
SOME IMMERSIONS OF REAL PROJECTIVE SPACES 

BY s. GITLER AND M. MAHOWALD* 

Introduction 

M. Hirsch [6] has shown that the immersion problem for manifolds is just a 
cross-section problem for the stable normal bundle. Our object here is to give 
the proofs of the main theorems announced in [5]. 

We give conditions under which sections of the tangent bundle will imply 
sections of the normal bundle (and conversely). Given an integer t = 4a + b, 
0 :::; b :::; 3, let j (t) = 8a + 2b. If~ is a stable bundle let gd (~) denote the sm.allest 
integer n such that there is an n-plane bundle e' which is in the stable class of t 
_ The main_ geometric result of this paper is this theorem. 

THEOREM A. Let Mm be an m-manofold, m :::; 2' - 1, whose stabl,e tangent l>undle 
To is trivial over the (j(t) - 1)-skeleton. Then gd(To) :::; m - j(t) + 1 implies 
gd( - To) :::; m - j(t) + 1. (Note that -To = the normal bundle.) 

Applying theorem A to projective spaces, we get: 
THEOREM B. Let m = 2'. Then RPm-l immerses in R2m-; (t)tl but not in R2m-; (I) . 

. ·The negative part of theorem B is due to James [7]. The positive part follows 
easily from theorem A. Milgram [10] has obtained immersions of RPm-i -which 
1:1,gree.with these only if m = 16 or 32. 

The key step is a technical result stated as the main theorem in §1. We expect 
this result to have more consequence. 

1. The main theorem 
Let X be a CW complex, then by X[k] we denote the kth Eilenberg subcomplex 

of thespaceX, i.e. X[k] is (k - 1)-connected and there is a mapf:X[k]-X such 
that1*:'lr 11(X[k]) ~ 'lrv(X) for q ~ k. Let BOn and BO denote, respectively, the 
classifying spaces of n-plane bundles and stable bundles. The natural map BO,. 
- BO induces maps 

p:BO,;[k] - BO[k] 

for all k. 

, MAIN THEOREM. For each m < 21, there exists an H-space E, an H-map 
cp:E - BO[j (t)] and ajiJJer map t:BO,.[j (t)] - E such that 

BOn [j(t)] ~ BO[j(t)] 

" ,l' 
"'""' /'{J 

E 

• The second author was partially supported by the U. S. Army Research Office 
(Durham). 
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is commutative, where n = m - j (t) + 1. Let F be the fiber of '¥. If n i8 odd, then F 
ism-connected. If n is even, then Fis (n - 1 )-connected and 1r,. (F) for n S k S m 
is either zero or a finite group of odd order. 

The proof of this theorem will be accomplished in this and the following 
sections. First we observe how this implies theorem A. By hypothesis we can lift 
To to BOn[j(t)]. Thus we can lift to E. Now -To = kTo, at least up to fiber 
homotopy type. Thus using. the H-space structure we can lift -To to E. The 
result of [3] asserts, in this context, that we can lift from E to BO,.[j (t)]. 

We begin the proof of the main theorem by constructing the space E. As in 
[4] we can construct a fiber space <Po:X - BSO as a composite of principal fiber 
spaces 

(1.1) X = X. - X,-1 - • • • - Xo = BSO 

where the fiber of X,. - x,._1 is a product of Eilenberg-Maclane spaces of type 
(Z, q) or (Z2, q). There is a fiber map Vlo:BSOn -x such that 

(1.2) 

BSO .. ~BSO 

~ //' 
,/,o \. / <Po 

X 

is commutative. If F is the fiber of V/o , then F satisfies the conditions of the main 
theorem. 

If we take the fiber map BO[j(t)] - BSO and induce diagram (1.2), we ob
tain a commutative diagram 

(1.3) 

where VI is again a fiber map with fiber F. 
What remains to be done is to prove that E is an H-space and that cp is an 

H-map. The fiber space cp:E - BO[j (t)] is a composite of principal fiber spaces 

(1.4) E = E. - E,,_1 - • • • - Eo = BO[j(t)] 

induced by (1.1 ). Let F,. be the fiber of Ek - E,._1 . Then Ek - E,._1 is classified 
by a map 

fk:Ek-1 - BFk 

where BFk is the classifying space of Fk. We will assume that Ek-tis an H-space 
and that <Pk-1:E,._1 -Eo is an H-map. Then E,. will be an H-space and cp,.:E,. - Eo 
will be an H-map if the k-invariants, i.e., the images of the fundamental classes of 
BF,. , are primitive in H* (E,._1). To show this we need some preliminary results. 
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We have a principal fiber space 

K(J1,}(t- l)-1)-BO[.j(t)J-BO[.j(t)- l] 

where Jt = Z or Z2 , as given by Bott's periodicity (2]. Let 

(1.5) E = E,- ••• -Eo = K(Jt,}(t - 1) - 1) 

be the fibrations induced over E0 from (1.4). 

11 

Strong, in (12}, has determined the mod 2-cohomology of BO[J1, and in par
ticular, he has shown that 

H* (Eo) - H* (Eo) 

is a monomorphism in dimensions ::; 21 - 1. 
In section 3, we will prove the following result. 

PROPOSITION 1.6. For k = 0, 1, • • • , s, the naiural map E,, - Ek induces a 
monomorphism 

in dimensions ::; 21 - 1. 

Again, if we assume inductively that Ek-1 is an H-space, then Ek-1 is an H-space 
and Ek-1 - Ek-1 is an H-map. Therefore from (1.6), we have: 

PROPOSITION 1.7. If the k-invariants of Ek - Ek-l are primitive, then Ek and 
Ek are H-spaces and Ek - Ek is an H-map. 

In fact, we will show that Ek is an r-fold loopspace, for arbitrarily larger. 
If Ek-1 is an r-fold loopspace and o-mEk-l denotes a space such that 

D.m (D.-mEk-l) = Ek-l , it suffices to show that the k-invariants of Ek - Ek-1 are 
in the image of 

(1.8) 

where g is the adjoint of the identity map Ek-1 - Ek-1 . 
In order to prove that the k-invariants lie in the image of (1.8 ), we pass to 

Thom complexes. Formally, it might be better to phrase the arguments in terms 
of spectra. We feel, that the geometric flavor of the argument is lost by this device 
and therefore we will not use spectra. 

First observe that 

Eo - BO,[j (t)] - BO,[} (t - l)J 

is a principal fiber space for r ~ 21. We assume always that r ~ 21. Let 

(1.9) E' = E.' - E:-1 - • • • - Eo' = BO,[i (t)] 

be the tower induced over Eo' from (1.4). Then the tower (1.5) is induced from 
(1.9) by the mapping Eo - Eo'. Now let 'Y/r be the canonical bundle over Eo', ob
tained as the induced bundle of 'Yr, the universal bundle over BO,. Consider the 
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induced bundles over the spaces E/ and Ek . Let ME/ and MEk denote the cor
responding Thom complexes. We have a sequence of maps 

(1.10) 

Now observe that through the m-skeleton, the Serre exact sequence holds for 
the fiber space • 

Fk --+ Ek' --+ E;-1. 

Thus if we look at the cohomology sequence 

H*(ME,._//MEk') --+H*(ME;,_1)--+H*(ME/) 

we see that the Thom isomorphism induces an isomorphism 

(1.11) H*(Fk) '.:::'. H*(MEk_//ME,.') 

with a shift of r + 1 dimensions. The isomorphism (1.11) holds in dimensions 
less than or equal tom in H* (Fk). Since the Steenrod algebra A2 acts trivially in 
the Thom classes, (1.11) is an A2-isoinorphiam. Therefore, if we let ME/ be the 
principal fiber space over ME;,_1 with fiber rr"Fk and k-invariants { U '"' k,}, 
where k. are the k-invariants of E/ --+ E;,_1 and U is the Thom class of ME,._/ 

we see that ME/ and ME/ coincide at least through r + m gimensions. 
Let Y, be the universal example space of an integer cohomology class x of di

mension q such that 
1) all primary cohomology operations vanish on x; 
2) all operations with Z2 coefficients that raise dimension by less than j(t) 

vanish on x. 
For the space Ya we have the following result. 

THEOREM 1.12. There exists a tower of fiber spaces 

K(Z, r) -Ao-··· -A. 

~~]Po/:. 

~•-ny,, 

The fiber Gk of Ak --+ Ai~1 is a product of Eile:nberg-M aclane 8'f)aces and 
Gk = rr'Fk X Sk if k > 1, where Fk is the (k - 1 )-stage of an Adams resolution 
over Z2 of V,. through dimension m - 1 and Sk is the k-stage of an Adams resolution 
over Z2 of S'. Also Gi = II~:½ K (Z2 , r + 2' - 1) X rr'F1 . The fiber of p. is 
(m - 1)-connected. 

The proof of (1.12) is that of theorem A of [8], restricted to the dimensions 
stated in (1.12). (Compare Chapter II, section 3 of [8].) 

Using (1.12) we can prove 



REAL PROJECTIVE SPACES 13 

THEoREMfl'.13. There is a mapping X1,-1:ME;._1--+ Ak-1 mr,ch that unrler. 

ME I ~ A fr.-1 n-r-lF 
k-1 ---, k-1 ~ u k 

we have 

x,._/f,._/('Y,) = U,..., k,, 

where 'Yi ranges over the fundamental classes of o,-r-1Fk and the k, over the k-i"nvari-
' I ants of Ek --+ E1r;-1. 

Theorem (1.13) is a generalization of the principal results of [9J. 

The spaces. E,.' are essentially the spaces Ek in the range of dimensions which 
are of interest. Clearly we have 

PROPOSITION 1.14 .. The natural maps E,.'--+ Ek fork = O, 1, • • • , s induce iso
morphisms H* (E1c) --+ H* (E,.') in dimensions ~ m and unrler these isomorphisms, 
the k-invariants of E1c+1--+ E,. go over into the k-invariants of E"+i'--+ E,.'. 

We are now ready to prove the main theorem; it will be by induction. Namely 
we will show inductively that the spaces E,. in (1.4) are H-spaces for 
k = 0, 1, • • ·, s. 

Observe that ME,. = ~m(.E,. U pt), since the induced bundle over .Ek is trivial. 
Consider the diagram 

1) - 1) 

(1.15) 

· I >..1,0 
MEo ------A1,o 

where ..4.1,o is the fiber ~pace over Ao with fiber Il1:½ K (Z2, r + 2• - 1 ). The 
map X1,0 is clear. The map io makes the triangle commutative and Po is the adjoint 
of the identity map .Eo --+ Eo . This leaves the map io . We have the diagram 

II::½ K(Z2, r + 2i - 1)--+ A1,o --+ K(Z, r) 

JP I I 
Zo --- MEo' --+ MOr[j(t - 1)] 

where Z0 is the fiber of MEo'--+ MOr[j(t - 1 )]. Let a, be the fundamental classes 
of the spaces K (Z2 , r + .2' - 1) in the top row and a the fundamental class of 
K (Z, r ). Then Ta, = Sq2' a, and p can be chosen so that p * a, = 0 for i < t - 1. 
Now p*a,_1 = f3 and T{J = U ,..., W,1-1. Stong in [12] has shown that f3 can be 
chosen to be a stable· primary operation on the class µ, f3 = tf,µ, where 
Tµ = U ,..., 'Y i<t-1) , and 'Y ;ct-1) E H1 c1-1J (BOr[j (t - 1) J) is the fundamental class. 
Now since .E0 maps trivially to BO,[j(t - 1)], we have a mapping l: 'l;'.Eo--+ Zo, 
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which induces an isomorphism in the first nontrivial cohomology group. This gives 

K(Jt, r + j(t - 1) - 1) 

h/)' lg 

,- l / ( , 
2: Eo - Zo ITK Z2, r + 2 - 1) 

~~ l l 
MEo' - A.1,0 

where h*(a) = u, a is the fundamental class of K(J,, r + j(t - 1) - 1) and 
g* a,- 1 = cf,a. Then p '"" gh. This defines jo and hl is homotopic to the adjoint of 
the identity mapping Eo --+ E 0 • Thus (1.15) is homotopy commutative. Assume 
now that we have constructed a homotopy commutative diagram 

(1.16) 

' >..t-1 
ME1c-1 - A.1o-1 

where p1,;-1 is homotopic to the adjoint of the identity. Then by (1.8) and (1.13), 
we can take E,. = O'Dk, where D,. is the induced fiber space over O-..E,._1, of the 
fiber space A.k--+ A.k,o, relative to a lifting J 1c-1 : o-'E1c-1--+ A.1c,o of J1c-1 • It remains, 
therefore, to show that given (1.16) fork - 1, we can produce a diagram such as 
(1.16) fork. This will be done in section 2. 

2. The main commutativity diagram 

Suppose then that we are given the following diagram: 

ME1c-1 ~ 0--rE,._1 

(h.1) l iri ljr.-1 

ME1o-1 
>..t-1 A. Jr.-1 

BFk - k-1 ~ 

such that Ik-1 is homotopy commutative, where P1o-1 is homotopic to the adjoint 
of the identity and f 1c-1X,._1ik-1 is a homotopy adjoint of the classifying map for 
E,.. The main object of this section is then to establish; 

THEOREM 2.1. The existence of diagram h-1 implies the existence of diagram J.,,,. 

This result will follow from the following two lemmas. 

LEMMA 2.2. Given diagram h-1, then there exists a mapping Xk:MEk --+ A.,. 
such that 
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MEk 
Pk - rcrEk 

ik l l 
MEk 

}l.k 
Ak -

1 l 
ME1c-1 

l'l.1.-1 - A1c-1 

is a homotopy commutative diagram. 

LEMMA 2.3. There exist mappings gk , g/ so that the fallowing diagram homotopy 
commutes: 

Lemma 2.3 shows that we can take the k-invariants of Ak+l - Ak in such a 
way that they are mapped by ""A/* to the k-invariants of E1o+1 - E1o cupped with 
the Thom class of ME/. Then, using (2.2), we obtain a diagram h. 

Proof of 2.2. The adjoint of fk-tAk-iik-t is a map Ek-1 - n'BF". It induces a 
map {j :E" - rlLBF", where LBF" is the space of paths over BF", such that we 
have a commutative diagram 

- g r 
E" -----t n LBFk 

l l 
Ek-1 - rlBFk. 

Let g:MEk - LBF1o be the adjoint of {j. Then we have a commutative diagram, 

- g 
MEk -----t LBF1o 

(2.4) 1 
where µ = f 1c-1Ak-1 • 
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We can extend g to MEk - LBFk since LBFk is contractible. We will also de
note by g this extension. We then have 

MEk - MEk ~ LBFk 

MEk-1- MEk-li, -BFk 

Let p :MEk - MEk-1 ; it is not necessarily true that µp = 1rg. We now define a 
map P, which is "homotopic" to µ such that P,p = 1rg. We first replace ME1o-1 by 
the mapping cylinder of p, MP, and similarly we replace ME1o-1 by the mapping 
cylinder of p, MP . 

We want to define a map 

F:MEk X I - BFk 

such that Fis an extension of the map 

G:MEk XI UME-,. X j-BF-,. 

where 

{
1rgi(x) 

G(x, t) = 1rg(x) 

µp(x) 

if XE MEk 

if x E ME-,. and t = 0 

if x E MEk and t = 1. 

Since BFk is a product of Eilenberg-Maclane spaces, we can use obstruction 
theory as given in [1, Chapter III] to prove that G can be extended to F. The ob
structions are readily seen to be zero. Using F we define 

by 

Then 

/1 
MEk x 1 up MEk-l - BFk 

{
p, (x, t) = F (x, t) 

p,(y) = µ(y). 

P,p(x) = P,(x, 0) = 1rg(x). 

We may extendµ itself to µ':MP - BFk by setting 

{
µ' (x, t) = µp (x) 

µ' (y) = µ(y). 

Then p, is homotopic toµ', since we have 

8 fJ, 
MEk-l - Mp--,') BFk 

p. 
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and P,s = µ' s, but s is a homotopy equivalence. We thus have a commutative 
diagram 

l l 1 
We therefore obtain a commutative diagram 

(i, y) 

whereJjkPk is an adjoint of {j, i.e. JjkPk = g. 
Now we want to define a mapping 'l':MEk - µ' 1(LBFk) such that 

(2.5) 

is commutative. 
We have 

r 
so, if we define 'l':MEk - µ'! (LBFk) by 

'I' = (si, gi), 
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then]J\O(x) = gi(x). Now 

is commutative, so that (2.5) is commutative. 
Because the mappings jl and µ' are homotopic, there is a homeomorphism 

Vl;p,!(LBFk) - µ11(LBFk). Consider the diagram 

MEk ~ µ 11(LBFk) 

(s, g) 

We now show this diagram is homotopy commutative. Using (2.4) we see that 
the mappings µ 1i and jli:Mp - Mp - BFk coincide. Then the bundles 
(µ'i) 1(LBFk) and (µi) 1(LBFk) are naturally homeomorphic under the homeo
morphism Vlo which acts as the identity. 

Let H be a homotopy between µ' and jl. Then H induces a bundleX over MP X I 
such that above MP X O and MP X 1, we have the same space (ili) 1 (LBF,,) 
(identified under V10). Now the homeomorphism Vlt:X - (ili) 1 (LBFk) X I 
constructed as in [11; 11.4] gives a homotopy of VI I (ili) 1 (LBFk) to Vlo. This 
homotopy extends to a homotopy of VI giving a map if;':p,1(LBFk) - µ 11 (LBFk) 
which when restricted to (P,i) 1 (LBFk) is just Vlo. Then if;' (s, g )i = if;' (si, gi) = 
( si, gi) and thus \0 is homotopic to VI ( s, g )i. 

Consider 

The upper square homotopy commutes from the above. Finally if we take VI 
instead of if;' in the lower square, 
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Oif; (s, g)(ek) = 0if;(Bek' gek) = 0(sek' if;gek) = 0'-k-IPek' (if;g)ek) 

and thus Oy;' (s, g) makes the above diagram homotopy commutative. Hence 
taking eif;' ( s, g) = x,. , we have established (2.2). 

Proof of (2.3). Make:,\ into an inclusion. Let M>,. be the mapping cylinder of X. 
Extend g,._1 to M>,.. Now fg,._1 is nul-homotopic; let Ho be a nul-homotopy. Take 
any lifting q;:BSOn[j] - Ek of BSOn[j] - Ek-I. This lifting induces a lifting 
i}k1 =~qMOn[j] - MEk of iJ;-1:l;qMOn[j] - MEk-1 • Now p1Xkg,.' represents a null 
homotopy of !Xk-1(lk-i'. Also let G be a homotopy between {lk-1:X. and Ak-l{lk-i', 
then G, together with p1Xkg,.', gives another nul-homotopy H1 of f{l1c-1X. Since nul
homotopies are liftings 

the two homotopies H 0X and H1 determine an element a E [l;qMOn[j], Q.BFk], the 
difference class. If we take the Thom isomorphism of the map a, we obtain a map 
<1>:BOn[j] - g,'+1BFk. There exists a lifting ,p:BSOn[j] - Ek whose difference class 
with q; is just the cohomology classes determined by <I>. If we now use the lifting 
given by 'I' to define (lk1, then the difference class between the two liftings p1X,.g,.' 
and Ho is zero. Indeed, 

E __ _., BSOn[j] 

t t 
K(Ze,j - 1) - BSO[j] 

may be induced. Then, if we look at 

- i 
··~/ME--► ~qMOn[j] - l;qYn 

t t 
MEk - Ak - LBF,. 

t 
Ak--1-BFk, 

the Thom isomorphism of the map a; restricted to l;qME is just the adjoint of 
a;. Now, because the difference cohomology classes between liftings are additive 
and the new 'I' compares correctly with the lifting going via Q,'l;qYn, it will do so 
after taking adjoints, i.e., after the Thom isomorphism. Since i* is a mono
morphism, the claim follows. 

Now extend Ho to a nul-homotopy of f(lk-1, which commutes with the nul
homotopy of jXk-1(lk-i' given by p1Ak{jk . Thus these two nul-homotopies are com
patible liftings g/ and (lk . 
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3. Proof of the remaining propositions 

Proof of (1.6). Consider 

E = E. - • • • - Eo = K(J,,j(t - 1) - 1) 

il L. Lo 
E = E.,- • • • - Eo = BO[j(t)] 

and let 'Pk :Ek - E1o-1 and ijk :E - Ek be the fiber maps of the E-tower. Let 
pk:Ek - Ek-1 and qk:E - Ek be the corresponding ones for the E-tower. 

We first observe that H*(E) '.::: H*(Eo) ® H*(V,.) additively in dimensions 
~ 2', so that H* (E) '.::: H* (Eo) ® H* (V,.) in this range, and therefore i*:H* (E) 
-H*(E) is a monomorphismin this range. AgainH*(E1) '.::: H*(Eo) ® H*(F1) 
and therefore H* (E1) '.::: H* (Eo) ® H* (F1), so that 

i/:H*(E1) -H*(E1) 

is a monomorphism in dimensions ~ 2'. Moreover q/:H*(E1) - H*(E) and 
q/:H*(E1) - H*(E) are epimorphisms. Then, it follows by [4; (2.8)], that for 
k '?:. 1 

Ker q't-1 = Ker Pk* 

and 

K -* K - * er qk-1 = er Pk . 

Suppose that we have proved that i; * is a monomorphism for j < k and in 
dimensions < 2'. We have the Serre exact sequence in the fiber space 

p1c 
F k -+ Ek ----=---+ E k-1 

so that if x E H* (Ek) restricts non-trivially to the fiber, ik * (x) ¢ 0. Now suppose 
* ( ) d • * * ( ) 0 Th - * - * ·* ( ) ·* * * ( ) 0 x = Pk y an ik Pk y = . en qk Pk ik-1 y = i qk Pk y = , so 

qk *pk *(y) = 0, i.e., q't-1 (y) = 0, but then pk *(y) = 0 and so x = 0. Thus i,. * is a 
monomorphism. 

Proof of (1.7). Consider 

- - m - h 
Ek-1 X E1o-1 - E1o-1 ~ BFk 

i1o-1 X i,._J 1 ik-1 1 identity 
m 

Ek-1 X Ek-1 - Ek-I -y,;► BF,.. 

Thenifa E H*(BF,.)isafundamentalclass, weassumethat (ik-l X ik-1)*m*fk *(a) 
= J,. *a® 1 + 1 ® A *a. But since (ik-1 X i1o-1)* is a monomorphism, m*fk *a = 

A* a ® 1 + 1 ® fk * a, and we may extend i1o-1 to ik such that 

Ek X Ek-+E,. 

L L 
E,. X Ek-+Ek. 
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Proof of (1.13). We have a mapping square 

ME' - 2;r-nyn 

. l l 
MEo'-K(Z, r) 

21 

and up to the range of dimensions of interest, the left fiber space is induced from 
the one on the right. Hence when we take Postnikov decompositions of both fiber 
spaces, they will map into each other and the k-invariants will map across. But as 
remarked after (1.11 ), the k-invariants for ME,/ - ME{-1 are { U ..___, ki}, where 
the ki are the k-invariants of E,/ - E{-1. 
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