THE MOD p HOMOTOPY TYPE OF BSO AND F/PL

BY FRANKLIN P. PETERSON*

1. Introduction

Let p be an odd prime. In this paper we give some characterizations of the mod p homotopy type of BSO. As one consequence, we show that BSO is decomposable into a product of $\frac{p-1}{2}$ indecomposable spaces (mod p). As another consequence, we show that F/PL is of the same mod p homotopy type as BSO. This was proved by Sullivan [9] by different methods in his work on the Hauptvermutung, but we believe our proof gives a different insight into the problem. We wish to thank D. Sullivan for many helpful discussions during the period when these theorems were proved.

2. Statements of Results

Let p be an odd prime. Let C_p be the class of groups of finite order prime to p. A map, $f: X \to Y$, in the category of simply connected CW-complexes, is called a mod p homotopy equivalence if $f_{\#}: \pi_{*}(X) \to \pi_{*}(Y)$ is a C_{p} -isomorphism, or, equivalently, if $f^{*}: H^{*}(Y) \to H^{*}(X)$ is an isomorphism.¹ The equivalence relation generated by this notion is called "being of the same mod p homotopy type" and is written $X \sim_{p} Y$.

We now give two theorems, each of which characterizes the mod p homotopy type of BSO.

THEOREM 2.1. Let X be a space such that

1)
$$\pi_i(X) = \begin{cases} 0 & i \neq 0(4) \\ Z & i \equiv 0(4) \end{cases} \mod C_p$$

and

2)
$$H^{4t+1}(X; Z) \in C_p, t \geq 1$$
. Then $X \sim_p BSO$.

Let $X^{(i)}$ be the *i*th part of the Postnikov septem for X. That is, $\exists p^{(i)}: X \to X^{(i)}$ such that $p_{\#}^{(i)}: \pi_j(X) \to \pi_j(X^{(i)})$ is an isomorphism if $j \leq i$ and $\pi_j(X^{(i)}) = 0$, j > i. Let $X_{(i)}$ = fibre $(X \to X^{(i-1)})$. Our second characterization involves the *k*-invariants of $X_{(i)}$.

THEOREM 2.2. Let X be a space such that

1)
$$\pi_i(X) = \begin{cases} 0 & i \neq 0(4) \\ Z & i \equiv 0(4) \end{cases} \mod C_p$$

^{*} The author was partially supported by the U.S. Army Research Office (Durham) and the National Science Foundation.

¹ All cohomology groups have Z_p coefficients unless otherwise stated.

and

2) the first possible p-torsion k-invariant of $X_{(4t)}$, namely that in $H_{(4t)}^{4t+2p-1}(X^{(4t+2p-6)};Z) \approx Z_p \pmod{C_p}$ is non-zero, $t \geq 1$. Then $X \sim_p BSO$.

A space X is called decomposable mod p if $X \sim_p X_1 \times X_2$ with $X_1 \nsim_p pt$. Our next theorem shows that BSO is decomposable mod p if p > 3 and gives the decomposition into indecomposable factors.

THEOREM 2.3.² There exists an indecomposable (mod p) space Y_p such that

$$BSO \sim_p \prod_{i=0}^{(p-1)/2-1} \Omega^{4i} Y_p$$

and

$$BU \sim_p \prod_{i=0}^{p-2} \Omega^{2i} Y_p$$

Furthermore, these mod p homotopy equivalences preserve the mod p H-space structure.

Recall that
$$\pi_i(F/PL) = \begin{cases} 0 & i \equiv 1(2) \\ Z_2 & i \equiv 2(4) \\ Z & i \equiv 0(4). \end{cases}$$

Sullivan [9] has shown that F/PL is of the same mod 2 homotopy type as a product of Eilenberg-MacLane spaces except for a non-zero $k^5(F/PL) \in H^5(Z_2, 2; Z) = Z_4$ which is twice the generator. He has also shown that $F/PL \sim_p BSO$ if p is odd. Clearly F/PL satisfies hypothesis 1) of theorem 2.2. In section 5, we show it also satisfies hypothesis 2) and obtain the following corollary.

COROLLARY 2.4. If p is an odd prime, then $F/PL \sim_p BSO$. Furthermore, the mod p homotopy equivalence can be chosen to be an H-map.

3. Proofs of theorems 2.1 and 2.2.

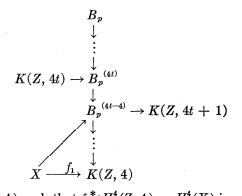
Let $k^{4t+1}(BSO) \in H^{4k+1}(BSO^{(4t-1)}; Z)$ be the k-invariant of BSO. It is wellknown that the odd primary part of this group is cyclic and that some power of 2 times $k^{4t+1}(BSO)$ generates the odd primary part. Form a new space B_p with

$$\pi_i(B_p) = \begin{cases} 0 & i \neq 0(4) \\ Z & i \equiv 0(4) \end{cases}$$

and $k^{4t+1}(B_p)$ the generator of the *p*-primary part of $H^{4t+1}(B_p^{(4t-1)}; Z)$. Let X satisfy the conditions of theorem 2.1, we will show that there exists an $f: X \to B_p$ such that f^* is an isomorphism on $H^*($).

Consider the following diagram.

² This theorem was proved independently by J. F. Adams and D. W. Anderson (see [1]).



Find $f_1: X \to K(Z, 4)$ such that $f_1^*: H^4(Z, 4) \to H^4(X)$ is an isomorphism. Assume we have lifted f_1 to $f_{t-1}: X \to B_p^{(4t-4)}$. The obstruction to lifting f_{t-1} to f_t is $f_{t-1}^*(k^{4t+1}(B_p)) \in H^{4t+1}(K; Z)$. Since $H^{4t+1}(X; Z) \in C_p$ and $k^{4t+1}(B_p)$ is of order a power of p, this obstruction is 0 and we may lift f_1 to $f = f_\infty: X \to B_p$. We now wish to show $f^{(4t)}: X^{(4t)} \to B_p^{(4t)}$ is an isomorphism on $H^*()$ by induction on t. Consider the following diagram.

$$\begin{array}{c} K(Z, 4t) & \stackrel{g}{\longrightarrow} K(Z, 4t) \\ \downarrow i & \downarrow \\ X^{(4t)} & \stackrel{f^{(4t)}}{\longrightarrow} & B_p^{(4t)} \\ \downarrow & \downarrow \\ X^{(4t-4)} & \stackrel{f^{(4t-4)}}{\longrightarrow} & B_p^{(4t-4)} \rightarrow K(Z, 4t+1) \end{array}$$

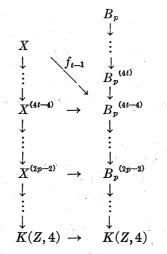
We assume $f^{(4t-4)*}$ is an isomorphism on $H^*(\)$. $H^{4t+1}(B_p^{(4t-4)}; Z) \approx Z_{p^{\emptyset}(t)}$ (mod C_p) with a generator $x = k^{4t+1}(B_p)$. $f^{(4t-4)*}$ is a C_p -isomorphism on $H^*(\ ; Z)$, hence $H^{4t+1}(X^{(4t-4)}; Z) \approx Z_{p^{\emptyset}(t)}$, the isomorphism being given by $f^{(4t-4)*}$. Let $sx = k^{4t+1}(X)$. Since $H^{4t}(X;Z) \in C_p$, $s \neq 0(p)$. Let $\iota \in H^{4t}(Z, 4t;Z)$. Then $g^*(\iota) = a\iota$. By naturality with transgression, we have $\tau g^*(\iota) = asx = f^{(4t-4)*}\tau(\iota)$ = x. Hence, if $x \neq 0$, $a \neq 0(p)$ and g^* is an isomorphism on $H^*(\)$. Thus $f^{(4t)*}$ is an isomorphism on $H^*(\)$ and the induction is complete. If however x = 0, i.e. $Z_{p^{\emptyset}(\iota)} = 0$, then $B_p^{(4t)} \sim_p B_p^{(4t-4)} \times K(Z, 4t)$ and $X^{(4t)} \sim_p X^{(4t-4)} \times K(Z, 4t)$. Let $y \in H^{4t}(X^{(4t)}; Z)$ be such that $i^*(y) = r\iota, r \neq 0(p)$. If $g^*(\iota) \equiv 0(p)$, change $f^{(4t)}$ by a map $X^{(4t)} \to K(Z, 4t)$ realizing y. Then the new $f^{(4t)}$ can be extended to a new f_{∞} by the above argument and the new g is such that $g^*(\iota) \neq 0(p)$. This again completes the induction step.

Since BSO satisfies the conditions of theorem 2.1, we have $f: BSO \to B_p$. Hence $X \sim_p BSO$, and the proof of theorem 2.1 is complete.

We now turn to the proof of theorem 2.2. Let X satisfy the conditions of theorem 2.2.

 $X^{(2p-2)} \sim_p K(Z,4) \times K(Z,8) \times \cdots \times K(Z,2p-2) \sim_p B_p^{(2p-2)}$

by dimensional reasons. Consider the following diagram.



Let $f_1: X \to K(Z, 4)$ be as before. By the above comments there exists an extension $f_{(p-1)/2}: X \to B_p^{(2p-2)}$ such that $f_{(p-1)/2}^{(2p-2)*}$ is an isomorphism on $H^*(\)$. Inductively, assume that there exists an extension $f_{t-1}: X \to B_p^{(4t-4)}$ such that $f_{t-1}^{(4t-4)*}$ is an isomorphism on $H^*(\)$, and show that f_t exists. Consider $X_{(4t-2p+2)}^{(4t-4)} \xrightarrow{i} X^{(4t-4)}. j^*(k^{4t+1}(X)) \neq 0 \in Z_p$ by hypothesis. Hence $k^{4t+1}(X) = sx \in Z_{p\emptyset(t)}$, where x is a generator and $s \neq 0(p)$, and $Z_{p\emptyset(t)} \approx H^{4t+1}(X^{(4t-4)}; Z) \approx H^{4t+1}(B_p^{(4t-4)}; Z) \pmod{C_p}$. Since $s \neq 0(p)$, $H^{4t+1}(X; Z) \in C_p$ and we may extend f_{t-1} to f_t . The proof that $f_t^{(4t)*}$ is an isomorphism is the same as in the proof of theorem 2.1 except that we know $x \neq 0$. This proves theorem 2.2.

4. Construction of Y_p

In order to prove theorem 2.3, we want to construct a space Y_p such that 1)

$$\pi_i(Y_p) = \begin{cases} 0 & i \neq 0(r) \\ Z & i \equiv 0(r), \end{cases}$$

where r = 2p - 2, and 2) the first k-invariant of $Y_{p(rt)}$, namely $k^{(rt+2p-1)} \in H^{r(t+1)+1}(Y_{p(rt)}^{(rt)}; Z) \approx Z_p \pmod{C_p}$ is non-zero. To do this, we use the "cobordism with singularities" theory of Sullivan [10], the main result of which, we now state.

Let $\Omega_*(K)$ be a multiplicative bordism theory with coefficients $\Omega_* = \Omega_*(pt.)$ and associated with a spectrum M. Let $I \subset \Omega_*$ be an ideal with a sequence of generators (c_1, c_2, \cdots) such that c_{i+1} is not a zero divisor in $\Omega_*/(c_1, \cdots, c_i)$. Then there is a multiplicative bordism theory with singularities, $\Omega_*'(K)$, with coefficients $\Omega_*' = \Omega_*/(c_1, \cdots)$, associated with a spectrum M', and a map $f: M \to M'$ inducing $\Omega_* \to \Omega_*'$.

In our application, we set $\Omega_* = \Omega_*^U = X[c_1, c_2, \cdots]$, dim $c_i = 2i$ (see [5]), and $I = (c_1, c_2, \cdots, c_{p-1}, \cdots)$. Then $\Omega_*' = Z_2[c_{p-1}]$. Assume M' is an Ω -spectrum

(see [11]) and define $Y_p = M_0'$, the first term of M'. Clearly Y_p satisfies 1) above. In order to prove 2), we first note that M' is periodic of period r = 2p - 2. Let $c: S^r \to M'$ represent c_{p-1} . Consider the composite $S^r \land M' \to M' \land M' \to M'$ and its adjoint $g: M' \to \Omega^r(M')$. $g_{\sharp}: \pi_*(M') \to \pi_*(\Omega^r(M'))$ sends $(c_{p-1})^a$ into $(c_{p-1})^{a+1}$ and hence is an isomorphism. Thus $M' \sim \Omega^r(M')$.

LEMMA 4.1. The first k-invariant $k^{r+1}(M') \in H^{r+1}(K(Z,0);Z) \approx Z_p \pmod{C_p}$ is non-zero.

Before proving lemma 4.1, we conclude the proof of theorem 2.3. By lemma 4.1 and periodicity, the first k-invariants of $M_{(tr)}$ are all non-zero. Hence Y_p satisfies 2) above. Consider the product $\prod_{i=0}^{(p-1)/2-1} \Omega^{4i}(Y_p)$. It is easy to check that it satisfies the conditions of theorem 2.2 and hence $BSO \sim_p \prod_{i=0}^{(p-1)/2-1} \Omega^{4i}(Y_p)$. For BU, one needs a theorem analogous to theorem 2.2; we leave the details to the reader. To show that the H-space structures are the same mod p, apply the functor Ω^4 to the above equation.

We now prove lemma 4.1. Consider the map $f: MU \to M'$. If lemma 4.1 is false, then there exists $u \in H^r(M')$ such that $c^*(u) \neq 0 \in H^r(S^r)$, $c:S^r \to M'$ representing c_{p-1} . But $c = f\bar{c}$, $\bar{\iota}:S^r \to M$ representing c_{p-1} . Hence $c^*(f^*(u)) \neq 0$. But Milnor has shown that all mod p Chern numbers of c_{p-1} are zero [6]. This is a contradiction.

5. F/PL

In this section, we show that F/PL satisfies condition 2) of theorem 2.2 and prove corollary 2.4. In [10], Rourke gives a sketch of a proof of the fact that $\Omega^4(F/PL) \sim_p F/PL$ without using the result that $F/PL \sim_p BSO$. Hence to check condition 2) of theorem 2.2, we need only show that

$$k^{2p+3}(F/PL) \in H^{2p+3}(F/PL \ ^{(2p+1)};Z) pprox Zp \ (\mathrm{mod} \ C_p)$$

is non-zero.

F/PL is the fibre of the map $BSPL \rightarrow BSF$. Using known results about $H^*(BSPL)$ and $H^*(BSF)$ (c.f. [12]), it is easy to check this fact for p = 3. The cases p > 3 are a bit more complicated.

LEMMA 5.1. Assume p > 3. Then $\pi_{2p+2}(BSO) \rightarrow \pi_{2p+2}(BSPL)$ is an isomorphism mod C_p .

Proof. Consider the exact sequence of Hirsch-Mazur [3], $0 \to \pi_{2p+2}(BSO) \to \pi_{2p+2}(BSPL) \to \Gamma_{2p+1} \to 0$, where Γ_{2p+1} is in an exact sequence $0 \to \theta^{2p+1}(\partial \pi) \to \Gamma_{2p+1} \to \operatorname{Coker} J_{2p+1} \to 0$. Coker $J_{2p+1} \in C_p$, so we need only show $\theta^{2p+1}(\partial \pi) \in C_p$. Now $\theta^{2p+1}(\partial \pi)$ is cyclic of order $\epsilon_m 2^{2m-2}(2^{2m-1} - 1)$ num $(4B_m/m)$, where m = (p+1)/2 and $\epsilon_m = 1$ or 2 [4]. We must show that $p \nmid (2^p - 1)$ and $p \nmid \operatorname{num} (B_m)$. Since $2^{p-1} \equiv 1(p)$, $2^p \equiv 2(p)$, so $p \nmid (2^p - 1)$. $B_1 \not\equiv 0(p)$, by inspection. A special case of Kummer's congruences [5] (cf. p. 276 of [7]) is that $B_1/2 \pm B_{1+(p-1)/2/(p+1)} \equiv 0(p)$ if p > 3, hence $p \nmid \operatorname{num} (B_{(p+1)/2})$ if p > 3.

We now conclude the proof of the fact that F/PL satisfies condition 2) of theorem 2.2. We use the naturality of k-invariants with respect to the natural

26

map BSO → BSPL. $K^{2p+3}(BSPL) \in H^{2p+3}(BSPL^{(2p+1)}; \pi_{2p+2}(BSPL))$ and $k^{2p+3}(BSO) \in H^{2p+3}(BSO^{(2p+1)}; \pi_{2p+2}(BSO))$ both have the same image in $H^{2p+3}(BSO^{(2p+1)}; \pi_{2p+2}(BSPL))$. $k^{2p+3}(BSO) \neq 0$, hence by lemma 5.1, its image in $H^{2p+3}(BSO^{(2p+1)}; \pi_{2p+2}(BSPL))$ is $\neq 0$ also. Hence $k^{2p+3}(BSPL) \neq 0$. We now do a similar argument with the map $F/PL \to BSPL$. $k^{2p+3}(BSPL) \in H^{2p+3}$. $(BSPL^{(2p+1)}; \pi_{2p+2}(BSPL))$ and $k^{2p+3}(F/PL) \in H^{2p+3}(F/PL^{(2p+1)}; \pi_{2p+2}(F/PL))$ have the same image in $H^{2p+3}(F/PL^{(2p+1)}; \pi_{2p+2}(BSPL))$. Since $k^{2p+3}(BSPL) = \lambda\beta P^{1}(\iota_{4})$, $\lambda \neq 0$ (p), by the above, its image in $H^{2p+3}(F/PL^{(2p+1)}; \pi_{2p+2}(BSPL))$ is also $\lambda\beta P^{1}(\iota_{4}) \neq 0$ because $\iota_{4} \to \iota_{4}$ if p > 3. Hence $k^{2p+3}(F/PL) \neq 0$ also, and condition 2) of theorem 2.2 is satisfied.

A proof similar to that of theorem 2.2 proves the following theorem.

THEOREM 5.2. Let X be a space such that

1)
$$\pi_i(X) = \begin{cases} 0 & i \neq 2(4), i = 2 \\ Z & i \equiv 2(4), i > 2 \end{cases} \mod C_p$$

and

2) the first possible p-torsion k-invariant of $X_{(4t+2)}$ is non-zero, $t \ge 1$. Then $X \sim_p \Omega^{-2}(BSO) = \Omega^2(BSO_{(8)})$.

Boardman and Vogt [2] have shown that there is a space $B^2(F/PL)$ such that $\Omega^2 B^2(F/PL) = F/PL$ as *H*-spaces. Clearly $B^2(F/PL)$ satisfies the conditions of theorem 5.2. Hence $F/PL = \Omega^2 B^2(F/PL) \sim_p \Omega^2 \Omega^2(BSO_{(8)}) = \Omega^4(BSO_{(8)}) =$ BSO, where all maps are *H*-maps. This concludes the proof of corollary 2.4.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

References

- [1] D. W. ANDERSON and M. MEISELMAN, Cohomology operations in K-theory, to appear.
- [2] J. M. BOARDMAN and R. M. VOGT, Homotopy-everything H-spaces, Bull. Amer. Math. Soc., 74 (1968), 1117-22.
- [3] M. W. HIRSCH and B. MAZUR, Smoothings of piecewise linear manifolds, Cambridge Univ. (mimeographed), 1964.
- [4] M. A. KERVAIRE and J. W. MILNOR, Groups of homotopy spheres, I. Ann. of Math., 77 (1963), 504-37.
- [5] E. F. KUMMER, Uber eine algemeine Eigenschaft der rationalen Entwicklungskoeffizienten einer bestimmen Gattung analytischer Funktionen, J. Reine Angew. Math., 41 (1851), 368-72.
- [6] J. W. MILNOR, On the cobordism ring Ω^* and a complex analogue, I, Amer. J. Math., 82 (1960), 505-21.
- [7] N. NIELSON, Traité élémentaire des nombres de Bernoulli, Gauthier-Villars, Paris, 1923.
- [8] C. P. ROURKE, The Hauptvermutung according to Sullivan, Mimeographed notes, Institute for Advanced Studies, Princeton, N. J.
- [9] D. SULLIVAN, to appear.
- [10] D. SULLIVAN, to appear.
- [11] G. W. WHITEHEAD, Generalized homology theories, Trans. Amer. Math. Soc., 102 (1962), 227-83.
- [12] R. WILLIAMSON, Cobordism of combinatorial manifolds, Ann. of Math., 83 (1966), 1-33.