
CONSTRUCTION OF SOME NONSINGULAR BILINEAR MAPS* 

BY KEE YUEN LAM** 

1. Introduction 

Let 8 be a set of operators on a vector space V. 8 "has property (P)" if each 
nontrivial linear combination of operators in 8 is a monomorphism. In [2], Adams, 
Lax and Phillips were concerned with property (P) when Vis finite dimensional. 
In this paper,we give a nontrivial example of such 8 on an infinite dimensional 
V. This example enables us to obtain certain new nonsingular bilinear maps 
( compare [4]), thus providing estimates on the geometrical dimension of vector 
bundles over real projective spaces RPn. Specifying these estimates to the immer­
sion problem for RPn, we re-obtain the result of Milgram [5, Theorem 1], plus 
the immersion of RPn into R 2n-a(n) when n ==· 0 (mod 8). In fact, our example 
8 arises from an attempt to recast Milgram's work in a more systematic setting. 

2. Notations 

F denotes the space of real, complex, quaternion or Cayley numbers, with the 
basic units Eo( = 1), E1 , • • • , Ea- 1 ( d = real dimension of F) as standard ortho­
normal basis. Fm is the vector space (over R) of m-tuples of elements of F. 
F00 = LJFm, with usual inner product and norm. If c, c' are non-negative integers 

m 

satisfying c ::;; c', F(c, c'] denotes the orthogonal complement of F" in r'. 
Operators o~ F 00 will be written on the right of their arguments. 

We shall have occasion to use the following arithmetic functions: 
[t] = the greatest integer not exceeding the real number t. 

{t} = t - [t]. 
sgn(a) = 1 if a ~ O; sgn(a) = -1 if a < 0. 

v(b) = the greatest integer h such that 2h divides b. By convention, 
v(0) = o:i. 

a(n) = the number of l's in the dyadic expansion of n. 
(There is a relation between v and a, namely, L1<b<nv(b) = n - a(n). 

This can be easily proved.) - -
Finally, for each pair of positive integers k, h(k > h), define a non-negative 

number r(k, h) as follows: let k = L~o a;2i, h = L~o /3;2i and k - h' = 
L~o 'Y ;2; be dyadic expansions. Then 

r(k, h) = Card {j ~ 0 I 'Yi = 0, a;~ /3;}. 

Here, Card denotes cardinality. The first few values of r(k, h) are given by 
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r(3, I) = r(3, 2) = 0, r(2, I) = r( 4, I) = r( 4, 2) = 1, and r( 4, 3) = 2. 
Note, in particular, that if k + h + I is a power of 2, then r(k, h) = a(h). 

3. The operators Sb and Ta on F"". 
(3.1) For each nonnegative integer b, Sb is defined as the monomorphism 

(x1, X2, X3, ···)Sb = (0, • • • , 0, X1, x2, X3, • • • ). 
'-------,------

b 

In particular, So is the identity operator I. 

(3.2) For -d < a < 0 the operator Ta is defined simply by 

For a ~ 0, first put m = 2a and decompose F"" into the direct sum 
®k'2-.oF(km, (k + I)m]. Then define Ta to be the operator which maps each 
summand F(km, (k + I)m] to itself in the following way: 

(0, ·'' , 0, Xkm+l, •'' , Xkm+m, 0, •'•)Ta 
'------v-----' 

km 

= (- 1/(0, ''' , 0, Xkm+m, • ·' , Xkm+l, 0, '' '), 
'-------,------

km 

Obviously, each Ta(a > -d) is an isometry, T/ = sgn(a)I, and the adjoint of 
Ta is T/ = sgn(a) Ta. 

(3.3) In addition to the operators Sb and Ta let P n be the projection of F"" to Fn. 
These operators in general do not commute, but we do have the following special 
commutation rules: 

(i) sb,sb = sb'+b( = sbsb,). 

(ii) TaSb = {SbTa if v(b) > a 
-SbTa if v(b) = a 

(iii) TaTa, = -sgn(a)sgn(a') Ta,Ta for a ~ a' 
(iv) TaPn = PnTa if v(n) ~ a. 

All these rules can be verified from definitions and known properties of F. 
We also record 

(3.4) 
LEMMA. Let a ~ 0 and m = 2a. Then for each b ~ 0, the operator SbTaPm is 

self-adjoint. 

Proof: If b ~ m, SbTaP m = SbP mTa = 0 is self-adjoint. If b < m let x = 
(x1, X2, • • ·), y = (y1, Y2, • • ·) be arbitrary vectors in F"". By direct computa­
tion, 

(xSbTaP m , y) = (x1 , Ym-b) + · · · + (Xm-----0 , Yi) 

= (x, ySbT aP m), 

which proves the lemma. 
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4. The Main Theorem. 

( 4.1) 
THEOREM. The set 8 of operators on F"" defined by 

has property (P). 

Remark. 8 consists precisely of those products TaSb for which the commutation 
rule TaSb = SbTa holds, (see (ii) of (3.3)). 

Proof. For each r 2:: 0 and nonzero x e F"", let 8' = { TaSb I -d < a < min, 
(v(b), r + 1)} and 8'(x) = {xA I A e 8'}. Also write n = 2' and V/ = F(kn 
(k + l)n]. Corresponding to the direct sum decomposition 

F"' = Vo' ® Vi' ® V/ ® Va' ® 

partition 8"(x) into the disjoint union 

8' ( x) = Eo' U Ei' U E2' U E/ U · · • 

in which E/ = 8'(x) n [(Fkn) J. - (F(k+l)n) ·'']. The following facts are clear 
from definition: 

( 1,) If j > k, each vector in E/ projects to zero in V kr. 

(2,) Vectors in E/ never project to zero in Vk'· 

Now, 8 has property (P) iff each set of vectors 8"(x) is linearly independent. 
This is a consequence of ( lr) and the following assertion which strengthens 
(2r): 

(3r) The projection Ek" of E/ in V/ is a linearly independent set. 
We shall prove ( 3r) by induction on r. 
Represent x as ySP where y has nonzero first component Yr. First consider 

r = 0. One checks directly that E/ is empty if k < p, and that if k 2:: p, E/ 
consists of the vectors 

( 0, • • • , 0 , YI E-a , 0, • • • ) , - d < a < 0, 
'----v----' 

k 

for k - p odd, and consists of the additional vector 

fork - p even. In any case E/ is linearly independent. 
Suppose inductively that ( 3r-i) is true. To prove ( 3r), let 'E kr be the set of 

vectors in E/ not belonging to 8"-1(x). Since 

V/ = V2kr-I ® V2k+r'- 1, 

E/ = E2/-I u E2k+i'-l u / E/, 
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the linear independence of E{ wilUollow from (2,), Cl,-1) and (3,_1) via some 
elementary argument in linear algebra once we established the following key 
lemma: 

(4.2) 
LEMMA. Suppose z, w are distinct vectors in E,: such that one of them (say z) 

belongs to 'E,:. Then their projections in v,: are mutually orthogonal. 

Proof. Write z = xT,S 0 , w = xTaSb, (a::; r), with x = ySP as before. By 
definition of E,:, z and w lie in (Fkn) .i. but not in (F(Hlln) .i._ These being in­
variant subspaces of T, and Ta , the same must be true for the vectors zT, =· 
ySp+c and wTa = sgn(a)ySp+b. From this it follows that z, w E E/ only if the 
following conditions hold among a, band c: 

(4.3) 
C ~ 0, 

b ~ 0, 

v(c) > r, 

v(b) > a, 

kn < p + c + 1 ::; (k + l)n; 

kn < p + b + I ::; (k + l)n. 

In particular, z ~ w implies a < r. 
Now extend the definition of Sb for negative b by 

( X1 , X2 , X3 , ' ' • ) Sb = ( X1-b , X2-b , X3-b , • • ' ) , 

These operators still satisfy (ii) of (3.3), and the formula Sb,Sb = Sb'H re­
mains valid as long as b' ~ 0. Moreover, Sb and S-b are adjoint to each other, 
and the projection of F,r,, to V,: is given by s-knP nSkn . • ' 

Projecting z to v,: gives the vector 

Z = (ySpT,Sc)S-knPnSkn = ( -l)"ySp+c-knTrPnSkn, 

Similarly, w = ySp+b-knTaPnSkn. Since Skn preserves inner product, and Pn is 
self-adjoint idempotent, 

<z, w) = (-I)"{ySp+c-knTrPn' ySp+b-knTaPn) 

= ( -l)k<yA, yB), 

where A= Sp+c-knT,P,.isself-adjointby (3.4) an.dB= Sp+b-knTa. Using (4.3) 
and the various commutation rules listed in (3.3), we have 

so (z, w) 
( 4.1). 

BA* = BA = Sp+b-knTaSp+c-knTrPn 

= SP+b+c-knTaSp-knTrPn 

= Sp+c-knTaSp+b-knTrPn 

= S p+c-kn T_aP n T ,S -( p-t-b-kn) by (3.4) 

-sgn (a)Sp+c-knPnTrTaS-(p+b-kn) 

-AB*, 

0 and lemma ( 4.2) is established. This ends the proof of Theorem 
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Remark. Let F"' be completed to the Hilbert space X. All the operators in 
8 extend to JC, and our proof actually shows that 8, as a set of operators on X, 
has property (P). 

5. Nonsingular bilinear maps. 

(5.1) LEMMA. Suppose h < k and let B(h + 1, k) be the set of operators in B 
which map Fh+1 into Fk. Then 

Card B(h + 1, k) = d(k - h) + r(k, h), 

where r(k, h) is as defined in §2. 

Proof. B(h + 1, k) obviously contains the oper1:ttor TaSb if -d < a < 0 and 
h + 1 + b ::; k. There are (d - 1) (k - h) such operators. The remaining 
operators have the form TaSb ( = SbTa), where O ::; a < v(b) and a, b satisfy 
the additional restriction that Ta must map F(b, h + 1 + b] into Fk. This re­
striction amounts tog::; k, where g = 2a([h/2a]+l) +bis the smallest multiple 
of 2a not exceeded by h + 1 + b. If we set b = 2a+\ s - 1), the restriction can 
be written as 

(5.2) 

It follows that the total number of remaining operators is 

Card { TaSb I a, b ~ O; b = 2a+\s - 1) for some integer s satisfying ( 5.2)} 

= La;:,:_o Ua(k, h), 

where ua(k, h) denotes the integral part of the right hand side of (5.2). If k = 
Li;:,:o ai2i, h = Li;:,:o /3i2i and k - h = Li;:,:o 'Yi2i are dyadic expansions, then 
by direct inspection 

(5.3) 

unless when we run into the situation that 

(5.4) 

in which case ua(k, h) is 1 plus the value given in (5.3). But the inequality in 
( 5.4) holds iff there is a carry at the a-th digital place when k - h is added to 
h in dyadic arithmetic. Thus (5.4) is equivalent to the condition that 'Ya = 0 
and aa ~ f3a, which by definition occurs r(k, h) times as a runs from O to oo. 

Consequently 

Card B(h + 1, k) = (d - 1) (k - h) + La;:,:o ('Ya+ Li>a 'Yi2j-a-l) + r(k, h). 

One can now verify easily that the summation term on the right hand side 
actually yields the value k - h, so that Card B(h + 1, k) = d(k - h) + r(k, h), 
as is to be proved. 
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(5.5) THEOREM. For any k > h 2::: 0 there exists a nonsingular bilinear map 
Rd(h+l) X Rd(k-h)+r(k,h) - Rdk 

for d = 1, 2, 4 or 8. 

Proof. Let A1 , A2 , Aa , • • • be an enumeration of the operators in 8. By 
Theorem 4.1, the R-bilinear map cp:F"" X R"" - r given by cfJ(x, ei) = xAi 
is nonsingular, i.e. cp(x, u) = 0 iff x = 0 or u = 0. (Here {ei}i>l is the standard 
basis of R"".) By the previous lemma, there is a subspace Vi; R"" of dimension 
d(k - h) + r(k, h) such that cp restricts to a map Fh+1 X V - Fk. The theorem 
follows. 

As an example, putting k = 5, h = 2 and d = 8 in ( 5.5), we get a nonsingular 
bilinear map R24 X R25 - R40• This is better than the map h:R 24 X R24 - R40 

obtained by regarding R24 and R40 as the spaces of 3-tuples and 5-tuples of Caley 
numbers respectively, and using the formula 

h((xo, X1, X2), (Yo, Y1, Y2)) = (zo, Z1, z2, za, Z4) 

with Zk = Li+i-k x.y;. 

6. Topological applications 
Let kl;n denote the k-fold whitney sum of the Hopf bundle l;n over RPn , and 

gd(kl;n) its geometrical dimension. It is known [4, Proposition 3] that the exist­
ence of a nonsingular bilinear map Rn+i X Rr - Rk implies gd(kl;n) =s; k - r. 
Applying (5.5), one may conclude 

(6.1) PROPOSITION. Ifn = dh + d - 1, thengd (dkl;n) =s; dh ~ r(k, h), where 
d = 1, 2, 4 or 8. 

In some special cases, the estimate on gd(kl;n) obtained in this proposition can 
be combined with· some results of Gitler [3, Theorem 2.1] to yield the exact 
value of the geometrical dimension in question. 

Let 2N be a sufficiently large power of 2. By Adams [1, Theorem 7.4], 2Nl;n 
is a trivial bundle, so v(RPn) = (2N - n - l)f;n is a stable normal bundle for 
RPn. A theorem of Hirsch (see, for example, Sanderson [6, Theorem 2.1]) as­
serts that RPn immerses in Rn+\e > O) if and only if e 2::: gd(v(Pn)). Our 
estimates on gd(kl;n) now give 

(6.2) THEOREM. Let d = 1, 2, 4 or 8. If n ~ 1, 3, 7 and n + 1 = 0 (mod d), 
then RPn immerses in R2n-a(n)-fJ(d), where f3(d) = (d - 1) - a(d - 1). 

Proof. Write n + I = d(h + 1) and put k = (2N/d) - h - 1 in (6.1) to 
obtain 

gd(v(RP"')) :s; dh - r(k, h) 

= dh - a(h) 

= n - a(n) - [(d - 1) ;_ a(d - 1)]. 

All the claimed immersions follow. 
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7. Relation with the construction of Milgrarn. [5]. 

In terms of the operators Sb and Ta on F"' it is possible to restate the main 
result of [5, §2 and Theorem 6] essentially as the following 

(7.1) THEOREM (Milgram). Let n = 2'. Let A1 , A 2 , • • • , A 1 be an enumera­
tion of the set 

mi = {T,TaSb-nPn I -d < a < v(b); 1 :s;; b < 2n}, 

considered as a set of operators from Fn to itself. Then 
(i) (w, wA;) = 0 for each w E Fn; 

(ii) If w E Fn is non-zero, there are always dn - 1 independent vectors among 
{wA;h<i<t; • 

(iii) _t_=. Card mi= 2 dn - r - (d + 1). 

We shall sketch a proof of this theorem which avoids an unpleasant double 
induction used in [5]. Let A; = TrTaSb-nPn. If wA; = 0, (i) is trivially true. 
Otherwise let wTr = x E Fn. In the notation of ( 4.1), the vectors xTr+i, xTaSb 
belong to 'Eor+i and Eor+i respectively, and so project to mutually orthogonal 
vectors in Vo'+1 ( = F2n). Since xTr+i has zeros at its first n components, ortho­
gonality is not destroyed by further projecting into F(n, 2n], resulting (as can 
be easily checked) in the image vectors xT,Sn and xTaSb-nPnSn respectively. 
Since Sn preserves inner product, (w, wA;) = 0 follows. 

To establish (ii) notice that if we put wTr = x as before, the set { wA;Snh<;<t 
contains as a subset the E/ of ( 4.1). Since Ei' is linearly independent by- as­
sertion ( 3,) in ( 4.1), it suffices to show that Card E/ = dn - 1. This is done 
by a counting process, and we omit the details. Likewise, (iii) is obtained by 
direct counting. 

Finally, Milgram observed that if F is not the Cayley numbers, each A; is 
F-linear when Fn is considered as a left vector space over F. This leads to im­
mersion results for complex and quaternionic projective spaces, as given in [5, 
Theorem 2]. 
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