THE MOD p HOMOTOPY TYPE OF *BSO* **AND** *F /PL*

BY FRANKLIN P. PETERSON*

1. Introduction

Let p be an odd prime. In this paper we give some characterizations of the mod p homotopy type of *BSO.* As one consequence, we show that *BSO* is decomposable into a product of $\frac{p-1}{2}$ indecomposable spaces (mod p). As another consequence, we show that *F /PL* is of the same mod *p* homotopy type as *BSO.* This was proved by Sullivan [9] by different methods in his work on the Hauptvermutung, but we believe our proof gives a different insight into the problem. We wish to thank D. Sullivan for many helpful discussions during the period when these theorems were proved.

2. Statements of Results

Let p be an odd prime. Let C_p be the class of groups of finite order prime to p. A map, $f: X \to Y$, in the category of simply connected CW-complexes, is called a mod *p* homotopy equivalence if $f_* : \pi_*(X) \to \pi_*(Y)$ is a C_p -isomorphism, or, equivalently, if $f^*: H^*(Y) \to H^*(X)$ is an isomorphism.¹ The equivalence relation generated by this notion is called "being of the same mod p homotopy type" and is written $X \sim_p Y$.

We now give two theorems, each of which characterizes the mod *p* homotopy type of *BSO.*

THEOREM 2.1. *Let X be a space such that*

1)
$$
\pi_i(X) = \begin{cases} 0 & i \not\equiv 0(4) \\ Z & i \equiv 0(4) \end{cases} \bmod C_p
$$

and

2)
$$
H^{4t+1}(X;Z) \in C_p, t \geq 1. \quad \text{Then} \quad X \sim_p BSO.
$$

Let $X^{(i)}$ be the i^{th} part of the Postnikov septem for X. That is, $\mathbf{\Xi} \; p^{(i)} \colon X \to X^{(i)}$ such that $p_{\mathcal{S}}^{(i)}: \pi_j(X) \to \pi_j(X^{(i)})$ is an isomorphism if $j \leq i$ and $\pi_j(X^{(i)}) = 0$, $j > i$. Let $X_{(i)} =$ fibre $(X \to X^{(i-1)})$. Our second characterization involves the k-invariants of $X_{(i)}$.

THEOREM 2.2. *Let X be a space such that*

1)
$$
\pi_i(X) = \begin{cases} 0 & i \not\equiv 0(4) \\ Z & i \equiv 0(4) \end{cases} \bmod C_p
$$

^{*} The author was partially supported by the U.S. Army Research Office (Durham) and

¹ All cohomology groups have Z_p coefficients unless otherwise stated.

and

2) the first possible p-torsion k-invariant of $X_{(4t)}$, namely that in $H_{(4t)}^{4t+2p-1}(X^{4t+2p-6})$; $Z) \approx Z_p \pmod{C_p}$ is non-zero, $t \geq 1$. *Then* $X \sim_{p} BSO$.

A space X is called decomposable mod *p* if $X \sim_p X_1 \times X_2$ with $X_1 \nsim_p pt$. Our next theorem shows that *BSO* is decomposable mod p if $p > 3$ and gives the decomposition into indecomposable factors.

THEOREM 2.3.² *There exists an indecomposable* (mod p) *space* Y_p *such that*

$$
BSO \sim_p \prod_{i=0}^{(p-1)/2-1} \Omega^{4i} Y_p
$$

and

$$
BU \sim_p \prod_{i=0}^{p-2} \Omega^{2i} Y_p.
$$

Furthermore, these mod *p homotopy equivalences preserve the* mod *pH-space strucure.*

Recall that
$$
\pi_i(F/PL) = \begin{cases} 0 & i \equiv 1(2) \\ Z_2 & i \equiv 2(4) \\ Z & i \equiv 0(4). \end{cases}
$$

Sullivan [9] has shown that F/PL is of the same mod 2 homotopy type as a product of Eilenberg-MacLane spaces except for a non-zero $k^5(F/PL) \in H^5(Z_2)$, $2; Z$) = Z_4 which is twice the generator. He has also shown that $F/PL \sim_p BSO$ if p is odd. Clearly F/PL satisfies hypothesis 1) of theorem 2.2. In section 5, we show it also satisfies hypothesis 2) and obtain the following corollary.

COROLLARY 2.4. If p is an odd prime, then $F/PL \sim_p BSO$. Furthermore, the mod *p homotopy equivalence can be chosen to be an H-map.*

3. Proofs of theorems 2.1 **and** 2.2.

Let $k^{4t+1}(BSO) \in H^{4k+1}(BSO^{(4t-1)}; Z)$ be the k-invariant of *BSO*. It is wellknown that the odd primary part of this group is cyclic and that some power of 2 times $k^{4t+1}(BSO)$ generates the odd primary part. Form a new space B_p with

$$
\pi_i(B_p) = \begin{cases} 0 & i \neq 0 \, (4) \\ Z & i = 0 \, (4) \end{cases}
$$

and $k^{4t+1}(B_p)$ the generator of the p-primary part of $H^{4t+1}(B_p^{(4t-1)}; Z)$. Let X satisfy the conditions of theorem 2.1, we will show that there exists an $f: X \rightarrow$ B_p such that f^* is an isomorphism on H^* ().

Consider the following diagram.

² This theorem was proved independently by J. F. Adams and D. **W.** Anderson (see **[1]).**

Find $f_1: X \to K(Z, 4)$ such that $f_1^*: H^4(Z, 4) \to H^4(X)$ is an isomorphism. Assume we have lifted f_1 to $f_{t-1}: X \to B_p^{(4t-4)}$. The obstruction to lifting f_{t-1} to f_t is $f_{t-1}^*(k^{4t+1}(B_p)) \in H^{4t+1}(K; Z)$. Since $H^{4t+1}(X; Z) \in C_p$ and $k^{4t+1}(B_p)$ is of order a power of p, this obstruction is 0 and we may lift f_1 to $f = f_{\infty}: X \to B_p$.
We now wish to show $f^{(4t)}: X^{(4t)} \to B_p^{(4t)}$ is an isomorphism on $H^*(\)$ by induction on t. Consider the following diagram.

$$
K(Z, 4t) \xrightarrow{\qquad g \qquad} K(Z, 4t)
$$
\n
$$
\downarrow i \qquad \qquad \downarrow i
$$
\n
$$
X^{(4t)} \xrightarrow{\qquad f^{(4t)}} B_p^{(4t)}
$$
\n
$$
X^{(4t-4)} \xrightarrow{f^{(4t-4)}} B_p^{(4t-4)} \rightarrow K(Z, 4t+1)
$$

We assume $f^{(4t-4)*}$ is an isomorphism on $H^*($). $H^{4t+1}(B_p^{(4t-4)}; Z) \approx Z_{pZ(t)}$
(mod C_p) with a generator $x = k^{4t+1}(B_p)$. $f^{(4t-4)*}$ is a C_p -isomorphism on $H^*($; Z), hence $H^{4t+1}(X^{(4t-4)}; Z) \approx Z_{pZ(t)}$, the isomorphism being given by $f^{(4t-4)*}$.
Let $sx = k^{4t+1}(X)$. Since $H^{4t}(X; Z) \in C_p$, $s \neq 0(p)$. Let $\iota \in H^{4t}(Z, 4t; Z)$. Then $g^*(\iota) = a\iota$. By naturality with transgression, we have $\tau g^*(\iota) = asx = f^{(4t-4)*}\tau(\iota)$
= x. Hence, if $x \neq 0$, $a \neq 0(p)$ and g^* is an isomorphism on $H^*(\iota)$. Thus $f^{(4t)*}$ is an isomorphism on $H^*($ and y is an isomorphism on H (b). Thus $f^{(4t)*}$ is an isomorphism on $H^*($ and the induction is complete. If however $x = 0$, i.e. $Z_{p\emptyset^{(t)}} = 0$, then $B_p^{(4t)} \sim_p B_p^{(4t-4)} \times K(Z, 4t)$ can be extended to a new f_{∞} by the above argument and the new g is such that $g^*(\iota) \neq 0(p)$. This again completes the induction step.

Since BSO satisfies the conditions of theorem 2.1, we have f: BSO \rightarrow B_p. Hence $X \sim_{p} BSO$, and the proof of theorem 2.1 is complete.

We now turn to the proof of theorem 2.2. Let X satisfy the conditions of theorem 2.2.

 $X^{(2p-2)} \sim_{p} K(Z, 4) \times K(Z, 8) \times \cdots \times K(Z, 2p-2) \sim_{p} B_{p}^{(2p-2)}$

by dimensional reasons. Consider the following diagram.

tension $f_{(p-1)/2} : X \to B_p^{-(2p-2)}$ such that $f_{(p-1)/2}^{-(2p-2)*}$ is an isomorphism on $H^*(-)$. Inductively, assume that there exists an extension $f_{t-1}: X \to B_p$ ^(44–4) such that f_{t-1} ^{(4t-4)*} is an isomorphism on H^* (b), and show that f_t exists. Consider $X_{(4t-2p+2)}$ $^{(4t-4)} \xrightarrow{j} X$ $^{(4t-4)}$, $j^*(k^{4t+1}(X)) \neq 0 \in Z_p$ by hypothesis. Hence $k^{4t+1}(X) =$ $sx \in Z_{p\emptyset^{(t)}},$ where x is a generator and $s \not\equiv 0 (p)$, and $Z_{p\emptyset^{(t)}} \approx H^{4t+1}(X^{(4t-4)}; Z)$ $\approx H^{4t+1}(B_p^{(4t-4)}; Z) \pmod{C_p}$. Since $s \neq 0(p), H^{4t+1}(\widetilde{X}; Z) \in C_p$ and we may extend f_{t-1} to f_t . The proof that $f_t^{(4t)*}$ is an isomorphism is the same as in the proof of theorem 2.1 except that we know $x \neq 0$. This proves theorem 2.2,

4. Construction of Y_p

In order to prove theorem 2.3, we want to construct a space Y_p such that 1)

$$
\pi_i(Y_p) = \begin{cases} 0 & i \neq 0(r) \\ Z & i \equiv 0(r), \end{cases}
$$

where $r = 2p - 2$, and 2) the first k-invariant of $Y_{p(r)}$, namely $k^{(rt+2p-1)} \in$ H^{r} ^{(t+1)+1} $(Y_{p(rt)}^{r}$ ^(rt); $Z) \approx Z_p$ (mod C_p) is non-zero. To do this, we use the "cobordism with singularities" theory of Sullivan [10], the main result of which, we now state.

Let $\Omega_*(K)$ be a multiplicative bordism theory with coefficients $\Omega_* = \Omega_*(pt.)$ and associated with a spectrum *M*. Let $I \subset \Omega_*$ be an ideal with a sequence of generators (c_1, c_2, \cdots) such that c_{i+1} is not a zero divisor in $\Omega_*/(c_1, \cdots, c_i)$. Then there is a multiplicative bordism theory with singularities, $\Omega_* (K)$, with coefficients $\Omega_* = \Omega_* \setminus (c_1, \cdots)$, associated with a spectrum M', and a map $f: M \to M'$ inducing $\Omega_* \to \Omega_*'$.

In our application, we set $\Omega_* = \Omega_*^U = X[c_1, c_2, \cdots],$ dim $c_i = 2i$ (see [5]), and $I = (c_1, c_2, \cdots, c_{p-1}, \cdots)$. Then $\Omega_{\ast} = Z_2[c_{p-1}]$. Assume *M'* is an Ω -spectrum

(see [11]) and define $Y_p = M_0'$, the first term of M'. Clearly Y_p satisfies 1) above. In order to prove 2), we first note that M' is periodic of period $r = 2p - 2$. Let $c: S^r \to M'$ represent c_{p-1} . Consider the composite $S^r \wedge M' \to M' \wedge M' \to M'$ and its adjoint $g:M' \to \Omega^r(M')$. $g_{\sharp}:\pi_{\ast}(M') \to \pi_{\ast}(\Omega^r(M'))$ sends $(c_{p-1})^d$ into $(c_{n-1})^{a+1}$ and hence is an isomorphism. Thus $M' \sim \Omega^{r}(M')$.

LEMMA 4.1. The first k-invariant $k^{r+1}(M') \in H^{r+1}(K(Z, 0); Z) \approx Z_p \pmod{C_p}$ is *non-zero.*

Before proving lemma 4.1, we conclude the proof of theorem 2.3. By lemma 4.1 and periodicity, the first k-invariants of $M_{(tr)}'$ are all non-zero. Hence Y_p satisfies 2) above. Consider the product $\prod_{i=0}^{(p-1)/2-1} \Omega^{i} (Y_p)$. It is easy to check that it satisfies the conditions of theorem 2.2 and hence *BSO* $\sim_p \prod_{i=0}^{(p-1)/2-1} \Omega^{4i}(Y_p)$. For *BU*, one needs a theorem analogous to theorem 2.2; we leave the details to the reader. To show that the H -space structures are the same mod p , apply the functor Ω^4 to the above equation.

We now prove lemma 4.1. Consider the map $f:MU \to M'$. If lemma 4.1 is false, then there exists $u \in H^r(M')$ such that $c^*(u) \neq 0 \in H^r(S')$, $c: S' \to M'$ representing c_{p-1} . But $c = f\bar{c}$, $\bar{i}: S' \to M$ representing c_{p-1} . Hence $c^*(f^*(u)) \neq 0$. But Milnor has shown that all mod p Chern numbers of c_{p-1} are zero [6]. This is a contradiction.

5. *F/PL*

In this section, we show that F/PL satisfies condition 2) of theorem 2.2 and prove corollary 2.4. In [10], Rourke gives a sketch of a proof of the fact that $\Omega^4(F/PL) \sim_p F/PL$ without using the result that $F/PL \sim_p BSO$. Hence to check condition 2) of theorem 2.2, we need only show that

$$
k^{2p+3}(F/PL) \in H^{2p+3}(F/PL \stackrel{(2p+1)}{\ldots}; Z) \approx Zp \, (\text{mod } C_p)
$$

is non-zero.

 F/PL is the fibre of the map $BSPL \rightarrow BSF$. Using known results about $H^*(BSPL)$ and $H^*(BSF)$ (c.f. [12]), it is easy to check this fact for $p = 3$. The cases $p > 3$ are a bit more complicated.

LEMMA 5.1. Assume $p > 3$. Then $\pi_{2p+2}(BSO) \rightarrow \pi_{2p+2}(BSPL)$ is an iso*morphism* mod C_p .

Proof. Consider the exact sequence of Hirsch-Mazur [3], $0 \rightarrow \pi_{2p+2}(BSO) \rightarrow$ $\pi_{2p+2}(BSPL) \to \Gamma_{2p+1} \to 0$, where Γ_{2p+1} is in an exact sequence $0 \to \theta^{2p+1}(\partial \pi) \to$ $\Gamma_{2p+1} \to \mathrm{Coker}\,J_{2p+1} \to 0.$ Coker $J_{2p+1} \in C_p$, so we need only show $\theta^{2p+1}(\partial \pi) \in C_p$. Now $\theta^{2p+1}(\partial \pi)$ is cyclic of order $\epsilon_m 2^{2m-2} (2^{2m-1} - 1)$ num $(4B_m/m)$, where $m = (p + 1)/2$ and $\epsilon_m = 1$ or 2 [4]. We must show that $p \nmid (2^p - 1)$ and $p \nmid \text{num } (B_m)$. Since $2^{p-1} \equiv 1(p)$, $2^p \equiv 2(p)$, so $p \nmid (2^p - 1)$. $B_1 \not\equiv 0(p)$, by inspection. A special case of Kummer's congruences [5] (cf. p. 276 of [7]) is that $B_1/2 \pm B_{1+(p-1)/2/(p+1)} \equiv 0$ (p) if $p > 3$, hence $p \nmid \text{num } (B_{(p+1)/2})$ if $p > 3$.

We now conclude the proof of the fact that *F/PL* satisfies condition 2) of theorem 2.2. We use the naturality of k -invariants with respect to the natural

 $\text{map } BSO \to BSPL.$ $K^{2p+3}(BSPL) \in H^{2p+3}(BSPL \xrightarrow{(2p+1)} \pi_{2p+2}(BSPL))$ and $k^{2p+3} (BSO) \in H^{2p+3} (BSO^{(2p+1)}; \pi_{2p+2} (BSO))$ both have the same image in $H^{2p+3} (BSO^{(2p+1)}; \pi_{2p+2} (BSPL))$. $k^{2p+3} (BSO) \neq 0$, hence by lemma 5.1, its image in $H^{2p+3}(BSO^{(2p+1)}; \pi_{2p+2}(BSPL))$ is $\neq 0$ also. Hence $k^{2p+3}(BSPL) \neq 0$. We now do a similar argument with the map $F/PL \rightarrow BSPL$. $k^{2p+3}(BSPL) \in H^{2p+3}$. $(BSPL\ ^{(2p+1)};\pi_{2p+2}(BSPL)) \text{ and } k^{2p+3}(F/PL)\in H^{2p+3}(F/PL\ ^{(2p+1)};\pi_{2p+2}(F/PL))$ have the same image in $H^{2p+3}(F/PL^{(2p+1)}; \pi_{2p+2}(BSPL))$. Since $k^{2p+3}(BSPL) =$ $\lambda \beta P^1(u_1), \lambda \neq 0(p)$, by the above, its image in $H^{2p+3}(F / PL^{(2p+1)}; \pi_{2p+2}(BSPL))$ is also $\lambda \beta P^{1}(\iota_{4}) \neq 0$ because $\iota_{4} \to \iota_{4}$ if $p > 3$. Hence $k^{2p+3} (F/PL) \neq 0$ also, and condition 2) of theorem 2.2 is satisfied.

A proof similar to that of theorem 2.2 proves the following theorem.

THEOREM 5.2. Let X be a space such that

1)
$$
\pi_i(X) = \begin{cases} 0 & i \neq 2(4), i = 2 \\ Z & i = 2(4), i > 2 \end{cases} \mod C_p
$$

and

2) the first possible p-torsion k-invariant of $X_{(4t+2)}$ is non-zero, $t \geq 1$. Then $X \sim_n \Omega^{-2}(BSO) = \Omega^2(BSO_{(8)}).$

Boardman and Vogt [2] have shown that there is a space $B^2(F/PL)$ such that $\Omega^2 B^2(F/PL) = F/PL$ as *H*-spaces. Clearly $B^2(F/PL)$ satisfies the conditions of theorem 5.2. Hence $F/PL = \Omega^2 B^2 (F/PL) \sim_p \Omega^2 \Omega^2 (BSO_{(8)}) = \Omega^4 (BSO_{(8)}) =$ BSO, where all maps are H-maps. This concludes the proof of corollary 2.4.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

REFERENCES

- [1] **D. W.** ANDERSON and M. MEISELMAN, *Cohomology operations in K-theory,* to appear.
- **[2] J. M.** BOARDMAN and R. M. VoGT, *Homotopy-everything H-spaces,* Bull. Amer. Math. Soc., **74** (1968), 1117-22.
- [3] M. W. HIRSCH and B. MAZUR, *Smoothings of piecewise linear manifolds*, Cambridge Univ. (mimeographed), 1964.
- [4] M.A. KERVAIRE and J. W. MILNOR, *Groups of homotopy spheres,* I. Ann. of Math., **77** (1963), 504-37.
- [5] E. F. KUMMER, *Uber eine algemeine Eigenschaft der rationalen Entwicklungskoejfizienten einer bestimmen Gattung analytischer Funktionen,* J. Reine Angew. Math., **41** (1851), 368-72.
- [6] **J.** W. MILNOR, *On the cobordism ring* O* *and a complex analogue,* I, Amer. **J.** Math., **82** (1960), 505-21.
- [7] N. NIELSON, Traite elementaire des nombres de Bernoulli, Gauthier-Villars, Paris, 1923.
- (8] C. P. RoURKE, *The Hauptvermutung according to Sullivan,* Mimeographed notes, Institute for Advanced Studies, Princeton, N. J.
- [9] D. SULLIVAN, to appear.
- [10] D. SULLIVAN, to appear.
- [11] G. W. WHITEHEAD, *Generalized homology theories,* Trans. Amer. Math. Soc., **102** (1962), 227-83.
- [12] R. WILLIAMSON, *Cobordism of combinatorial manifolds,* Ann. of Math., **83** (1966), 1-33.