THE MOD p HOMOTOPY TYPE OF BSO AND F/PL

By FrankuiN P. PeErERson*

1. Introduction

Let p be an odd prime. In this paper we give some characterizations of the mod p
homotopy type of BSO. As one consequence, we show that BSO is decomposable
p—1

2
we show that F'/PL is of the same mod » homotopy type as BSO. This was proved
by Sullivan [9] by different methods in his work on the Hauptvermutung, but we
believe our proof gives a different insight into the problem. We wish to thank
D. Sullivan for many helpful discussions during the period when these theorems
were proved.

into a product of indecomposable spaces (mod p). As another consequence,

2. Statements of Results

Let p be an odd prime. Let (), be the class of groups of finite order prime to p.
A map, f: X — Y, in the category of simply connected CW-complexes, is called a
mod p homotopy equivalence if fg : 7% (X) — 7% (Y) is a Cyp-isomorphism, or,
equivalently, if f*: H*(Y) — H*(X) is an isomorphism." The equivalence rela-
tion generated by this notion is called “being of the same mod p homotopy type”
and is written X ~, Y.

We now give two theorems, each of which characterizes the mod » homotopy
type of BSO.

TuEOREM 2.1. Let X be a space such that

1) Wi(X) — {% Z z ggi;} mod Cp
and
2) H*™(X;Z) € Cyp,t > 1. Then X ~, BSO.

Let X “ be the ™ part of the Postnikov septem for X. Thatis, I p ?: X - X @
such that pg ”: 7;(X) — m;(X ) is an isomorphism if 7 < ¢ and =;(X ) = 0,
j > 1. Let X = fibre (X — X “™). Our second characterization involves the
k-invariants of X .

THEOREM 2.2. Let X be a space such that
_ _Jo 7 % 0(4)
1) m(X) -—{Z ;= 0(4)} mod C,

* The author was partially supported by the U. S. Army Research Office (Durham) and
the National Science Foundation.
1 All cohomology groups have Z, coefficients unless otherwise stated.
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and

2) the first possible p-torsion k-invariant of Xuy, namely that in
Ha ™7 1(X @420, 7y ~ Z, (mod C,) 4s non-zero, t > 1.
Then X~ , BSO.

A space X is called decomposable mod p if X ~, X7 X X, with X; ~, pt.
Our next theorem shows that BSO is decomposable mod p if p > 3 and gives the
decomposition into indecomposable factors.

TurorEM 2.3.7 There exists an indecomposable (mod p) space Y, such that

BSO ~p S:EI)IZ—I QHY?
and
BU ~, [[1=2 927, .

Furthermore, these mod p homotopy equivalences preserve the mod p H-space struc-
ure.

0 7= 1(2)
Recall that =;(F/PL) =<Z, 1= 2(4)
zZ 7= 0(4).

Sullivan [9] has shown that F/PL is of the same mod 2 homotopy type as a
product of Eilenberg-MacLane spaces except for a non-zero k*(F/PL) ¢ H*(Z,,
2; Z) = Z, which is twice the generator. He has also shown that #/PL ~, BSO
if p is odd. Clearly F/PL satisfies hypothesis 1) of theorem 2.2. In section 5, we
show it also satisfies hypothesis 2) and obtain the following corollary.

CoroLLARY 2.4. If p is an odd prime, then F/PL ~, BSO. Furthermore, the
mod p homotopy equivalence can be chosen to be an H-map.

3. Proofs of theorems 2.1 and 2.2.

Let k™ (BSO) € H*"(BSO “™; Z) be the k-invariant of BSO. It is well-
known that the odd primary part of this group is cyclic and that some power of 2
times k***' (BSO) generates the odd primary part. Form a new space B, with

_J0 1#04)

and k*"(B,) the generator of the p-primary part of H** (B, “™; Z). Let X
satisfy the conditions of theorem 2.1, we will show that there exists an f: X —
B, such that f* is an isomorphism on H*( ).

Consider the following diagram.

2 This theorem was proved independently by J. F. Adams and D. W. Anderson (see [1]).
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B,
:

|
K(Z, 4:t) — Bp(4t)

// l
x —hs g(z, 4)

Find fi : X — K(Z, 4) such that f,*:H*(Z, 4) — H*(X) is an isomorphism. As-
sume we have lifted /i to fi1: X — B, *™®. The obstruction to lifting f,_y to
fiis fia* & (B,)) € H*Y(K; Z). Since H*"' (X; Z) € C, and k' (B,) is of
order a power of p, this obstruction is 0 and we may lift fy to f = fo: X — B,.
~ We now wish to show f“?:X “? — B, “? is an isomorphism on H*( ) by in-
duction on ¢. Consider the following diagram.

!
B,*™® S K(Z, 4 + 1)
7|

Kz, 4) —4— K(Z, 4)
(lit;i (4t) (lu)
X f B,

X(Jit—o fa— Bp(‘“i;“) — K(Z,4 + 1)

We assume f “~®* is an isomorphism on H*( ). H**(B,“™; Z) = Z 4
(mod C,) with a generator z = & (B,). f * **isa C —1somorph1sm on H*( ;
Z), hence H** (X “®; Z) &~ Z, 5 , the isomorphism being given by f“~ —o%
Let sz = K (X). smceH‘”(X Z) € Cp,s £ 0(p). Let € HY(Z,4; Z). Then
¢* (1) = av. By naturality with transgression, we have rg* (1) = asz = f“~ %)
= z. Hence, if z = 0, a # O(p) and ¢* is an isomorphism on H*( ). Thus
F®°* is an isomorphism on H*( ) and the induction is complete. If however
z = 0,ie. Z,gu = 0, then B, “? ~, B, ™ x K (Z,4) and X 0 ~, X @
X K(Z,4t). Lety € H“‘(X s, Z)besuchthatz (y) = r,7 £ 0(p). Ifg () =
0(p), change f*° by a map X ** — K(Z, 4t) realizing y. Then the new f “?
can be extended to a new f, by the above argument and the new ¢ is such that
g% (1) # 0(p). This again completes the induction step.

Since BSO satisfies the conditions of theorem 2.1, we have f: BSO — B,.
Hence X ~, BSO, and the proof of theorem 2.1 is complete.

We now turn to the proof of theorem 2.2. Let X satisfy the conditions of
theorem 2.2.

X®P ~ K(2,4) X K(Z,8) X -+« X K(Z,2p — 2) ~, B,*™

by dimensional reasons. Consider the following diagram.
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K(Z,4) > K(Z,4)

Let fi:X — K (Z, 4) be as before. By the above comments there exists an ex-
tension fp—1y2: X — B, ®*7® suchi that fep_gy @ D% s an isomorphism on H* (" ).
Inductively, assume that there exists an extension f;_1: X — B, * ™ such that
foor “* is an isomorphism on H*( ), and show that f; exists. Consider
Xr—oprny 70 L X @0 7* %**H (X)) # 0 € Z, by hypothesis. Hence K*1 (X)) =

sz € Z,gu , where z is a generator and s 5 0(p), and Z, 5 ~ H*" (X “7; Z)
~ H* l(B “9; Z) (mod C,). Since s 5 0(p), H"™(X; 7) ¢ C, and we may
extend fy to f. The proof that f; “** is an 1s0morphlsm is the same as in the
proof of theorem 2.1 except that we know & 5% 0. This proves theorem 2.2.

4. Construction of Y,
In order to prove theorem 2.3, we want to construct a space Y, such that 1)

0 15 0(r)
Z = 0(r),

where r = 2p — 2, and 2) the first k-invariant of Yoer , namely k 0 ¢
H M (Y, 00" Z) &~ Z, (mod C,) is non-zero. To do this, we use the “co-
bordism with smgula.rltles” theory of Sullivan [10], the main result of whlch we
now state.

Let Q4 (K) be a multiplicative bordism theory with coefficients Q4 = Q4 (pt.)
and associated with a spectrum M. Let I C Q4 be an ideal with a sequence of
generators (c1, ¢a, -+ ) such that ¢ is not a zero divisor in Q47 (cl , ty Ci)l
Then there is a multlphcatwe bordism theory with singularities, Q* (K), with
coefficients Qx = Qx(c1, ---), associated with a spectrum M’, and a map
fiM— M inducing Q4 — Q.

In our apphcatlon, we set SZ* = Sl* = Xla, ¢, -+ ] d1m ¢ = 2¢ (see[5]), and

= (c1, €2, ***, bpa, +-+). Then Q4 = Zs[c,1]. Assume M’ is an Q-spectrum

mi(¥p) = {
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(see [11]) and define Y, = M, the first term of M. Clearly Y, satisfies 1) above.
In order to prove 2), we first note that M’ is periodic of period r = 2p — 2.
Let ¢:8” — M’ represent c,_; . Consider the composite 8" A M’ — M A M’ — M’
and its adjoint g: M — @ (M'). gyime(M') — 7@ (M')) sends (c,1)” into
(cp—1)*" and hence is an isomorphism. Thus M’ ~ Q" (M").

Levma 4.1. The first k-invariant k™ (M') € H (K (Z,0); Z) ~ Z, (mod C,)
18 non-zero.

Before proving lemma, 4.1, we conclude the proof of theorem 2.3. By lemma 4.1
and periodicity, the first k-invariants of M«  are all non-zero. Hence Y, satisfies
2) above. Consider the product [[{Z "> @*(Y,). It is easy to check that it
satisfies the conditions of theorem 2.2 and hence BSO ~, [[{Z"" @*(Y,).
For BU, one needs a theorem analogous to theorem 2.2; we leave the details to
the reader. To show that the H -space structures are the same mod p, apply the
functor Q* to the above equation.

We now prove lemma 4.1. Consider the map f: MU — M’. If lemma 4.1 is
false, then there exists w € H" (M) such that ¢*(u) # 0 € H'(S7), ¢:8 — M’
representing c,—; . But ¢ = f¢, 1:8" — M representing c,_; . Hence ¢* (f* (1)) # 0.
But Milnor has shown that all mod p Chern numbers of ¢,_; are zero [6]. This is a
contradiction.

5. F/PL

In this section, we show that F/PL satisfies condition 2) of theorem 2.2 and
prove corollary 2.4. In [10], Rourke gives a sketch of a proof of the fact that
Q*(F/PL) ~, F/PL without using the result that ¥/PL ~, BSO. Hence to
check condition 2) of theorem 2.2, we need only show that

"R (F/PL) € H*"®(F/PL*™; Z) ~ Zp(mod C,)

is non-zero.

F/PL is the fibre of the map BSPL — BSF. Using known results about
H*(BSPL) and H*(BSF) (c.f. [12]), it is easy to check this fact for p = 3. The
cases p > 3 are a bit more complicated.

Lemma 5.1. Assume p > 3. Then mopr2(BSO) — wap2(BSPL) 18 an iso-
morphism mod C, .

Proof. Consider the exact sequence of Hirsch-Mazur [3], 0 — myp2(BSO) —
Tapr2 (BSPL) — Typy1 — 0, where Ty is in an exact sequence 0 — 6771 (97) —
T'sp41 — Coker Jypq1 — 0. Coker Jopq1 € Cp , 50 we need only show 62 (9x) € C,.
Now 6" (or) is cyclic of order €2 (2™ — 1)num (4Bn/m), where
m= (p+1)/2 and e, =1 or 2 [4]. We must show that p+ (2° — 1) and
p 4 num (B,,). Since 2°~ = 1(p), 2° = 2(p), sop ¥ (2° — 1). B # 0(p), by
inspection. A special case of Kummer’s congruences [5] (cf. p. 276 of [7]) is that
B1/2 = Biypupin = 0(p) if p > 3, hence p { num (Biye) if p > 3.

We now conclude the proof of the fact that F/PL satisfies condition 2) of
theorem 2.2. We use the naturality of k-invariants with respect to the natural
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map BSO — BSPL. K***(BSPL) € H**"(BSPL **™; my,.,2(BSPL)) and
k2P (BSO) € H™™(BSO ®**V; 1y,,5(BSO)) both have the same image in
H®(BSO ®*™; 1y, (BSPL)). k"™ (BSO) 5 0, hence by lemma 5.1, its image
in H#*(BSO ***; 15,42 (BSPL)) is #0 also. Hence k**™* (BSPL) 5 0. We now
do a similar argument with the map F/PL — BSPL. k***(BSPL) ¢ H***.
(BSPL ®**; 13,15 (BSPL)) and ¥?** (F /PL) € H*™?(F/PL ®**; 1y,,,(F/PL))
have the same image in H*?* (F/PL ***™; 1,,,, (BSPL)). Since x***(BSPL) =
MP' (1), X £ 0(p), by the above, its image in H**"*(#/PL **™; r,,,, (BSPL))
is also A8P" (1) # O because u — u if p > 3. Hence k**™*(F/PL) s 0 also, and
condition 2) of theorem 2.2 is satisfied.
A proof similar to that of theorem 2.2 proves the following theorem.

TuEoREM 5.2. Let X be a space such that

1) ri(X) = {% i ggi;: : g} mod C,

and
2) the first possible p-torsion k-invariant of X use) 18 non-zero, t > 1. Then
X ~, 27 %(BS0) = @*(BSOg)).

Boardman and Vogt [2] have shown that thereis a space B*(F/PL) such that
Q’B*(F/PL) = F/PL as H-spaces. Clearly B*(F/PL) satisfies the conditions of
theorem 5.2. Hence F/PL = Q'B*(F/PL) ~, Q’@*(BSOg) = 9'(BSOg) =
BSO, where all maps are H-maps. This concludes the proof of corollary 2.4. -
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