THE GENERALIZED VECTOR FIELD PROBLEM AND BILINEAR MAPS

BY SAMUEL GITLER AND KEE YUEN LAM

1. Introduction

Let ξ_n be the canonical line bundle over \mathbb{RP}^n . Then the generalized vector field problem [4] is: Given k and n, find the largest integer s(k, n) such that $k\xi_n$ admits s(k, n) independent sections.

Let \mathbb{R}^n denote euclidean *n*-space, then the bilinear map problem [9] is: Given k and n, find the largest integer b(k, n) such that there exists a non-singular bilinear mapping

$$f: \mathbb{R}^n \times \mathbb{R}^{b(k,n)} \to \mathbb{R}^k.$$

Estimates on the functions s(k, n) and b(k, n) appear in [2, 3, 7, 11, 13, 15, 16, 17].

The two problems are related by the following inequality:

$$(1.1) s(k, n) \ge b(k, n+1)$$

(see [7]).

It has been shown, in many instances, that equality holds in (1.1). One general result is the tangent vector field problem for \mathbb{RP}^n , for which one has

$$s(n + 1, n) = b(n + 1, n + 1).$$

(See [1], [6], (10]).

This led the first author to conjecture in [7], that (1.1) is always an equality. More recently the second named author, in [12], has shown that for each fixed n, (1.1) is an equality for sufficiently large k. He has also verified equality for $k \leq 31$, $n \leq 31$, except possibly when $k = 20, 9 \leq n \leq 14$.

In this note we show $s(32, 27) \neq b(32, 28)$. Our method is to show that $32\xi_{27}$ has 13-sections using the obstruction theory developed by M. Mahowald. On the other hand a non-singular bilinear map $f: \mathbb{R}^{28} \times \mathbb{R}^{13} \to \mathbb{R}^{32}$ cannot exist, for its existence would imply $32\xi_{12}$ has 28-sections, which we prove to be impossible using a non-stable operation in K-theory arising from the complex representations of the Spinor groups.

2. The positive result

We use the modified Posnikov system of Mahowald (14], [8] to show that $32 \xi_{27}$ has 13 sections. We consider the fibration $BSpin(19) \rightarrow BSpin(32)$ and use the method described in [8] to obtain the following: (2.1) Table of k-invariants for $BSpin(19) \rightarrow BSpin(32)$ in dimension ≤ 27

5

First level:			$k_1^{\ 1} = W_{20} ; \qquad k_2^{\ 1} = W_{24}$
Second level		dim	defining relation
	$k_1^2 \\ k_2^2 \\ k_3^2 \\ k_4^2 \\ k_5^2$	22 23 24 25 27	$ \begin{array}{c} \operatorname{Sq}^{2,1} k_1^{\ 1} = 0 \\ (\operatorname{Sq}^4 + W_4) k_1^{\ 1} = 0 \\ \operatorname{Sq}^1 k_2^{\ 1} + (\operatorname{Sq}^4 + W_4) \operatorname{Sq}^1 k_1^{\ 1} = 0 \\ \operatorname{Sq}^2 k_2^{\ 1} + (\operatorname{Sq}^4 + W_4) \operatorname{Sq}^2 k_1^{\ 1} = 0 \\ W_4 \operatorname{K}_2^{\ 1} + (\operatorname{Sq}^8 + W_8) k_1^{\ 1} = 0 \end{array} $
Third level:		dim	defining relation
	$k_1^3 \ k_2^3 \ k_3^3$	23 24 26	$ \boxed{ \begin{array}{c} \operatorname{Sq}^2 k_1^2 = 0 \\ \operatorname{Sq}^1 k_3^2 + \operatorname{Sq}^{2,1} k_1^2 = 0 \\ \operatorname{Sq}^2 k_4^2 + \operatorname{Sq}^3 k_3^2 + (\operatorname{Sq}^4 + W_4) k_2^2 = 0 \end{array} } $
Fourth level:		dim	defining relation
	k_1^4	24	$Sq^{1} k_{2}^{3} + Sq^{2} k_{1}^{3} = 0$
			· · · · · · · · · · · · · · · · · · ·

The homotopy groups for the fiber $V_{32,13}$ in dimensions ≤ 26 are as follows.

$\dim j$	19	20	21	22	23	24	25	26
$\pi_j(V_{32,13})$	Z_2	0	Z_2	$Z_2\oplus Z_2$	Z_{16}	Z_2	Z_2	Z_2

Let H_n be the 4-dimensional real bundle over QP^n obtained from the symplectic line bundle over QP^n . Under the Hopf fibration $q: RP^{27} \to QP^6$, we have that $q^*(8H_6) = 32\xi_{27}$. Let $E_4 \to E_3 \to E_2 \to E_1 \to BSpin$ (32) be the modified Postnikov tower for $BSpin(19) \rightarrow BSpin(32)$ in dimensions ≤ 27 . If $f:QP^6 \rightarrow$ BSpin(32) is the classifying map for $8H_6$, we will see that f admits a lifting to $f_2: QP_6 \to E_2$. Consider then

$$(2.2) \qquad \begin{array}{c} E_2 \xrightarrow{g_3} K_{23} \times K_{24} \times K_{26} \\ f_2 & \downarrow \\ & & \downarrow \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & &$$

ł

Here K_m denotes the Eilenberg-Maclane space $K(Z_2, m)$ with generator $\iota_m \in H^m(K_m, Z_2)$. The map g_1 is given by $g_1^*\iota_{20} = W_{20}, g_2^*\iota_{24} = W_{24}$, hence $g_1 f$ is nul-homotopic and f lifts to $f_1:QP^6 \to E_1$. The second stage k-invariants go to zero in $H^*(QP^6)$, except, perhaps, for $k_3^2 \in H^{24}(E_1)$. We use the generating class theorem of E. Thomas [18] to evaluate k_3^2 . Consider the relation:

(2.3)
$$\operatorname{Sq}^{1}\operatorname{Sq}^{24} + \operatorname{Sq}^{4,1}\operatorname{Sq}^{20} + \operatorname{Sq}^{23}\operatorname{Sq}^{2} + \operatorname{Sq}^{24}\operatorname{Sq}^{1} = 0,$$

and let Φ_{24} be a secondary operation associated with this relation. Let $U \in H^{32}(T(\gamma_{32}))$ be the Thom class of the canonical bundle γ_{32} over BSpin (32), let $U_{19} \in H^{19}(T(\gamma_{19}))$ be the Thom class of γ_{19} over BSpin (19), and let $\bar{\gamma}$ be the induced bundle over E_1 , with $\bar{U} \in H^{32}(T(\bar{\gamma}))$ its Thom class.

Then the generating class theorem asserts,

LEMMA 2.4. There exists a class $b \in H^{24}(BSpin(32))$, such that

 $ar{U} \cup ({k_3}^2 + {p_1}^* b) \in \Phi_{24}(ar{U}).$

Now $W(8H_6) = 1$, hence if $T(f_1): T(8H_6) \to T(\bar{\gamma})$ is the induced mapping on Thom spaces, we obtain for $U' \in H^{32}(T(8H_6))$ that $\Phi_{24}(U') = U' \smile k_3^2(8H_6)$ modulo zero. Furthermore since $T(8H_6) = QP^{14}/QP^7$, all secondary operations Φ_{24} associated with the above relation coincide when applied to U'.

Consider now the fibration,

$$a: CP^{29} \rightarrow OP^{14}$$

then $g^*: H^*(QP^{14}) \to H^*(CP^{29})$ is a monomorphism, and if $y \in H^4(QP^{14})$, $\omega \in H^2(CP^{29})$ are the generators, $g^*y = \omega^2$. Now $g^*\Phi_{24}(y^8) = \Phi_{24}(\omega^{16}) = 0$ by [3], hence by naturality $\Phi_{24}(U') = 0$, and $k_3^2(8H_6) = 0$.

Therefore we can lift f_1 to $f_2:QP^6 \to E_2$. In $H^*(E_2)$ we find three k-invariants and their images in $H^*(QP^6)$ are $(0, \epsilon y^6, 0) \in H^{23}(QP^6) \oplus H^{24}(QP^6) \oplus H^{26}(QR^6)$. Let $h_2:RP^{27} \to E_2$ be the composition $f_2 \cdot g$. Then $(k_1^3(32\xi_{27}), k_2^3(32\xi_{27}), k_3^3(32\xi_{27}))$ has as indeterminacy subgroup the subgroup of $H^{23}(RP^{27}) \oplus H^{24}(RP^{27}) \oplus H^{26}(RP^{27})$ generated by $(0, x^{24}, 0)$ and $(0, 0, x^{26})$ as can be easily seen from the table.

Hence there exists a choice $h_2':RP^{27} \to E_2$, lifting f_0 , the classifying map for $32\xi_{27}$, such that $h_2'(k_1^3, k_2^3, k_3^3) = (0, 0, 0)$, and hence, $h_2':RP^{27} \to E_2$ admits a lifting to

$$h_3: RP^{27} \to E_3$$

There is a last k-invariant in $H^{24}(E_3)$. Its image $k_1^4(32\xi_{27})$ in $H^{24}(RP^{27})$ has full indeterminacy, hence there exists a choice of h_3 that admits a lifting to $h_4:RP^{27} \to E_4$ and the proof of existence of the sections of $32\xi_{27}$ is complete.

3. The negative result

THEOREM. The bundle $34\xi_{12}$ cannot have 28 independent sections over RP^{12} . (Hence, $32\xi_{12}$ cannot have 28 independent sections).

Proof. First recall that the reduced Grothendieck ring of $\mathbb{R}P^{12}$ is $\widetilde{\mathbb{K}}(\mathbb{R}P^{12}) = Z_{64}$ with generator y = the complexification of $\xi_{12} - 1$ and ring structure given by $y^2 = -2y$. (See [1]). Suppose the theorem were false so that $34\xi_{12} = 28 \oplus \eta$ for

some 6-dimensional bundle η . Tensoring both sides with ξ_{12} and using $\xi_{12} \otimes \xi_{12} = 1$, we get

$$\eta \otimes \xi_{12} \oplus 28\xi_{12} = 34.$$

Let $\eta \otimes \xi_{12} = \zeta$. Since $W_1(\zeta) = 0 = W_2(\zeta)$, ζ is a Spin (6)-bundle. Let $\Delta_6^+(\zeta)$ denote the U(4)-bundle associated to ζ through the Spin representation Δ_6^+ : Spin (6) $\rightarrow U(4)$. As an element in $K(RP^{12}), \Delta_6^+(\zeta) = my + 4$ for some integer m.

On the other hand, according to a formula in [5, p. 61], the second exterior power $\lambda^2(\Delta_6^+(\zeta))$ is equal to the complexification of ζ , i.e.

(3.1)
$$\lambda^2(my+4) = -28y + 6 \text{ in } K(RP^{12}).$$

Now it is not hard to show that $\lambda^2(my) = -m^2 y$, and consequently (3.1) gives

$$(m^2 - 4m - 28)y = 0.$$

But, by an elementary argument in number theory, $(m^2 - 4m - 28)$ is never divisible by 64. This contradicts the fact that y has order 64, and finishes the proof.

Remark 1. One can use the same method to prove other non-sectioning statements (for example, that $16\xi_{10}$ does not admit 10 independent sections). But the most general result which can be obtained by this technique is not yet available to us.

CENTRO DE INVESTIGACIÓN DEL I P N

References

- [1] F. ADAMS, Vector fields on spheres, Ann. of Math. 75 (1962), 603-32.
- [2] J. ADEM AND S. GITLER, Non immersion theorems for real projective spaces, Bol. Soc. Mat. Mex. 9 (1964), 37-50.
- [3] ——, Secondary characteristic classes and the immersion problem. Bol. Soc. Mat. Mex. 8 (1963), 53-78.
- [4] M. ATIYAH, R. BOTT AND A. SHAPIRO, Clifford modules, Topology 3 (1964), 3-38.
- [5] R. BOTT, Lectures on K-theory, Harvard mimeographed notes, 1964.
- [6] B. ECKMANN, Gruppentheoretischer Beweis der Satzes von Hurwitz-Radon über die Komposition quadratischer Formen, Comment. Math. Helv. 15 (1942), 538–66.
- [7] S. GITLER, The projective Stiefel manifolds II-Applications, Topology 7 (1968), 47-53.
- [8] S. GITLER AND M. MAHOWALD, The geometrical dimension of real stable vector bundles, Bol. Soc. Mat. Mex. 11 (1966), 85-107.
- [9] H. HOPF, Ein topologischer Beitrag zur reellen Algebra, Comment. Math. Helv. 13 (1940– 41), 219–39.
- [10] A. HURWITZ, Über die Komposition der quadratischer Formen von beliebig vielen Variablen, Math. Ann. 88 (1923), 1-25.
- [11] K. Y. LAM, Construction of nonsingular bilinear maps, Topology 6 (1967), 423-26.
- [12] ——, On bilinear and skew-linear maps that are nonsingular, Quart. J. Math. Oxford Ser. 2, 1968, 281–88.
- [13] ——, Construction of some nonsingular bilinear maps. Bol. Soc. Mat. Mex. 13 (1968), 88-94.

68

- [14] M. MAHOWALD, On obstruction theory in orientable fibre bundles, Trans. Amer. Math. Soc. 110 (1964), 315-49.
- [15] R. J. MILGRAM, Immersing projective spaces, Ann. of Math. 85 (1967), 473-82.
- [16] D. RANDALL, Some immersion theorems for projective spaces, Trans. Amer. Math. Soc. 147, (1970), 135-51.
- [17] B. J. SANDERSON, Immersions and embeddings of projective spaces, Proc. London Math. Soc. 14 (1964), 135-53.
- [18] E. THOMAS, The index of a tangent 2-field, Comment. Math. Helv. 86 (1967), 1183-206.