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1. Introduction 
Let p be an odd prime. In this paper we give some characterizations of the mod p 

homotopy type of BSO. As one consequence, we show that BSO is decomposable 

into a product of p ; 1 indecomposable spaces (mod p ). As another consequence, 

we show that F /PL is of the same mod p homotopy type as BSO. This was proved 
by Sullivan [9] by different methods in his work on the Hauptvermutung, but we 
believe our proof gives a different insight into the problem. We wish to thank 
D. Sullivan for many helpful discussions during the period when these theorems 
were proved. 

2. Statements of Results 

Let p be an odd prime. Let CP be the class of groups of finite order prime top. 
A map,f: X - Y, in the category of simply connected CW-complexes, is called a 
mod p homotopy equivalence if f 1 : 1r.(X) - 1r.(Y) is a Gp-isomorphism, or, 
equivalently, if f*: H* (Y) - H* (X) is an isomorphism. 1 The equivalence rela­
tion generated by this notion is called "being of the same mod p homotopy type" 
and is written X ,..._,P Y. 

We now give two theorems, each of which characterizes the mod p homotopy 
type of BSO. 

THEOREM 2.1. Let X be a space such that 

{o i c1, o(4)} 
I) 1r,(X) = z i = 0( 4) mod Cp 

and 

2) IJ41+1(X; Z) E Cp, t ~ I. Then X ,..._,p BSO. 

Let X w be the ith part of the Postnikov septem for X. That is, 3 p <•>: X -x w 
such that p 1 <•>: 1r;(X) - 1r;(X c,>) is an isomorphism if j ~ i and 1r;(X <•,) = 0, 
j > i. Let Xe,, = fibre (X - X CH>). Our second characterization involves the 
k-invariants of Xe,>. 

THEOREM 2.2. Let X be a space such that 

1) {o i c1, o( 4)} 
1r,(X) = z i = 0(4) mod Cp 

* The author was partially supported by the U.S. Army Research Office (Durham) and 
the N ationaJ Science Foundation. 

1 All cohomology groups have ZP coefficients unless otherwise stated. 
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and 
2) the first possible p-torsion k-invariant of Xc4t>, namely that i"n 

Hc4t/t+ 2p-I (X <41+2p- 6J; Z) ;::::; ZP (mod Gp) is non-zero, t ~ I. 
Then Xr-,..,p BSO. 

A space Xis called decomposable mod p if X "-'p X1 X X 2 with X1 l"i-Jp pt. 
Our next theorem shows that BSO is decomposable mod p if p > 3 and gives the 
decomposition into indecomposable factors. 

THEOREM 2.3.2 There exists an indecomposable (mod p) space YP such that 

and 

Bu II p-2 0 2iy 
"'1p i=O ,Hi p • 

Furthermore, these mod p homotopy equivalences preserve the mod pH-space struc­
ure. 

Recall that r.(F/PL) -{!, i = 1(2) 
i = 2(4) 
i = 0(4). 

Sullivan [9] has shown that F /PL is of the same mod 2 homotopy type as a 
5 5 • 

product of Eilenberg-MacLane spaces except for a non-zero k (F /PL) E H (Z2 , 

2; Z) = Z4 which is twice the generator. He has also shown that F /PL "-'p BSO 
if pis odd. Clearly F /PL satisfies hypothesis 1) of theorem 2.2. In section 5, we 
show it also satisfies hypothesis 2) and obtain the following corollary. 

CoROLLARY 2.4. If pis an odd prime, then F /PL '""p BSO. Furthermore, the 
mod p homotopy equivalence can be chosen to be an H-map. 

3. Proofs of theorems 2.1 and 2.2. 

Let k4t+1 (BSO) E H 4k·H(BSO <4 t- 1>; Z) be the k-invariant of BSO. It is well­
known that the odd primary part of this group is cyclic and that some power of 2 
times k4t+1 (BSO) generates the odd primary part. Form a new space BP with 

i ~ 0(4) 
i = 0(4) 

and k4H1 (Bp) the generator of the p-primary part of H 41+1 (BP <41-1\ Z). Let X 
satisfy the conditions of theorem 2.1, we will show that there exists anf: X -
BP such that/' is an isomorphism on H*( ). 

Consider the following diagram. 

2 This theorem was proved independently by J. F. Adams and D. W. Anderson (see [1]). 
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BP 
t 

t 
K(Z, 4:t)-+ Bp<41> 

t 
Bp<4H>-+ K(Z, 4t + 1) 

)" t 

// l 
X ~ K(Z, 4) 

Findfi: X-+ K(Z, 4) such thatfi*:H4(Z, 4)-+ H4(X) is an isomorphism. As­
sume we have lifted /1 to /1-1:X-+ BP <41-«>. The obstruction to lifting ft-1 to 
f, isf,_/(k 4*1 (Bp)) E H41+1 (K; Z). Since H41+1 (X; Z) E GP and k41+1 (Bp) is of 
order a power of p, this obstruction is O and we may lift/1 toJ = f.,,:X-+ BP. 
We now wish to show f <41) :X (4t> -+ BP <4t> is an isomorphism on H* ( ) by in­
duction on t. Consider the following diagram. 

K(Z, 4t) --1L.,, K(Z, 4:t) 
ti t 

x<41> J<4t> B (41> 
----'------+ p 

t t 
X(4t-4> J< 4H> Bp C4H> -+ K(Z, 4t + 1) 

We assume f <41-4l* is an isomorphism on H*( ). H41+1 (Bp C4H>; Z) ~ Z,,0 ci> 
(mod Gp) with a generator x = k41+1 (Bp). f <4t-4l* is a Gp-isomorphism on H* ( ; 
Z), hence H4t+I(X <4t-4l; Z) ~ z,,0 c,>, the isomorphism being given by 1<4t-4l*. 

Let sx = k41+1 (X). Since H 41 (X; Z) E Gp, s ¢ 0 (p ). Let, E H41 (Z, 4t; Z). Then 
g* (,) = a,. By naturality with transgression, we have rg* (,) = asx = f <4t-4l*r (,) 
= x. Hence, if x ¢ 0, a ¢ 0 (p) and g* is an isomorphism on H* ( ). Thus 

f C4t> * is an isomorphism on H* ( ) and the induction is complete. If however 
X = O, i.e. z,,0(1) = 0, then BP <4:> ,,.._,p BP <4t-4) X K (Z, 4t) and X <4t> ,,.._,p X C4t-4l 
X K(Z, 4t). Let y E H41(X <41>; Z) be such that i* (y) = r,, r ¢ O(p ). If g*(,) = 
O(p ), change 1<41> by a map X <41> -+ K(Z, 4t) realizing y. Then the new 1<41> 

can be extended to a new f.,, by the above argument and the new g is such that 
g*(,) ¢ O(p). This again completes the induction step. 

Since BSO satisfies the conditions of theorem 2.1, we have f: BSO -+ BP . 
Hence X ,,.._,P BSO, and the proof of theorem 2.1 is complete. 

We now turn to the proof of theorem 2.2. Let X satisfy the conditions of 
theorem 2.2. 

X (2- 2> ,,.._,p K(Z, 4) X K(Z, 8) X • • • X K(Z, 2p - 2) ,,.._,p Bp <2p- 2> 

by dimensional reasons. Consider the following diagram. 
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BP 
l 

X 
l ""'-ft-1 t . 

""' 
B t4t> 

p 

l .. \, l 
x<4t--4> - B (4t-4l 

p 

! ! 

l 
x<2p-'-2>· 

! B c2p-2> 
p 

! ! 
: 
! ! 

K(Z,4) - K(Z,4) 

Let f1:X - K(Z, 4) be as before. By the above comments there exists an ex­
tensionfcp-lJ/2 :X ~ BP <2p-2l such thatf (p-1)/2 <21>-21* is an isomorphism on if*( ). 
Inductively, assume that there exists an extension ft-1:X - BP <4Hl such that 
ft-1 <4Hl* 1s an isomorphism on H* ( ); and show that ft exists. Consider 
Xc4t-2p-1-2J <4Hl ~ X <4Hl .j* (k4t+i (X)) ~ 0 E ZP by hypothesis. Hence fc4t+t (X) = 
sx E Z+0 ct>, where xis a generator ands ¢ 0 (p ), and Zp0 <t> ~ H4t+1 (X <•H>; Z) 
~ H 4t 1 (Bp <4H\ Z) (mod Gp), Since s ¢ O(p), H 41+1(X; Z) E GP and we may 
extend f H to ft . The proof that ft <41> * is an isomorphism is the same as in the 
proof of theorem 2.1 except that we know x ~ 0. This proves theorem 2.2, 

4. Construction of Y P 

In order to prove theorem 2.3, we want to construct a space YP such that 1) 

(o i ¢ O(r) 
1r;(Yp) = ~z. l i = O(r), 

where r = 2p - 2, and 2) the first k-invariant of Yp(rt), namely k <•t+2p-l) E 
H' (tH)+l (Yp(rt) (rt\ Z) ~ zp (mod Cp) is non-zero. To do this, we use the "co­
bordism with singularities" theory of Sullivan [10], the main result of which, we 
now state. 

Let n*(K) be a multiplicative bordism theory with coefficients n* = n* (pt.) 
and associated with a spectrum M. Let I c n* be an ideal with a sequence of 
generators (c1, c2, • • ·) such that C;+1 is not a zero divisor inn*/ (c1, • • • , c,). 
Then there is a multiplicative bordism theory with singularities, n/(K), with 
coefficients n/ = n*/ (c1, • • • ), associated with a spectrum M', and a map 
f:M -M' inducing n* - n/.. • • . 

In our application, we set n* = n* u = X[c1, c2, .. •],dim c; = 2i (see [5]), and 
I = (c1, c2, • • • , Gp-I, • • • ). Then n/ = Z2[cp-1]. Assume M' is an fJ-spectrum 
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(see [11]) and define YP = Mo', the first term of M'. Clearly YP satisfies 1) above. 
In order to prove 2), we first note that M' is periodic of period r = 2p - 2. 
Let c: S - M' represent Cp-1 . Consider the composite S ,._ M' - M' ,._ M' - M' 
and its adjoint g:M' - fJ.'(M'). gg:1r*(M1) - 1r*(fJ.'(M1)) sends (c-1t into 
(c-1t+ 1 and hence is an isomorphism. Thus M',,..., n• (M'). 

LEMMA 4.1. The first k-invariant k'+1(M 1) E Hr+1 (K(Z, O); Z) ~ ZP (mod Gp) 
is non-zero. 

Before proving lemma 4.1, we conclude the proof of theorem 2.3. By lemma 4.1 
and periodicity, the first k-invariants of Mei,)' are all non-zero. HenceYP satisfies 
2) above. Consider the product ITI!;1>12- 1 fJ.41 (Yp). It is easy to check that it 
satisfies the conditions of theorem 2.2 and hence BSO ,,...,P I!~!; 1>12- 1 fJ.4;(Yp), 
For BU, one needs a theorem ana,\ogous to theorem 2.2; we leave the details to 
the reader. To show that the H-space structures are the same modp, apply the 
functor fJ.4 to the above equation. 

We now prove lemma 4.1. Consider the map f:MU - M'. If lemma 4.1 is 
false, then there exists u E JI"(M') such that c*(u) ;= 0 E H'(S), c:S - M' 
representing Cp-1. But c = Jc, i.:S' -M representing cp-1. Hence c*(J*(u)) ;= 0. 
But Milnor has shown that all mod p Chern numbers of Cp-1 are zero [6]. This is a 
contradiction. 

5. F/PL 

In this section, we show that F /PL satisfies condition 2) of theorem 2.2 and 
prove corollary 2.4. In [10], Rourke gives a sketch of a proof of the fact that 
fJ.4 (F/PL) ,,...,p F/PL without using the result that F/PL ,,...,p BSO. Hence to 
check condition 2) of theorem 2.2, we need only show that 

k2P-t3 (F /PL) E fl2P-t3 (F /PL <2P+ 1>; Z) ~ Zp (mod Gp) 

is non-zero. 
F/PL is the fibre of the map BSPL - BSF. Using known results about 

H* (BSPL) and H* (BSF) (c.f. [12] ), it is easy to check this fact for p = 3. The 
cases p > 3 are a bit more complicated. 

LEMMA 5.1. Assume p > 3. Then 1r21>+2(BSO) - 1r2P+2(BSPL) is an iso­
morphism mod GP . 

Proof. Consider the exact sequence of Hirsch-Mazur [3], 0 - 1r21>+2(BSO) -
1r2p+2(BSPL) - r21>+1 - 0, where r21>+1 is in an exact sequence 0 -fl'P+ 1(a1r) -
r2p-f-l - Coker J211+1 -o. Coker J2P+l E Gp, so we need only show fl'P+l (iJ1r) E Op. 
Now fl'P+ 1 (01r) is cyclic of order Em22m- 2 (22m-i - 1) num (4Bm/m), where 
m = (p + 1)/2 and Em= 1 or 2 [4]. We must show that p + (2P - 1) and 
p + num (Bm), Since ~-i = l(p), ~ = 2(p), sop+ (~ - 1). Bi¢ 0(p), by 
inspection. A special case of Kummer's congruences [5] (cf. p. 276 of [7]) is that 
Bi/2 ± B1+cp-1J/2tcP+1> = 0 (p) if p > 3, hence p + num (BcP+lJ/2) if p > 3. 

We now conclude the proof of the fact that F/PL satisfies condition 2) of 
theorem 2.2. We use the naturality of k-invariants with respect to the natural 
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map BSO ---+ BSPL. K 2P+3 (BSPL) E H 2P+3 (BSPL <2P+1>; 1r2p+2 (BSPL)) and 
k2P+3 (BSO) E H 2P+3 (BSO <2P+i); 'lf2P+2 (BSO)) both have the same image in 
H 2P+3 (BSO <2P+il; 'lf2p+2 (BSPL) ). k2P+s (BSO) ~ 0, hence by lemma 5.1, its image 
in H2P+3 (BSO <2P+1J; 1r2p+2 (BSPL)) is ~O also. Hence k2P+3 (BSPL) ~ 0. We now 
do a similar argument with the map F/PL---+ BSPL. k2p+s(BSPL) E H 2P+3 • 

(BSPL <2P+1; 'lf2p+2 (BSPL)) and k2P+3 (F /PL) E H 2P+3 (F /PL <2P+il; 'lf2p+2(F /PL)) 
have the same image in H 2P+ 3 (F /PL <2P+ll; 1r2p+2(BSPL) ). Since k2p+a (BSPL) = 
X{3P1 (i 4 ), :\ ¢ 0 (p ), by the above, its image in H 2P+s(F /PL <2P+iJ; 'lf 2p+2 (BSPL)) 
is also X/3P1 ( i4) ~ 0 because t4 ---+ t4 if p > 3. Hence k2P+3 (FI PL) ~ 0 also, and 
condition 2) of theorem 2.2 is satisfied. 

A proof similar to that of theorem 2.2 proves the following theorem. 

THEOREM 5.2. Let X be a space such that 

{o i ¢ 2(4), i = 2} 
1) 'lfi(X) =. z i = 2( 4),i > 2 mod Cp 

and 
2) the first possible p-torsion k-invariant of Xc4t+2) is non-zero, t 2::: 1. Then 

X ,.,_,pg,--2(BSO) = n2 (BSO<s>)-
Boardman and Vogt [2) have shown that thereis a space B2 (F/PL) such that 

n2B2(F/PL) = F/PL as H-spaces. Clearly B2 (F/PL) satisfies the conditions of 
theorem 5.2. Hence F/PL = n2B 2 (F/PL) ""p n2n2 (BSOcai) = D,4 (BSOcs>) = 
BSO, where all maps are H-maps. This concludes the proof of corollary 2.4. 
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