CONSTRUCTION OF SOME NONSINGULAR BILINEAR MAPS*

By Kee YUueN Lam**

1. Introduction

Let & be a set of operators on a vector space V. & “has property (P)” if each
nontrivial linear combination of operators in & is 2 monomorphism. In [2], Adams,
Lax and Phillips were concerned with property (P) when V is finite dimensional.
In this paper,we give a nontrivial example of such & on an infinite dimensional
V. This example enables us to obtain certain new nonsingular bilinear maps
(compare [4]), thus providing estimates on the geometrical dimension of vector
bundles over real projective spaces RP". Specifying these estimates to the immer-
sion problem for RP", we re-obtain the result of Milgram [5, Theorem 1], plus
the immersion of RP™ into R* *™ when n =0 (mod 8). In fact, our example
& arises from an attempt to recast Milgram’s work in a more systematic setting.

2. Notations

F denotes the space of real, complex, quaternion or Cayley numbers, with the
basic units (= 1), &, - -+, €41 (d = real dimension of F') as standard ortho-
normal basis. F™ is the vector space (over R) of m-tuples of elements of F.
F® = |JF™, with usual inner product and norm. If ¢, ¢’ are non-negative integers

satisfying ¢ < ¢, F(c, ¢'] denotes the orthogonal complement of F° in F.
Operators on F” will be written on the right of their arguments.
We shall have occasion to use the following arithmetic functions:
[t] = the greatest integer not exceeding the real number ¢.

{ =t— [t

sgn(a) = 1lifa > 0;sgn(a) = —1ifa < 0.
v(b) = the greatest integer & such that 2" divides b. By convention,
v(0) = oo,
a(n) = the number of 1’s in the dyadic expansion of 7.
(There is a relation between » and «, namely, lez,sn v(b) = n — a(n).

This can be easily proved.)

Finally, for each pair of positive integers k, h(k > h), define a non-negative
number 7(k, k) as follows: let &k = D i a2, h = D B2 and b — b =
> 7072’ be dyadic expansions. Then

T(k’ h) = Card {.7 >0 I'Y.‘f = O; aj # BJ}
Here, Card denotes cardinality. The first few values of 7(k, h) are given by
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7(3,1) = 7(3,2) =0,7(2,1) = 7(4,1) = 7(4,2) = 1, and 7(4, 3) = 2.
Note, in particular, that if £ + & 4 1is a power of 2, then (k, h) = a(h).

3. The operators S; and T, on F~,
(3.1) For each nonnegative integer b, S, is defined as the monomorphism

(m,xz,xs,---)Sb: (0,-",0,x1,$2,x3,"')-
b

In particular, S, is the identity operator I.

(3.2) For —d < a < 0 the operator T, is defined simply by
(1, T2, 23, - )T0 = (T16g, To€y, Tz, """ ).

For a > 0, first put m = 2° and decompose F” into the direct sum
@r=oF (km, (k + 1)m]. Then define T, to be the operator which maps each
summand F(km, (k + 1)m] to itself in the following way:

(0, ,O,ka+1,... ;ka+m,07"')Ta

km

= (_ l)k(o, e ?O’ka+m!--' ,ka-l—l,O, ‘..)'

km

Obviously, each T, (a > éd) is an isometry, T\’ = sgn(a)I, and the adjoint of
T, is T, = sgn(a)T. . o ‘

(3.3) In addition to the operators S, and T, let P, be the projection of F~ to F".
These operators in general do not commute, but we do have the following special
commutation rules:
(1) Sble = Sb'+b(= SbSbr).
. _ ST, if w(b) > a
(i) TaSy = {—SI,T', it o(b) =a
(iil) ToTs = —sgn(e)sgn(a’)To T, for a = a
(iv) T.P, = P,T, if v(n) > a.
All these rules can be verified from definitions and known properties of F.
We also record
(3.4)
LemmaA. Let a > 0 and m = 2°. Then for each b > 0, the operator SpToPn is
self-adjoint. ‘
Proof: If b > m, SpToPm = SePnT. = 0 is self-adjoint. If b < m let z =
(1,22, ),y = (%1, Y2, - - -) be arbitrary vectors in F*. By direct computa-
tion,

(-’vaTaPm y y) = <x1 ) ym—b) + crc + (xm—b ) yl)
= (, YSTuPm),

which proves the lemma.
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4. The Main Theorem.

(4.1)
TurorEM. The set & of operators on F” defined by

& ={T.8|—d<a<uvb)}
has property (P). '
Remark. 8 consists precisely of those products T'.S, for which the commutation
rule T,8S, = SpT, holds, (see (ii) of (3.3)).
Proof. For each r > 0 and nonzero z ¢ F*, let 8" = {T.Sy| —d < a < min,

(v(b),r + 1)} and &'(z) = {xA| A e&}. Also write n = 2" and V) = F(kn
(k + 1)n]. Corresponding to the direct sum decomposition ,

FF=VieVieV,eoeV ®:--
partition & (z) into the disjoint union
gr((t) = Eor U Elr U E’zr U E’3r U e

in which By = &(z) N[(F*™)* — (F*™™*. The following facts are clear
from definition:

(1,) If j > k, each vector in E;" projects to zero in V.

(2.) Vectors in E;" never project to zero in V'

Now, & has property (P) iff each set of vectors 8 (z) is linearly independent.
This is a consequence of (1,) and the following assertion which strengthens
(2,):

(3,) The projection E; of E, in V}  is a linearly independent set.

We shall prove (3,) by induction on r.

Represent z as yS, where y has nonzero first component y; . First consider
r = 0. One checks directly that F;® is empty if & < p, and that if & > p, £’
consists of the vectors

(0, te 707y15—ayO)"')’_d<a'<O’
———

k
for & — p odd, and consists of the additional vector

(0’ ot 107 (— l)py]-)O) "')
—_—

k

for k¥ — p even. In any case E.? is linearly independent.
Suppose inductively that (3,1 is true. To prove (3,), let "E;’ be the set of
vectors in E," not belonging to & '(z). Since

r r=—1 r—1
Vi =Va @ Vo

ES = By 'UEy " U'EY,
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the linear independence of K, will follow from (2,), (1,_;) and (3,—1) via'some
elementary argument in linear algebra once we established the following key
lemmas:
(4.2)

LEMMA, Suppose 2, w are distinct vectors in E)" such that one of them (say z)
belongs to 'E,’. Then their projections in Vi are mutually orthogonal. :

Proof. Write 2 = zT,.8., w = zT.8:, (& < r), with z = yS as before. By
definition of E", z and w lie in (F*")* but not in (F***")*, These being in-
variant subspaces of T, and T, , the same must be true for the vectors 2T, =
YSp+e and wT, = sgn(a)ySps . From this it follows that 2z, w € E,” only if the
following conditions hold among a, b and c:

c >0, v(c‘)‘>r, ‘lm<p+c—|—1 (k + Um;

(4.3)
b =0, v(b) > a, Im<p—|—b+1 (k+ 1)n.

In particular, z > w implies a < 7. »
Now extend the definition of S, for negative b by

(:C1,$2,.’Ea, )Sb = (xl—b,xz—b} T3—b , )

These operators still satisfy (ii) of (3.3), and the formula Sy'Sy = Sy'4s re-
mains valid as long as b’ > 0. Moreover, S, and S_; are adjoint to each other,
and the projection of F* to V" is given by S_k,.P Sin -

Projecting 2z to V" gives the vector

Z= (ySPTTSG) S—knPnSkn = (—1)kySp+c_k,.T,P,.Skn .

Similarly, ¥ = ySpst—inTsPrSin . Since Sy, preserves inner product, and P, is
self-adjoint idempotent, ’

Py
)
S
~~
I

= v(—l)k<ysp+c—knTrPn ’ ySHb_knTaP,.)
(_1)k<yA7 yB}y

where A = Spro inT+Py is self-adjoint by (3.4) and B = Sp4s_1nT% . Using (4.3)
and the various commutation rules listed in (3.3), we have

BA* = BA = Sp5-nTaSproinT+Pn
= SpistesnToSpimT.P,
= Spre—inTaSpro—inTrPn
= SptotnTaPaT:S (pis—tny by (3.4)
= —sgn (@) Sp+e—inPnTrTaS_(p+3—kn)
= —AB* |

50 (2, 1) = 0 and lemma (4.2) is established. This ends the proof of Theorem
(4.1).

I
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Remark. Let F* be completed to the Hilbert space 5¢. All the operators in
&-extend to 3¢, and our proof actually shows that &, as a set of operators on 3¢,
has property (P).

\ 5. Nonsingular bilinear maps.
(5.1) LremMmA. Suppose b < k and let &(h + 1, k) be the set of operators in &
which map F*** into F*. Then

_ Card &(h + 1, k) =d(k — h) + (&, h),
@here 7(k, h) is as defined in §2.

Proof. &(h + 1, k) obviously contains the operator T%.S; if —d < a < 0 and
h 4+ 14 b < k. There are (d — 1)(k — h) such operators. The remaining
operators have the form 7,8, (= S;T.), where 0 < a < v(b) and a, b satisfy
the additional restriction that T, must map F(b, h + 1 4+ b] into F*. This re-
striction amounts to g < k, where g = 2*([h/2°]4+1) + b is the smallest multiple
of 2% not exceeded by & + 1 + b If we set b = 2°*(s — 1), the restriction can
be written as

S E—h , 1|h 1
62 <t i
It follows that the total number of remaining operators is
Card {T.Ss|a, b > 0; b = 2°™(s — 1) for some integer s satisfying (5.2)}

= Za >0 "'a(k h)’

where o.(k, h) denotes the integral part of the right hand side of (5.2). If & =
Z]>0 a2’ h = Z,>o B2°and k — h = Z,>g v;2’ are dyadic expansions, then
by direct inspection

(5.3) oa(k, h) = va + Z]’>u 'Yjaj_a——l;
unless when we run into the situation that
(5.4) Yo =0 and D ocica (B; + i)2' > 28,

in which case o,(k, h) is 1 plus the value given in (5.3). But the inequality in
(5.4) holds iff there is a carry at the a-th digital place when £ — & is added to
h in dyadic arithmetic. Thus (5.4) is equivalent to the condition that v, = 0
and o, # B., which by definition occurs 7(k, ») times as ¢ runs from 0 to <.
Consequently

Card 8(h + 1,k) = (d — 1)(k — h) + Daso (va + Li»av27") + v(k, h).

One can now verify easily that the summation term on the right hand side
actually yields the value &k — h, so that Card &(h + 1, k) = d(k — h) + =(k, h),
as is to be proved. ‘
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(5.5) THEOREM. For any &k > h > 0 there exists a nonsingular bilinear map
Rd(h-H) X Rd(k—h)+7’(k.h) _)de
ford =1,2 40r8.

Proof. Let Ay, A, A;, --- be an enumeration of the operators in & By
Theorem 4.1, the R-bilinear map ¢:F° X RB* — F~ given by ¢(z, e;) = z4;
is nonsingular, i.e. ¢(z, u) = 0iff x = O or w = 0. (Here {e;}:>1 is the standard
basis of R”.) By the previous lemma, there is a subspace V in B” of dimension
d(k — h) + 7(k, h) such that ¢ restricts to a map F*™* X V — F*. The theorem
follows.

As an example, putting £ = 5, » = 2 and d = 8 in (5.5), we get a nonsingular
bilinear map R® X R® — R™. This is better than the map h:R* X RB* — R*
obtained by regarding R* and R* as the spaces of 3-tuples and 5-tuples of Caley
numbers respectively, and using the formula

h((o, @1, %2), (Yo, Y1, %2)) = (20, 21,2, 2, 2)
with 2z, = Zi+1'=k XiYij .
6. Topological applications

Let k£, denote the k-fold whitney sum of the Hopf bundle £, over RP"™, and
gd(kt,) its geometrical dimension. It is known [4, Proposition 3] that the exist-
ence of a nonsingular bilinear map R X R — R* implies gd(kt,) < k — r.
Applying (5.5), one may conclude
(6.1) ProrosiTioN. Ifn = dh + d — 1, then gd (dkE,) < dh — r(k h), where
d=1,24o0r8.

In some special cases, the estimate on gd(k£,) obtained in this proposition can
be combined with-some results of Gitler [3, Theorem 2.1] to yield the exact
value of the geometrical dimension in question.

Let 2" be a sufficiently large power of 2. By Adams [1, Theorem 7.4], 2%,
is a trivial bundle, so »(RP") = (2 — n — 1)&, is a stable normal bundle for
RP". A theorem of Hirsch (see, for example, Sanderson [6, Theorem 2.1]) as-
serts that RP” immerses in R*"“({ > 0) if and only if £ > gd(»(P™)). Our
estimates on gd(k¢.) now give

(6.2) TeEOREM. Letd = 1,2,40r 8. Ifn % 1,3,7andn + 1 = 0 (mod d),
then RP™ immerses in Rz"_“(n)_ﬂ(d) where 8(d) = (d — 1) — a(d — 1).

Proof. Writen + 1 = d(h + 1) and put k = (2¥/d) — b — 1 in (6.1) to
obtain

gd(»(RP"™)) < dh — 7(k, h)
= dh — a(h)
=n—a(n) —[(d—1) — a(d — 1)].

All the claimed immersions follow.
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7. Relation with the construction of Milgram [5].

In terms of the operators S and 7', on F” it is possible to restate the main
result of [5, §2 and Theorem 6] essentially as the following

(7.1) TreorEM (Milgram). Let n.= 2'. Let Ay, Az, -++, A, be an enumera-
tion of the set '

M= {T,TuSs_nPr| —d < a < v(b);1 < b < 2},

considered as a set of operators from F™ to itself. Then
(1) {(w, wd;) = 0 for each w € F";
(ii) If w € F™ is non-zero, there are always dn — 1 mdependent vectors among
{wA}icice s ,
(iii) ¢ = Card M = 2dn — r — (d + 1).

We shall sketch a proof of this theorem which avoids an unpleasant double
induction used in [5]. Let 4; = T,TeSp—nPr . If wA; = 0, (i) is trivially true.
Otherwise let wT, = z € F". In the notation of (4.1), the vectors 2T,y1, zT:Ss
belong to "Ey** and Ey** respectively, and so project to mutually orthogonal
vectors in Vo' (= F*™). Since 27T, 4; has zeros at its first n components, ortho-
gonality is not destroyed by further projecting into F(n, 2n], resulting (as can
be. easily checked) in the image vectors z7.S, and zT.S;—.P.S. respectively.
Since S, preserves inner product, (w, wA ;) = 0 follows.

To establish (ii) notice that if we put wT, = x as before, the set {wA ;Sa}1<i<:
contains as a subset the E;" of (4.1). Since Ey" is linearly independent by as-
sertion (3,) in (4.1), it suffices to show that Card E;" = dn — 1. This is done
by a counting process, and we omit the details. Likewise, (iii) is obtained by
direct counting.

Finally, Milgram observed that if F is not the Cayley numbers, each A; is
F-linear when F" is considered as a left vector space over F. This leads to im-
mersion results for complex and quaternionic projective spaces, as given in [5,
Theorem 2].
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