CONSTRUCTION OF SOME NONSINGULAR BILINEAR MAPS*

BY KEE YUEN LAM**

1. Introduction

Let \mathcal{E} be a set of operators on a vector space V. \mathcal{E} "has property (P)" if each nontrivial linear combination of operators in \mathcal{E} is a monomorphism. In [2], Adams, Lax and Phillips were concerned with property (P) when V is finite dimensional. In this paper, we give a nontrivial example of such \mathcal{E} on an infinite dimensional V. This example enables us to obtain certain new nonsingular bilinear maps (compare [4]), thus providing estimates on the geometrical dimension of vector bundles over real projective spaces \mathbb{RP}^n . Specifying these estimates to the immersion problem for \mathbb{RP}^n , we re-obtain the result of Milgram [5, Theorem 1], plus the immersion of \mathbb{RP}^n into $\mathbb{R}^{2n-\alpha(n)}$ when $n \equiv 0 \pmod{8}$. In fact, our example \mathcal{E} arises from an attempt to recast Milgram's work in a more systematic setting.

2. Notations

F denotes the space of real, complex, quaternion or Cayley numbers, with the basic units $\epsilon_0(=1)$, ϵ_1 , \cdots , ϵ_{d-1} (d = real dimension of F) as standard orthonormal basis. F^m is the vector space (over R) of m-tuples of elements of F. $F^{\infty} = \bigcup_m F^m$, with usual inner product and norm. If c, c' are non-negative integers satisfying $c \leq c', F(c, c']$ denotes the orthogonal complement of F° in $F^{\circ'}$. Operators on F^{∞} will be written on the right of their arguments.

We shall have occasion to use the following arithmetic functions:

[t] = the greatest integer not exceeding the real number t.

 $\{t\} = t - [t].$

sgn(a) = 1 if $a \ge 0$; sgn(a) = -1 if a < 0.

v(b) = the greatest integer h such that 2^{h} divides b. By convention, $v(0) = \infty$.

 $\alpha(n)$ = the number of 1's in the dyadic expansion of n.

(There is a relation between v and α , namely, $\sum_{1 \le b \le n} v(b) = n - \alpha(n)$. This can be easily proved.)

Finally, for each pair of positive integers k, h(k > h), define a non-negative number $\tau(k, h)$ as follows: let $k = \sum_{j=0}^{\infty} \alpha_j 2^j$, $h = \sum_{j=0}^{\infty} \beta_j 2^j$ and $k - h = \sum_{j=0}^{\infty} \gamma_j 2^j$ be dyadic expansions. Then

$$\tau(k, h) = \operatorname{Card} \{ j \ge 0 \mid \gamma_j = 0, \, \alpha_j \neq \beta_j \}.$$

Here, Card denotes cardinality. The first few values of $\tau(k, h)$ are given by

^{*} This paper is a revision of a portion of the author's Ph.D. thesis submitted to Princeton University. The author thanks Professor Norman E. Steenrod for his advice and encouragement.

^{**} Supported by the National Science Foundation, Grant No. GP-6724.

 $\tau(3, 1) = \tau(3, 2) = 0, \ \tau(2, 1) = \tau(4, 1) = \tau(4, 2) = 1, \ \text{and} \ \tau(4, 3) = 2.$ Note, in particular, that if k + h + 1 is a power of 2, then $\tau(k, h) = \alpha(h)$.

3. The operators S_b and T_a on F^{∞} .

(3.1) For each nonnegative integer b, S_b is defined as the monomorphism

$$(x_1, x_2, x_3, \cdots) S_b = (\underbrace{0, \cdots, 0}_{b}, x_1, x_2, x_3, \cdots).$$

In particular, S_0 is the identity operator I.

(3.2) For -d < a < 0 the operator T_a is defined simply by

$$(x_1, x_2, x_3, \cdots) T_a = (x_1 \epsilon_a, x_2 \epsilon_a, x_3 \epsilon_a, \cdots).$$

For $a \ge 0$, first put $m = 2^a$ and decompose F^{∞} into the direct sum $\bigoplus_{k\ge 0} F(km, (k+1)m]$. Then define T_a to be the operator which maps each summand F(km, (k+1)m] to itself in the following way:

$$\underbrace{(\underbrace{0, \cdots, 0}_{km}, x_{km+1}, \cdots, x_{km+m}, 0, \cdots) T_a}_{= (-1)^k} = (-1)^k \underbrace{(\underbrace{0, \cdots, 0}_{km}, x_{km+m}, \cdots, x_{km+1}, 0, \cdots)}_{km}.$$

Obviously, each $T_a(a > -d)$ is an isometry, $T_a^2 = \operatorname{sgn}(a)I$, and the adjoint of T_a is $T_a^* = \operatorname{sgn}(a)T_a$.

(3.3) In addition to the operators S_b and T_a let P_n be the projection of F° to F^n . These operators in general do not commute, but we do have the following special commutation rules:

(i)
$$S_{b'}S_b = S_{b'+b}(=S_bS_{b'}).$$

(ii) $T_aS_b = \begin{cases} S_bT_a & \text{if } v(b) > a \\ -S_bT_a & \text{if } v(b) = a \end{cases}$
(iii) $T_aT_{a'} = -\operatorname{sgn}(a)\operatorname{sgn}(a')T_{a'}T_a & \text{for } a \neq a'$
(iv) $T_aP_n = P_nT_a & \text{if } v(n) \geq a.$

All these rules can be verified from definitions and known properties of F. We also record

LEMMA. Let $a \ge 0$ and $m = 2^a$. Then for each $b \ge 0$, the operator $S_b T_a P_m$ is self-adjoint.

Proof: If $b \ge m$, $S_bT_aP_m = S_bP_mT_a = 0$ is self-adjoint. If b < m let $x = (x_1, x_2, \dots), y = (y_1, y_2, \dots)$ be arbitrary vectors in F^{∞} . By direct computation,

$$\langle xS_bT_aP_m, y \rangle = \langle x_1, y_{m-b} \rangle + \cdots + \langle x_{m-b}, y_1 \rangle$$

= $\langle x, yS_bT_aP_m \rangle$,

which proves the lemma.

KEE YUEN LAM

4. The Main Theorem.

(4.1)

THEOREM. The set \mathcal{E} of operators on F^{∞} defined by

$$\mathcal{E} = \{ T_a S_b \mid -d < a < v(b) \}$$

has property (P).

Remark. & consists precisely of those products T_aS_b for which the commutation rule $T_aS_b = S_bT_a$ holds, (see (ii) of (3.3)).

Proof. For each $r \ge 0$ and nonzero $x \in F^{\infty}$, let $\mathcal{E}^r = \{T_a S_b \mid -d < a < \min, (v(b), r+1)\}$ and $\mathcal{E}^r(x) = \{xA \mid A \in \mathcal{E}^r\}$. Also write $n = 2^r$ and $V_k^r = F(kn (k+1)n]$. Corresponding to the direct sum decomposition

 $F^{\infty} = V_0^{r} \oplus V_1^{r} \oplus V_2^{r} \oplus V_3^{r} \oplus \cdots$

partition $\mathcal{E}^{r}(x)$ into the disjoint union

$$\mathcal{E}^{r}(x) = E_{0}^{r} \cup E_{1}^{r} \cup E_{2}^{r} \cup E_{3}^{r} \cup \cdots$$

in which $E_k^r = \mathcal{E}^r(x) \cap [(F^{kn})^{\perp} - (F^{(k+1)n})^{\perp}]$. The following facts are clear from definition:

(1_r) If j > k, each vector in E_j^r projects to zero in V_k^r .

 (2_r) Vectors in E_k^r never project to zero in V_k^r .

Now, \mathcal{E} has property (P) iff each set of vectors $\mathcal{E}^{r}(x)$ is linearly independent. This is a consequence of (1_{r}) and the following assertion which strengthens (2_{r}) :

(3_r) The projection \overline{E}_k^r of E_k^r in V_k^r is a linearly independent set.

We shall prove (3_r) by induction on r.

Represent x as yS_p where y has nonzero first component y_1 . First consider r = 0. One checks directly that \bar{E}_k^0 is empty if k < p, and that if $k \ge p$, \bar{E}_k^0 consists of the vectors

$$(\underbrace{0, \cdots, 0}_{k}, y_1 \epsilon_{-a}, 0, \cdots), -d < a < 0,$$

for k - p odd, and consists of the additional vector

$$(\underbrace{0,\cdots,0}_{k},(-1)^{p}y_{1},0,\cdots)$$

for k - p even. In any case \overline{E}_k^0 is linearly independent.

Suppose inductively that (3_{r-1}) is true. To prove (3_r) , let E_k^r be the set of vectors in E_k^r not belonging to $\mathcal{E}^{r-1}(x)$. Since

$$\begin{aligned} V_k^{\ r} &= \ V_{2k}^{\ r-1} \oplus \ V_{2k+1}^{\ r-1}, \\ E_k^{\ r} &= \ E_{2k}^{\ r-1} \cup \ E_{2k+1}^{\ r-1} \cup \ 'E_k^{\ r}, \end{aligned}$$

90

the linear independence of \overline{E}_k^r will follow from (2_r) , (1_{r-1}) and (3_{r-1}) via some elementary argument in linear algebra once we established the following key lemma:

(4.2)

LEMMA. Suppose z, w are distinct vectors in E_k such that one of them (say z) belongs to E_k . Then their projections in V_k are mutually orthogonal.

Proof. Write $z = xT_rS_c$, $w = xT_aS_b$, $(a \leq r)$, with $x = yS_p$ as before. By definition of E_k^r , z and w lie in $(F^{kn})^{\perp}$ but not in $(F^{(k+1)n})^{\perp}$. These being invariant subspaces of T_r and T_a , the same must be true for the vectors $zT_r = yS_{p+c}$ and $wT_a = \operatorname{sgn}(a)yS_{p+b}$. From this it follows that $z, w \in E_k^r$ only if the following conditions hold among a, b and c:

(4.3)
$$c \ge 0, \quad v(c) > r, \quad kn a, \quad kn$$

In particular, $z \neq w$ implies a < r.

Now extend the definition of S_b for negative b by

$$(x_1, x_2, x_3, \cdots) S_b = (x_{1-b}, x_{2-b}, x_{3-b}, \cdots).$$

These operators still satisfy (ii) of (3.3), and the formula $S_{b'}S_b = S_{b'+b}$ remains valid as long as $b' \geq 0$. Moreover, S_b and S_{-b} are adjoint to each other, and the projection of F^{∞} to V_k^r is given by $S_{-kn}P_nS_{kn}$.

Projecting z to V_k^r gives the vector

$$\bar{z} = (y S_p T_r S_c) S_{-kn} P_n S_{kn} = (-1)^k y S_{p+c-kn} T_r P_n S_{kn}.$$

Similarly, $\bar{w} = y S_{p+b-kn} T_a P_n S_{kn}$. Since S_{kn} preserves inner product, and P_n is self-adjoint idempotent,

$$\langle \bar{z}, \bar{w} \rangle = (-1)^k \langle y S_{p+c-kn} T_r P_n, y S_{p+b-kn} T_a P_n \rangle$$

= $(-1)^k \langle y A, y B \rangle,$

where $A = S_{p+c-kn}T_rP_n$ is self-adjoint by (3.4) and $B = S_{p+b-kn}T_a$. Using (4.3) and the various commutation rules listed in (3.3), we have

$$BA^* = BA = S_{p+b-kn}T_aS_{p+c-kn}T_rP_n$$

$$= S_{p+b+c-kn}T_aS_{p-kn}T_rP_n$$

$$= S_{p+c-kn}T_aS_{p+b-kn}T_rP_n$$

$$= S_{p+c-kn}T_aP_nT_rS_{-(p+b-kn)} \quad \text{by (3.4)}$$

$$= -\text{sgn (a)} S_{p+c-kn}P_nT_rT_aS_{-(p+b-kn)}$$

$$= -AB^*.$$

so $\langle \bar{z}, \bar{w} \rangle = 0$ and lemma (4.2) is established. This ends the proof of Theorem (4.1).

KEE YUEN LAM

Remark. Let F^{∞} be completed to the Hilbert space \mathfrak{K} . All the operators in \mathfrak{E} extend to \mathfrak{K} , and our proof actually shows that \mathfrak{E} , as a set of operators on \mathfrak{K} , has property (P).

5. Nonsingular bilinear maps.

(5.1) LEMMA. Suppose h < k and let $\mathcal{E}(h + 1, k)$ be the set of operators in \mathcal{E} which map F^{h+1} into F^k . Then

Card
$$\mathcal{E}(h+1,k) = d(k-h) + \tau(k,h)$$
,

where $\tau(k, h)$ is as defined in §2.

Proof. $\mathcal{E}(h+1, k)$ obviously contains the operator T_aS_b if -d < a < 0 and $h + 1 + b \leq k$. There are (d - 1)(k - h) such operators. The remaining operators have the form T_aS_b $(= S_bT_a)$, where $0 \leq a < v(b)$ and a, b satisfy the additional restriction that T_a must map F(b, h + 1 + b] into F^k . This restriction amounts to $g \leq k$, where $g = 2^a([h/2^a]+1) + b$ is the smallest multiple of 2^a not exceeded by h + 1 + b. If we set $b = 2^{a+1}(s - 1)$, the restriction can be written as

(5.2)
$$s \leq \frac{k-h}{2^{a+1}} + \frac{1}{2} \left\{ \frac{h}{2^a} \right\} + \frac{1}{2}.$$

It follows that the total number of remaining operators is

Card
$$\{T_a S_b \mid a, b \ge 0; b = 2^{a+1}(s-1) \text{ for some integer } s \text{ satisfying } (5.2)\}$$

= $\sum_{a \ge 0} \sigma_a(k, h),$

where $\sigma_a(k, h)$ denotes the integral part of the right hand side of (5.2). If $k = \sum_{j\geq 0} \alpha_j 2^j$, $h = \sum_{j\geq 0} \beta_j 2^j$ and $k - h = \sum_{j\geq 0} \gamma_j 2^j$ are dyadic expansions, then by direct inspection

(5.3)
$$\sigma_a(k,h) = \gamma_a + \sum_{j>a} \gamma_j \alpha^{j-a-1},$$

unless when we run into the situation that

(5.4)
$$\gamma_a = 0 \quad \text{and} \quad \sum_{0 \le j < a} (\beta_j + \gamma_j) 2^j \ge 2^a,$$

in which case $\sigma_a(k, h)$ is 1 plus the value given in (5.3). But the inequality in (5.4) holds iff there is a carry at the *a*-th digital place when k - h is added to h in dyadic arithmetic. Thus (5.4) is equivalent to the condition that $\gamma_a = 0$ and $\alpha_a \neq \beta_a$, which by definition occurs $\tau(k, h)$ times as *a* runs from 0 to ∞ . Consequently

Card
$$\mathcal{E}(h+1,k) = (d-1)(k-h) + \sum_{a\geq 0} (\gamma_a + \sum_{j>a} \gamma_j 2^{j-a-1}) + \tau(k,h).$$

One can now verify easily that the summation term on the right hand side actually yields the value k - h, so that Card $\mathcal{E}(h + 1, k) = d(k - h) + \tau(k, h)$, as is to be proved.

(5.5) THEOREM. For any $k > h \ge 0$ there exists a nonsingular bilinear map $R^{d(k+1)} \times R^{d(k-h)+\tau(k,h)} \to R^{dk}$

for d = 1, 2, 4 or 8.

Proof. Let A_1 , A_2 , A_3 , \cdots be an enumeration of the operators in \mathcal{E} . By Theorem 4.1, the *R*-bilinear map $\phi: F^{\infty} \times R^{\infty} \to F^{\infty}$ given by $\phi(x, e_i) = xA_i$ is nonsingular, i.e. $\phi(x, u) = 0$ iff x = 0 or u = 0. (Here $\{e_i\}_{i \ge 1}$ is the standard basis of R^{∞} .) By the previous lemma, there is a subspace V in R^{∞} of dimension $d(k-h) + \tau(k, h)$ such that ϕ restricts to a map $F^{h+1} \times V \to F^k$. The theorem follows.

As an example, putting k = 5, h = 2 and d = 8 in (5.5), we get a nonsingular bilinear map $R^{24} \times R^{25} \to R^{40}$. This is better than the map $h: R^{24} \times R^{24} \to R^{40}$ obtained by regarding R^{24} and R^{40} as the spaces of 3-tuples and 5-tuples of Caley numbers respectively, and using the formula

$$h((x_0, x_1, x_2), (y_0, y_1, y_2)) = (z_0, z_1, z_2, z_3, z_4)$$

with $z_k = \sum_{i+j=k} x_i y_j$.

6. Topological applications

Let $k\xi_n$ denote the k-fold whitney sum of the Hopf bundle ξ_n over \mathbb{RP}^n , and $gd(k\xi_n)$ its geometrical dimension. It is known [4, Proposition 3] that the existence of a nonsingular bilinear map $\mathbb{R}^{n+1} \times \mathbb{R}^r \to \mathbb{R}^k$ implies $gd(k\xi_n) \leq k - r$. Applying (5.5), one may conclude

(6.1) PROPOSITION. If n = dh + d - 1, then $gd(dk\xi_n) \leq dh - \tau(k, h)$, where d = 1, 2, 4 or 8.

In some special cases, the estimate on $gd(k\xi_n)$ obtained in this proposition can be combined with some results of Gitler [3, Theorem 2.1] to yield the exact value of the geometrical dimension in question.

Let 2^N be a sufficiently large power of 2. By Adams [1, Theorem 7.4], $2^N \xi_n$ is a trivial bundle, so $\nu(RP^n) = (2^N - n - 1)\xi_n$ is a stable normal bundle for RP^n . A theorem of Hirsch (see, for example, Sanderson [6, Theorem 2.1]) asserts that RP^n immerses in $R^{n+\ell}(\ell > 0)$ if and only if $\ell \ge gd(\nu(P^n))$. Our estimates on $gd(k\xi_n)$ now give

(6.2) THEOREM. Let d = 1, 2, 4 or 8. If $n \neq 1, 3, 7$ and $n + 1 \equiv 0 \pmod{d}$, then \mathbb{RP}^n immerses in $\mathbb{R}^{2n-\alpha(n)-\beta(d)}$, where $\beta(d) = (d-1) - \alpha(d-1)$.

Proof. Write n + 1 = d(h + 1) and put $k = (2^N/d) - h - 1$ in (6.1) to obtain

$$gd(\nu(RP^n)) \leq dh - \tau(k, h)$$

= $dh - \alpha(h)$
= $n - \alpha(n) - [(d - 1) - \alpha(d - 1)].$

All the claimed immersions follow.

KEE YUEN LAM

7. Relation with the construction of Milgram [5].

In terms of the operators S_b and T_a on F^{∞} it is possible to restate the main result of [5, §2 and Theorem 6] essentially as the following

(7.1) THEOREM (Milgram). Let $n = 2^r$. Let A_1, A_2, \dots, A_t be an enumeration of the set

$$\mathfrak{M} = \{ T_r T_a S_{b-n} P_n \mid -d < a < v(b); 1 \leq b < 2n \},\$$

considered as a set of operators from F^n to itself. Then

(i) $\langle w, wA_j \rangle = 0$ for each $w \in F^n$;

(ii) If $w \in F^n$ is non-zero, there are always dn - 1 independent vectors among $\{wA_j\}_{1 \leq j \leq t}$;

(iii) $t = \text{Card } \mathfrak{M} = 2 \, dn - r - (d+1).$

We shall sketch a proof of this theorem which avoids an unpleasant double induction used in [5]. Let $A_j = T_r T_a S_{b-n} P_n$. If $wA_j = 0$, (i) is trivially true. Otherwise let $wT_r = x \in F^n$. In the notation of (4.1), the vectors xT_{r+1} , xT_aS_b belong to E_0^{r+1} and E_0^{r+1} respectively, and so project to mutually orthogonal vectors in $V_0^{r+1} (= F^{2n})$. Since xT_{r+1} has zeros at its first *n* components, orthogonality is not destroyed by further projecting into F(n, 2n], resulting (as can be easily checked) in the image vectors xT_rS_n and $xT_aS_{b-n}P_nS_n$ respectively. Since S_n preserves inner product, $\langle w, wA_j \rangle = 0$ follows.

To establish (ii) notice that if we put $wT_r = x$ as before, the set $\{wA_jS_n\}_{1 \le j \le t}$ contains as a subset the $\bar{E_1}^r$ of (4.1). Since $\bar{E_1}^r$ is linearly independent by assertion (3_r) in (4.1), it suffices to show that Card $\bar{E_1}^r = dn - 1$. This is done by a counting process, and we omit the details. Likewise, (iii) is obtained by direct counting.

Finally, Milgram observed that if F is not the Cayley numbers, each A_j is F-linear when F^n is considered as a left vector space over F. This leads to immersion results for complex and quaternionic projective spaces, as given in [5, Theorem 2].

References

[1] J. F. ADAMS. Vector Fields on Spheres, Ann. of Math., 75 (1962), 603-32.

- [2] J. F. ADAMS, P. LAX and R. PHILLIPS. On Matrices whose Real Linear Combinations are Nonsingular, Proc. Amer. Math. Soc. 16 (1965) 318-22.
- [3] S. GITLER. Projective Sitefel Manifolds—II. Applications, Topology 7, (1968) 47-53.
- [4] K. Y. LAM. Construction of Nonsingular Bilinear Maps, Topology 6 (1967) 423-26.

[5] J. MILGRAM. Immersing Projective Spaces, Ann. of Math. 85 (1967), 473-82.

[6] B. J. SANDERSON, Immersions and Embeddings of Projective Spaces, Proc. Lond. Math. Soc. (3), 14 (1964), 135-53.

BROWN UNIVERSITY and CENTRO DE INVESTIGACIÓN DEL IPN.

r.