CONSTRUCTION OF SOME NONSINGULAR BILINEAR MAPS*

BY KEE YUEN LAM**

1. Introduction

Let $\&$ be a set of operators on a vector space V . $\&$ "has property (P) " if each nontrivial linear combination of operators in ε is a monomorphism. In [2], Adams, Lax and Phillips were concerned with property (P) when V is finite dimensional. In this paper, we give a nontrivial example of such ε on an infinite dimensional V. This example enables us to obtain certain new nonsingular bilinear maps (compare [4]), thus providing estimates on the geometrical dimension of vector bundles over real projective spaces $RPⁿ$. Specifying these estimates to the immersion problem for RP^n , we re-obtain the result of Milgram [5, Theorem 1], plus the immersion of RP^n into $R^{2n-\alpha(n)}$ when $n \equiv 0 \pmod{8}$. In fact, our example 8 arises from an attempt to recast Milgram's work in a more systematic setting.

2. Notations

F denotes the space of real, complex, quaternion or Cayley numbers, with the basic units $\epsilon_0(=1)$, ϵ_1 , \cdots , ϵ_{d-1} ($d =$ real dimension of F) as standard orthonormal basis. F^m is the vector space (over R) of m-tuples of elements of F . $F^{\infty} = \bigcup_{m} F^{m}$, with usual inner product and norm. If *c*, *c'* are non-negative integers satisfying $c \leq c'$, $F(c, c')$ denotes the orthogonal complement of F^c in $F^{c'}$. Operators on F^{∞} will be written on the right of their arguments.

We shall have occasion to use the following arithmetic functions:

 $[t] =$ the greatest integer not exceeding the real number t.

 $\{t\} = t - [t].$

 $sgn(a) = 1$ if $a \ge 0$; $sgn(a) = -1$ if $a < 0$.

 $v(b)$ = the greatest integer *h* such that 2^h divides *b*. By convention, $v(0) = \infty$.

 $\alpha(n)$ = the number of 1's in the dyadic expansion of n.

(There is a relation between *v* and α , namely, $\sum_{1 \leq b \leq n} v(b) = n - \alpha(n)$. This can be easily proved.)

Finally, for each pair of positive integers k, $h(k > h)$, define a non-negative number $\tau(k, h)$ as follows: let $k = \sum_{j=0}^{\infty} \alpha_j 2^j$, $h = \sum_{j=0}^{\infty} \beta_j 2^j$ and $k - h' =$ $\sum_{j=0}^{\infty} \gamma_j 2^j$ be dyadic expansions. Then

$$
\tau(k, h) = \text{Card } \{j \geq 0 \mid \gamma_j = 0, \, \alpha_j \neq \beta_j \}.
$$

Here, Card denotes cardinality. The first few values of $\tau(k, h)$ are given by

^{*} This paper is a revision of a portion of the author's Ph.D. thesis submitted to Princeton University. The author thanks Professor Norman E. Steenrod for his advice and encouragement.

^{**} Supported by the National Science Foundation, Grant No. GP-6724.

 $\tau(3, 1) = \tau(3, 2) = 0, \tau(2, 1) = \tau(4, 1) = \tau(4, 2) = 1, \text{ and } \tau(4, 3) = 2.$ Note, in particular, that if $k + h + 1$ is a power of 2, then $\tau(k, h) = \alpha(h)$.

3. The operators S_b and T_a on F^{∞} .

 (3.1) For each nonnegative integer *b*, S_b is defined as the monomorphism

$$
(x_1, x_2, x_3, \cdots)S_b = (0, \cdots, 0, x_1, x_2, x_3, \cdots).
$$

In particular, *So* is the identity operator *I.*

(3.2) For $-d < a < 0$ the operator T_a is defined simply by

$$
(x_1,x_2,x_3,\cdots)T_a=(x_1\epsilon_{-a},x_2\epsilon_{-a},x_3\epsilon_{-a},\cdots).
$$

For $a \geq 0$, first put $m = 2^a$ and decompose F^{∞} into the direct sum $\bigoplus_{k\geq 0} F(km, (k+1)m]$. Then define T_a to be the operator which maps each summand $F(km, (k + 1)m]$ to itself in the following way:

$$
(0, \dots, 0, x_{km+1}, \dots, x_{km+m}, 0, \dots) T_a
$$

= $(-1)^k (0, \dots, 0, x_{km+m}, \dots, x_{km+1}, 0, \dots).$

Obviously, each $T_a(a > -d)$ is an isometry, $T_a^2 = \text{sgn}(a)I$, and the adjoint of T_a is $T_a^* = \text{sgn}(a) T_a$.

(3.3) In addition to the operators S_b and T_a let P_n be the projection of F^{∞} to F^n . These operators in general do not commute, but we do have the following special commutation rules:

(i)
$$
S_b \cdot S_b = S_{b' + b} (= S_b S_{b'})
$$
.
\n(ii) $T_a S_b = \begin{cases} S_b T_a & \text{if } v(b) > a \\ -S_b T_a & \text{if } v(b) = a \end{cases}$
\n(iii) $T_a T_{a'} = -\text{sgn}(a) \text{sgn}(a') T_{a'} T_a$ for $a \neq a'$
\n(iv) $T_a P_n = P_n T_a$ if $v(n) \geq a$.

All these rules can be verified from definitions and known properties of F. We also record

(3.4)

LEMMA. Let $a \geq 0$ and $m = 2^a$. Then for each $b \geq 0$, the operator $S_bT_aP_m$ is *self-adjoint.*

Proof: If $b \ge m$, $S_b T_a P_m = S_b P_m T_a = 0$ is self-adjoint. If $b < m$ let $x =$ $(x_1, x_2, \dots), y = (y_1, y_2, \dots)$ be arbitrary vectors in F^{∞} . By direct computation,

$$
\langle xS_bT_aP_m, y\rangle = \langle x_1, y_{m-b}\rangle + \cdots + \langle x_{m-b}, y_1\rangle
$$

$$
= \langle x, yS_bT_aP_m\rangle,
$$

which proves the lemma.

90 KEE YUEN LAM

4. The Main Theorem.

 (4.1)

THEOREM. The set ε of operators on F^{∞} defined by

$$
\varepsilon = \{T_a S_b \mid -d < a < v(b)\}
$$

has property (P).

Remark. ϵ consists precisely of those products $T_a S_b$ for which the commutation rule $T_a S_b = S_b T_a$ holds, (see (ii) of (3.3)).

Proof. For each $r \geq 0$ and *nonzero* $x \in F^{\infty}$, let $\mathcal{E}^r = \{T_a S_b \mid -d \leq a \leq \min$, $(v(b), r + 1)$ and $\mathcal{E}^r(x) = \{xA \mid A \in \mathcal{E}^r\}$. Also write $n = 2^r$ and $V_k^r = F(kn)$ $(k + 1)n$. Corresponding to the direct sum decomposition

 $F^{\infty} = V_0^{\mathsf{T}} \oplus V_1^{\mathsf{T}} \oplus V_2^{\mathsf{T}} \oplus V_3^{\mathsf{T}} \oplus \cdots$

partition $\mathcal{E}^r(x)$ into the disjoint union

$$
\varepsilon^r(x) = E_0^r \cup E_1^r \cup E_2^r \cup E_3^r \cup \cdots
$$

in which $E_k^r = \mathcal{E}(x) \bigcap [(F^{kn})^{\perp} - (F^{(k+1)n})^{\perp}]$. The following facts are clear from definition:

 (1_r) If $j > k$, each vector in E_j^r projects to zero in V_k^r .

 (2_r) Vectors in E_k^r never project to zero in V_k^r .

Now, $\&$ has property (P) iff each set of vectors $\ϵ'(x)$ is linearly independent. This is a consequence of (1_r) and the following assertion which strengthens $(2_r):$

 (3_r) The projection \overline{E}_k^r of E_k^r in V_k^r is a linearly independent set.

We shall prove (3_r) by induction on r.

Represent *x* as yS_p where *y* has nonzero first component y_1 . First consider $r=0$. One checks directly that \bar{E}_k^0 is empty if $k < p$, and that if $k \geq p$, \bar{E}_k^0 consists of the vectors

$$
(\underbrace{0,\cdots,0}_{k},\,y_1\in_{a},\,0,\cdots), -d
$$

for $k - p$ odd, and consists of the additional vector

$$
(\underbrace{0,\cdots,0}_{k},(-1)^{p}y_{1},0,\cdots)
$$

for $k - p$ even. In any case \bar{E}_k^0 is linearly independent.

Suppose inductively that (3_{r-1}) is true. To prove (3_r) , let $'E_k^r$ be the set of vectors in E_k^r not belonging to $\varepsilon^{r-1}(x)$. Since

$$
V_k^{\ r} = V_{2k}^{r-1} \oplus V_{2k+1}^{r-1},
$$

$$
E_k^{\ r} = E_{2k}^{r-1} \cup E_{2k+1}^{r-1} \cup E_k^{\ r},
$$

the linear independence of \bar{E}_k ^r will follow from (2_r) , (1_{r-1}) and (3_{r-1}) via some elementary argument in linear algebra once we established the following key lemma:

(4.2)

LEMMA. Suppose z, w are distinct vectors in E_k^r such that one of them (say z) belongs to $'E_k^r$. Then their projections in V_k^r are mutually orthogonal.

Proof. Write $z = xT_rS_c$, $w = xT_aS_b$, $(a \leq r)$, with $x = yS_p$ as before. By definition of E_k^r , z and w lie in $(F^{kn})^{\perp}$ but not in $(F^{(k+1)n})^{\perp}$. These being invariant subspaces of T_r , and T_a , the same must be true for the vectors $zT_r =$ yS_{p+c} and $wT_a = \text{sgn}(a)yS_{p+b}$. From this it follows that $z, w \in E_k^r$ only if the following conditions hold among a , b and c :

(4.3)
$$
c \ge 0, \quad v(c) > r, \quad kn < p + c + 1 \le (k + 1)n;
$$

$$
b \ge 0, \quad v(b) > a, \quad kn < p + b + 1 \le (k + 1)n.
$$

In particular, $z \neq w$ implies $a < r$.

Now extend the definition of S_b for *negative b* by

$$
(x_1, x_2, x_3, \cdots) S_b = (x_{1-b}, x_{2-b}, x_{3-b}, \cdots).
$$

These operators still satisfy (ii) of (3.3), and the formula $S_b \setminus S_b = S_{b'+b}$ remains valid as long as $b' \geq 0$. Moreover, S_b and S_{-b} are adjoint to each other, and the projection of F^{∞} to V_{k}^{r} is given by $S_{-kn}P_{n}S_{kn}$.

Projecting z to V_k ^r gives the vector

$$
\bar{z} = (yS_pT_rS_c)S_{-kn}P_nS_{kn} = (-1)^k yS_{p+c-kn}T_rP_nS_{kn}.
$$

Similarly, $\bar{w} = yS_{p+b-kn}T_aP_nS_{kn}$. Since S_{kn} preserves inner product, and P_n is self-adjoint idempotent,

$$
\langle \bar{z}, \bar{w} \rangle = (-1)^k \langle yS_{p+c-kn}T_r P_n, yS_{p+b-kn}T_a P_n \rangle
$$

= $(-1)^k \langle yA, yB \rangle$,

where $A = S_{p+c-kn}T_rP_n$ is self-adjoint by (3.4) and $B = S_{p+b-kn}T_a$. Using (4.3) and the various commutation rules listed in (3.3), we have

$$
BA^* = BA = S_{p+b-kn} T_a S_{p+c-kn} T_r P_n
$$

= $S_{p+b+c-kn} T_a S_{p-kn} T_r P_n$
= $S_{p+c-kn} T_a S_{p+b-kn} T_r P_n$
= $S_{p+c-kn} T_a P_n T_r S_{-(p+b-kn)}$ by (3.4)
= $-\text{sgn}(a) S_{p+c-kn} P_n T_r T_a S_{-(p+b-kn)}$
= $-AB^*$,

so $\langle \bar{z}, \bar{w} \rangle = 0$ and lemma (4.2) is established. This ends the proof of Theorem $(4.1).$

92 KEE YUEN LAM

Remark. Let F^{∞} be completed to the Hilbert space *X*. All the operators in $\&$ extend to $\&$, and our proof actually shows that $\&$, as a set of operators on $\&$, has property (P) .

5. Nonsingular bilinear maps.

(5.1) LEMMA. *Suppose* $h < k$ and let $\mathcal{E}(h + 1, k)$ be the set of operators in \mathcal{E} which map F^{h+1} into F^k . Then

$$
Card \mathcal{E}(h+1,k) = d(k-h) + r(k,h),
$$

where $\tau(k, h)$ *is as defined in* §2.

Proof. $\mathcal{E}(h + 1, k)$ obviously contains the operator $T_a S_b$ if $-d < a < 0$ and $h + 1 + b \leq k$. There are $(d - 1)(k - h)$ such operators. The remaining operators have the form T_aS_b (= S_bT_a), where $0 \le a \lt v(b)$ and a, b satisfy the additional restriction that T_a must map $F(b, h + 1 + b)$ into F^k . This restriction amounts to $g\leq k$, where $g = 2^a([h/2^a]+1) + b$ is the smallest multiple of 2^a not exceeded by $h + 1 + b$. If we set $b = 2^{a+1}(s - 1)$, the restriction can be written as

(5.2)
$$
s \leq \frac{k-h}{2^{a+1}} + \frac{1}{2} \left\{ \frac{h}{2^a} \right\} + \frac{1}{2}.
$$

It follows that the total number of remaining operators is

Card ${T_aS_b \mid a, b \geq 0; b = 2^{a+1}(s-1)}$ for some integer *s* satisfying (5.2)} $= \sum_{a>0} \sigma_a(k, h),$

where $\sigma_a(k, h)$ denotes the integral part of the right hand side of (5.2). If $k =$ $\sum_{i>0} \alpha_i^2$, $h = \sum_{i>0} \beta_i^2$ and $k - h = \sum_{i>0} \gamma_i^2$ are dyadic expansions, then by direct inspection

(5.3)
$$
\sigma_a(k, h) = \gamma_a + \sum_{j>a} \gamma_j \alpha^{j-a-1},
$$

unless when we run into the situation that

(5.4)
$$
\gamma_a = 0 \quad \text{and} \quad \sum_{0 \leq j < a} (\beta_j + \gamma_j) 2^j \geq 2^a,
$$

in which case $\sigma_a(k, h)$ is 1 plus the value given in (5.3). But the inequality in (5.4) holds iff there is a carry at the a-th digital place when $k - h$ is added to *h* in dyadic arithmetic. Thus (5.4) is equivalent to the condition that $\gamma_a = 0$ and $\alpha_a \neq \beta_a$, which by definition occurs $\tau(k, h)$ times as a runs from 0 to ∞ . Consequently

Card
$$
\mathcal{E}(h + 1, k) = (d - 1)(k - h) + \sum_{a \ge 0} (\gamma_a + \sum_{j>a} \gamma_j 2^{j-a-1}) + \tau(k, h).
$$

One can now verify easily that the summation term on the right hand side actually yields the value $k - h$, so that Card $\mathcal{E}(h + 1, k) = d(k - h) + r(k, h)$, as is to be proved.

(5.5) THEOREM. For any $k > h \geq 0$ there exists a nonsingular bilinear map $R^{d(h+1)} \times R^{d(k-h)+\tau(k,h)} \rightarrow R^{dk}$

 $for d = 1, 2, 4$ or 8.

Proof. Let A_1 , A_2 , A_3 , \cdots be an enumeration of the operators in ε . By Theorem 4.1, the R-bilinear map $\phi: F^{\infty} \times R^{\infty} \to F^{\infty}$ given by $\phi(x, e_i) = xA_i$ is nonsingular, i.e. $\phi(x, u) = 0$ iff $x = 0$ or $u = 0$. (Here $\{e_i\}_{i>1}$ is the standard basis of R^{∞} .) By the previous lemma, there is a subspace V in R^{∞} of dimension $d(k-h) + \tau(k,h)$ such that ϕ restricts to a map $F^{h+1} \times V \to F^k$. The theorem follows.

As an example, putting $k = 5$, $h = 2$ and $d = 8$ in (5.5) , we get a nonsingular bilinear map $R^{24} \times R^{25} \to R^{40}$. This is better than the map $h:R^{24} \times R^{24} \to R^{40}$ obtained by regarding R^{24} and R^{40} as the spaces of 3-tuples and 5-tuples of Caley numbers respectively, and using the formula

$$
h((x_0,x_1,x_2), (y_0,y_1,y_2)) = (z_0, z_1, z_2, z_3, z_4)
$$

with $z_k = \sum_{i+j=k} x_i y_j$.

6. Topological applications

Let $k\xi_n$ denote the k-fold whitney sum of the Hopf bundle ξ_n over RP^n , and $gd(k\xi_n)$ its geometrical dimension. It is known [4, Proposition 3] that the existence of a nonsingular bilinear map $R^{n+1} \times R^r \to R^k$ implies $gd(k\xi_n) \leq k - r$. Applying (5.5), one may conclude

(6.1) PROPOSITION. If $n = dh + d - 1$, then gd $(dk\xi_n) \le dh - \tau(k, h)$, where $d = 1, 2, 4$ or 8.

In some special cases, the estimate on $gd(k\xi_n)$ obtained in this proposition can be combined with· some results of Gitler [3, Theorem 2.1] to yield the exact value of the geometrical dimension in question.

Let 2^N be a sufficiently large power of 2. By Adams [1, Theorem 7.4], $2^N \xi_n$ is a trivial bundle, so $\nu(RP^n) = (2^N - n - 1)\xi_n$ is a stable normal bundle for $RPⁿ$. A theorem of Hirsch (see, for example, Sanderson [6, Theorem 2.1]) asserts that RP^n immerses in $R^{n+\ell}(\ell > 0)$ if and only if $\ell \geq gd(\nu(P^n))$. Our estimates on $gd(k\xi_n)$ now give

(6.2) THEOREM. Let $d = 1, 2, 4$ or 8. If $n \neq 1, 3, 7$ and $n + 1 \equiv 0 \pmod{d}$, then RP^n immerses in $R^{2n-\alpha(n)-\beta(d)}$, where $\beta(d) = (d-1) - \alpha(d-1)$.

Proof. Write $n + 1 = d(h + 1)$ and put $k = (2^N/d) - h - 1$ in (6.1) to obtain

$$
gd(\nu(RP^n)) \le dh - \tau(k, h)
$$

= dh - \alpha(h)
= n - \alpha(n) - [(d - 1) - \alpha(d - 1)].

All the claimed immersions follow.

94 KEE YUEN LAM

7. Relation with the construction of Milgram [5].

In terms of the operators S_b and T_a on F^{∞} it is possible to restate the main result of [5, §2 and Theorem 6] essentially as the following

(7.1) THEOREM (Milgram). Let $n = 2^r$. Let A_1, A_2, \cdots, A_t be an enumera*tion of the set*

$$
\mathfrak{M} = \{ Tr F_a S_{b-n} P_n \mid -d < a < v(b) \,;\, 1 \leq b < 2n \},
$$

considered as a set of operators from $Fⁿ$ *to itself. Then*

(i) $\langle w, wA_j \rangle = 0$ *for each* $w \in F^n$;

(ii) *If* $w \in F^n$ *is non-zero, there are always dn* $- 1$ *independent vectors among* $\{wA_j\}_{1 < j < i}$;

 (iii) $t = \text{Card } \mathfrak{M} = 2 \, dn - r - (d + 1).$

We shall sketch a proof of this theorem which avoids an unpleasant double induction used in [5]. Let $A_j = T_rT_aS_{b-n}P_n$. If $wA_j = 0$, (i) is trivially true. Otherwise let $wT_r = x \in F^n$. In the notation of (4.1), the vectors xT_{r+1} , xT_aS_b belong to $'E_0^{\ r+1}$ and $E_0^{\ r+1}$ respectively, and so project to mutually orthogonal vectors in V_0^{r+1} (= F^{2n}). Since xT_{r+1} has zeros at its first *n* components, orthogonality is not destroyed by further projecting into $F(n, 2n)$, resulting (as can be easily checked) in the image vectors xT_rS_n and $xT_aS_{b-n}P_nS_n$ respectively. Since S_n preserves inner product, $\langle w, wA_j \rangle = 0$ follows.

To establish (ii) notice that if we put $wT_r = x$ as before, the set $\{wA_jS_n\}_{1 \leq j \leq t}$ contains as a subset the $\overline{E_1}^r$ of (4.1). Since $\overline{E_1}^r$ is linearly independent by assertion (3_r) in (4.1) , it suffices to show that Card $\bar{E_1}^r = dn - 1$. This is done by a counting process, and we omit the details. Likewise, (iii) is obtained by direct counting.

Finally, Milgram observed that if F is not the Cayley numbers, each A_i is *F*-linear when F^n is considered as a left vector space over *F*. This leads to immersion results for complex and quaternionic projective spaces, as given in [5, Theorem 2].

REFERENCES

[1] J. F. ADAMS. *Vector Fields on Spheres,* Ann. of Math., **75** (1962), 603-32.

- (2] **J.** F. ADAMS, P. LAX and R. PmLLIPS. *On Matrices whose Real Linear Combinations are Nonsingular*, Proc. Amer. Math. Soc. 16 (1965) 318-22.
- [3] S. GrTLER. *Projective Sitefe7: Manifolds-II. Applications,* Topology **7,** (1968) 47-53.
- [4] K. Y. LAM. *Construction of Nonsingular Bilinear Maps,* Topology **6** (1967) 423-26.

(5] **J.** MrLGRAM. *Immersing Projective Spaces,* Ann. of Math. **85** (1967), 473-82.

[6] B. **J.** SANDERSON, *Immersions and Embeddings of Projective Spaces,* Proc. Lond. Math. Soc. (3), **14** (1964), 135-53.

BROWN UNIVERSITY and CENTRO DE 1NVESTIGACI6N DEL IPN.