, 3)(3, 4) 

C/ = ((1, 3)(3, 4) + (1, 2)(2, 4))©(1, 4) 

C/ = (1, 4)©(1, 4) 

It might be useful at this stage to compare these formulae with those in section 
6. • 

(5) We now give a more explicit method of constructing open and closed 
normalizing systems. 

There is a "shift" isomorphism S 1: e(r)1,r+1 - e(n);+i,;+r+1 defined on gen
erators by 

S1(a,b) = (a+j,b+j) 

LEMMA 7 .5.1: It is possibl,e to choose the closed normalizing systems N so that 
the aasociated open systems are given inductively by 

7 52 C n-t-1( ) _ °""-1 °" C r-1( )'°'Ti,S (C n-r-t( )) . . ; n - L.,r=l L..ii+h=i ii r ,c,, r h n - r 

Proof: Bi degrees are right and 

Co0(n) = Co0(1)©S1Co0(1)® • • • ©Sn-1Co0(1) 

= Co0(1)©S1Co0(n - 1) 

thus it suffices to show (2) of 7.3.1 is satisfied, but this follows by an easy in
duction. Finally, after obtaining the open normalizing system of length n we 
extend it in any way we can to obtain the associated closed system, and continue 
to the definition of the open system of length n + l, etc. 
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LEMMA 7.5.3: For any choice of N with N satisfying 7.5.2 we have 

Cn_i"-1 = (1,n + 1)®(1,n + 1) 

Proof: For n = 2, 3 see 7.4. Now, by induction 

Cn_2n- 2(n) = (1, n)®(l, n)®(n, n + l)®(n, n + 1) 

+ (1, 2)®(1, 2)®(2, n + 1)®(2, n + 1) 

and uCn_2n-2(n) can only be contained in a®(A) or a®(TA) where 

A = (1, n + l)®((l, 2)(2, n + 1) + (1, n)(n, n + 1)) 
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but only one of A, T(A) can occur in C,.._t- 1. Thus exactly 1 must occur. How
ever ( 1 + T)A ¥- 0, hence ( 1 + T)C,._2 n-i is not zero and 

(1, n + l)®(l, n + 1) = Cn-i"- 1• 

( 6) Let { C /}, { C; ''} be normalizing systems N, N' for P( n). Then we can con
struct a system {D/} of homotopies linking them as follows: 

DEFINITION 7.6.1: {D/} links N, N' if 
(1) D/ E P(n)(n - i, 3i -j- 2n - 1) 
(2) aD/ = C/ + (C/)' + (1 + T)Di-/ + rr*D/- 1• 

Proceeding as in the proof of 7 .3 .2 we now have 

LEMMA 7.6.2: Given normalizing systems N, N' for P(n) there is a homotopy 
system {D/} linking them. •• 

(Note that D/ = 0 for dimensional reasons). 

8. The proof of Theorem 0 

(1) In W®TP(n) we define chains G(r, n, i) by 

8.1.1 

where { ckr) forms an open normalizing system of length n. We have 

8.1.2 oG(r, n, i) = ~ei+j-1®T(l + T)C,._2--/ + ~e;+/&TUCn-2-/ 

Thus if we let 

= ~e;+;®Tu*Cn-2-ir-l 

= l®u*G(r - 1, n, i). 

Q(n, i) ~ ~Hn-1-r{G(r, n, i)} 
we find 

oQ(n, i) = iio[l®u*(G(n - 2, n, i))] + L;A; s.J B;(n, i) 

where A; , B; are cochains which we will examine in 8.2. Now we have 

LEMMA 8.1.4: H 0[l®u*(G(n - 2, n, i) )] represents a "formal" element in 

Sq, ((1, 2), (2, 3), • • • , (n, n + 1)) 
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in particular { u *[G( n - 2, n, i)]} does not depend on the choice of normalizing 
system. 

Proof: Let N, N' be normalizing systems for P(n) and let {D/} link them. Set 

then 

oD = u*(G(n - 2,n,i)) + u*(G'(n - 2,n,i)) 

and we have the second part of the lemma. To prove the first part we need 

LEMMA 8.1.5: Let A be a wcally finiJ,e compkx over Z2, then 

The proof follows directly from Lemma 5.2 p. 204 of [11]; see for example the 
proof of 3.3 p. 237 of [8]. 

Hence ( from 7 .2) it follows that 

it(W®TP(n)) = Hi(W®,.Z2) = Z2 

where the generators can be represented by the explicit chains 

8.1.6 ei®,.[2':(l,j)(j, n + 1)]®[2:(1,j)(j, n + 1)]. 

·N'ow observe that the normalizing system given in 7.5.1 satisfies 

a = l®u*(e,®C-t- 2) 

= e•®T[(l, 2)(2, n + 1)®(1, 2)(2, n + 1) 

+ (1, n)(n, n + 1)®(1, n)(n, n + l)j 

and there is no element in W®,.P(n) which contains a in its boundary: Thus 
u*(G(n - 2, n, i)) must represent the nontrivial generator 8.1.6 and the lemma 
follows. 

(2) We now examine the sum 2':A, ...., Bi in the right hand side 8.1.3 .. We now 
assume N satisfies 7.5.2, and indeed all the N(m) are built up according to the 
proof of 7 .5.1. 

Here are the specific elements A, Bi: 

~ · H- (v ,o._r, ,-I) H- (T•+i-lv '°' S (C 1)) ~ •• , ,etc. ft-1-r-o .. ei+j-l\0/'f'J ;1 '-' •-1 .. e,IOIT h i-h • 

We can rewrite this as • 

:E.,,1:,a,rH.-1[G(-y - k,7, R - 'Y +2)] 

...., Hn-r-1:-1[TaS.,(G(r + k - 'Y, n - 'Y, 'Y - R + i))]. 
Now setting>. = r + k, fixing 'Y, R, >. and summing over k we have 
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L>.,R,yQ(-y, R - 'Y + 2)Hn->.-1[TBS,y(G(}.. - -yn, - 'Y,'Y - R + i))] 
8.2.1 = LR,-r Q(-y, R - 'Y + 2) '-' TBQ(n - 'Y, 'Y - R + i) 

= Ls.xQ(S, K) ,...., TK-BQ(n - S, i - K - 2). 

Here Q(S. K) = Q(S, K) + Ho[C(S - 1, S - 1)] is the chain obtained from the 
closed nor~alizing system, and ' 

~Q(S, K) = ~A; __, B;(S, K). 

Hence 8.2.1 represents exactly the desired matric Massey product and. the proof 
of Theorem O is now complete. 
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