SOME IMMERSIONS OF REAL PROJECTIVE SPACES

By S. GitLEr AND M. MaHOWALD*

Introduction

M. Hirsch [6] has shown that the immersion problem for manifolds is just a
cross-section problem for the stable normal bundle. Our object here is to give
the proofs of the main theorems announced in [5].

- -We give conditions under which sections of the tangent bundle will imply
sections of the normal bundle (and conversely). Given an integer ¢ = 4a -+ b,
0<b<3letj(t) = 8a + 2. If £ is a stable bundle let gd (¢) denote the smallest
integer 7 such that there is an n-plane bundle £” which is in the stable class of £.
. The main geometric result of this paper is this theorem.

THEOREM A. Let M™ be an m-manofold, m < 2° — 1, whose stable tangent bundle
10 18 trivial over the (7 (t) — 1)-skeleton. Then gd(ro) < m — j({) + 1 implies
gd(— 7o) < m — j() + 1.(Note that —7, = the normal bundle.)

Applying theorem A to projective spaces, we get:
TaEOREM B. Let m = 2. Then RP™ " immerses in R*™ 7 Y but not in R™ 7 ©,

‘The negative part of theorem B is due to James [7]. The positive part follows
easily from theorem A. Milgram [10] has obtained immersions of RP™ which

agree with these only if m = 16 or 32.
The key step is a technical result stated as the main theorem in §1. We expect

this result to have more consequence.

1. The main theorem

Let X be a CW complex, then by X[k] we denote the k™ Eilenberg subcomplex
of the space X, i.e. X[k]is (k — 1)-connected and there is a map f: X[k] — X such
that fs:7 (X[k]) = 7(X) for ¢ > k. Let BO, and BO denote, respectively, the
classifying spaces of n-plane bundles and stable bundles. The natural map BO,
— BO induces maps -

p:BO.[k] — BOJK]

for all &.

. Maix TueoreM. For each m < 2', there exists an H-space E, an H-map
¢:E — BO[j (t)] and a fiber map ¢:BO,[j (t)] — E such that

BO, [§(£)] —2— BO[; ()]
e

AN
AN /
ll/\ ]

E

* The second author was partially supported by the U. S. Army Research Office
(Durham).
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18 commutative, wheren = m — j(¢t) + 1. Let F be the fiber of V. If n ts odd, then F
18 m-connected. If n is even, then F 1s (n — 1)-connected and m, (F) forn < k< m
18 etther zero or a finite group of odd order.

The proof of this theorem will be accomplished in this and the following
sections. First we observe how this implies theorem A. By hypothesis we can lLift
70 to BO,[j (t)]. Thus we can lift to E. Now —ry = kro, at least up to fiber
homotopy type. Thus using the H-space structure we can lift —r to E. The
result of [3] asserts, in this context, that we can lift from £ to BO,[7 (¢)].

We begin the proof of the main theorem by constructing the space E. As in
[4] we can construct a fiber space ¢o: X — BSO as a composite of principal fiber
spaces

1.1) X =X,>Xe1— - — X, = BSO

where the fiber of X; — X1 is a product of Eilenberg-Maclane spaces of type
(Z, q) or (Z,, q). There is a fiber map ¥o: BSO, — X such that

BSO, —2— BSO
(12) NS
Y N S e
X
is commutative. If F is the fiber of ¢, , then F satisfies the conditions of the main

theorem.
If we take the fiber map BO[j(¢)] — BSO and induce diagram (1.2), we ob-
tain a commutative diagram

BO. [j(t)] —— gmj(t)]

AN
(1.3)
\0\\ //qo
E

where ¢ is again a fiber map with fiber 7.
‘What remains to be done is to prove that E is an H-space and that ¢ is an
H-map. The fiber space ¢:E — BO[j(t)] is a composite of principal fiber spaces

(1.4) E = Es_)Es—l"_) ctt ——)EO = Bo[j(t)]
induced by (1.1). Let F;, be the fiber of E; — E;—; . Then E, — E;_; is classified
by a map

fe:Ex—1— BF}
where BF, is the classifying space of ', . We will assume that E,_; is an H-space
and that ¢x_1:Er1 — Eyis an H-map. Then E} will be an H-space and ¢;: Ex — E,

will be an H-map if the k-invariants, i.e., the images of the fundamental classes of
BF , are primitive in H* (Ex_; ). To show this we need some preliminary results.
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- We have a principal fiber space

K(/:,jt —1) — 1) — BO[j ()] — BO[j (¢) — 1]
where J, = Z or Z,, as given by Bott’s periodicity [2]. Let
(1.5) B=B—- —H=KWJ,jt—1)—1)

be the fibrations induced over E, from (1.4).
Strong, in {12], has determined the mod 2-cohomology of BO[j], and in par-

ticular, he has shown that
H*(Eo) - H*(E'o)

is a monomorphism in dimensions <2° — 1.

In section 3, we will prove the following result.

ProrosrrioN 1.6. For k = 0, 1, --- , s, the natural map B, — E induces a
monomorphism

H*(By) — H*(B)
in dimensions <2°' — 1.
Agg,in, if we assume inductively that Ej_; is an H-space, then E;_; is an H-space
and Ej_y — Ej— is an H-map. Therefore from (1.6), we have:

_ Prorosrrion 1.7. If the k-invariants of E, — E,_; are primitive, then E;, and
B}, are H-spaces and E, — B ts an H-map.
In fact, we will show that Ej is an r-fold loopspace, for arbitrarily large r.

If E’k__l is an_r-fold loopspace and Q™E,_; denotes a space such that
Q"(Q "Ey1) = By, it suffices to show that the k-invariants of B, — E;_; are

in the image of
(18) E"‘E'_k_l —_g_> Q-mEk_l rd Q‘mBFk

where ¢ is the adjoint of the identity map By — Fp1.

In order to prove that the k-invariants lie in the image of (1.8), we pass to
Thom complexes. Formally, it might be better to phrase the arguments in terms
of spectra. We feel, that the geometric flavor of the argument is lost by this device
and therefore we will not use spectra.

First observe that

By — BO,[j ()] = BO,Jj(t — 1)]
is a principal fiber space for r > 2°. We assume always that r > 2°. Let
(1.9) E =B/ —E;— - —E = BOJj)]

be the tower induced over E, from (1.4). Then the tower (1.5) is induced from
(1.9) by the mapping E, — E, . Now let 5, be the canonical bundle over By, ob-
tained as the induced bundle of v, , the universal bundle over BO, . Consider the
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induced bundles over the spaces E;’ and B, . Let ME, and ME), denote the cor-
responding Thom complexes. We have a sequence of maps

(1.10) ME' = ME, — ME._,— --- — ME, .

Now observe that through the m-skeleton, the Serre exact sequence holds for
the fiber space

Fyv—E/ — Ei.
Thus if we look at the ecohomology sequence
H*(ME:/ME,') » H* MEz-) — H*(ME,)
we see that the Thom isomorphism induces an isomorphism
(1.11) H*(F),) =~ H*(ME./ME,)

with a shift of -+ 1 dimensions. The isomorphism (1.11) holds in dimensions
less than or equal to m in H™ (F}). Since the Steenrod algebra A4, acts trivially in
the Thom classes, (1.11) is an As-isomorphism. Therefore, if we let ]lrfff]k' be the
principal fiber space over ME;—, with fiber @'F, and k-invariants {U o ki},
where k; are the k-invariants of B, — Ej—1 and U is the Thom eclass of ME;_,’
we see that ME,’ and ME, coincide at least through r 4+ m dimensions.

Let Y, be the universal example space of an integer cohomology class z of di-
mension ¢ such that ‘

1) all primary cohomology operations vanish on z;

2) all operations with Z; coefficients that raise dimension by less than j(¢)

vanish on z.
For the space Y, we have the following result.

TuEOREM 1.12. There exists a tower of fiber spaces

K(Z r)«—Aye—---— A4,

AN /

p\ Do /pe
ET—ﬂYn

The fiber Gy of Ay — Ay1 is a product of Eilenberg-Maclane spaces and
Gy = QFy, X Sy if k > 1, where Fy, is the (kK — 1)-stage of an Adams resolution
over Z of V,, through dimension m — 1 and Sy is the k-stage of an Adams resolution
over Zy of 87. Also Gy = JIiZi K(Zy, r + 2° — 1) X Q7'F1. The fiber of ps is
(m — 1)-connected. :

The proof of (1.12) is that of theorem A of [8], restricted to the dimensions
stated in (1.12). (Compare Chapter II, section 3 of [8].)
Using (1.12) we can prove
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THEOREMEI’.I& There is a mapping M—1: M E’;i..l —s Ay_y such that under

N~ _
MEx— - Ap fi QR

we have
kk—l*fk-l*(’w) =U <k,

where v; ranges over the fundamental classes of @ 'F), and the k; over the k-invari-
ants of E/ — E,i_l.

Theorem (1.13) is a generalization of the principal results of [9].

" The spaces E) are essentially the spaces Ej in the range of dimensions which
are of interest. Clearly we have '

ProposiTION 1.14. The natural maps By — Ey for k = 0, 1, -+ - , s induce iso-
morphisms H* (By) — H*(B') in dimensions < m and under these isomorphisms,
the k-invariants of Eyi1 — Ei go over into the k-invariants of Erd — Ey .

We are now ready to prove the main theorem; it will be by induction. Namely
we will show inductively that the spaces Ep in (1.4) are H-spaces for
E=0,1,---,s.

Observe that ME;, = =" (B, U pt), since the induced bundle over E; is trivial.

Consider the diagram

"B R (T, r +i(t— 1) — 1)

o . N
(1.15) i ME, Jo
e
? )\1.0

M Ey A1,
where A;, is the fiber épéwe over A, with fiber [[i5 K(Z,, r + 2° — 1). The
map M1,o is clear. The map % makes the triangle commutative and po is the adjoint
of the identity map Eo — E,. This leaves the map j, . We have the diagram

K Zyyr+ 20— 1) > 410 — K(Z,7)

L

Zo MEJ — MO,[j(t — 1)]

where Z, is the fiber of ME, — MO,[j(t — 1)]. Let a; be the fundamental classes
of the spaces K (Zz, r + 21 — 1) in the top row and « the fundamental class of
K(Z, r) Then ra; = Sq” e, and p can be chosen so that p*a; = 0 fors < ¢ — 1.
Now p*a;s = Band 78 = U < W,.1. Stong in [12] has shown that 8 can be
chosen to be a stable primary operation on the class u, 8 = ¢u, where

= U © vjen,and vjen € H 74D (BO,[j (¢ — 1)]) is the fundamental class.
Now since By maps trivially to BO,[j (¢ — 1)], we have a mapping I: Z'Ey — Z,,
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which induces an isomorphism in the first nontrivial cohomology group. This gives
K(J,r+jijt—1)—1)
7
b/
o S .
By — Z OK(Z:,r+2'— 1)

N

ME —— Ai

where h* (@) = u, a is the fundamental class of K(J;, r + 7(¢ — 1) — 1) and
g*as1 = ¢a. Then p ~ gh. This defines j, and Al is homotopic to the adjoint of
the identity mapping £y — E,. Thus (1.15) is homotopy commutative. Assume
now that we have constructed a homotopy commutative diagram

g

ETE_' k—1 2, OE 1

(1.16) T J

Jr1
v

MEy — Ay
where p;_1 is homotopie to the adjoint of the identity. Then by (1.8) and (1.13),
we can take B, = Q'D,, where Dy is the induced fiber space over @ "E;_; , of the
fiber space Ay — Ao, relative to a lifting Jy—; : @ "Ey_1 — A o of j4_1 . It remains,
therefore, to show that given (1.16) for £ — 1, we can produce a diagram such as
(1.16) for k. This will be done in section 2.

2. The main commutativity diagram

Suppose then that we are given the following diagram:

ME, —— QB
(I%-1) Jik—l ljk—l
N _
MEw1 —— Awa = BF;

such that I is homotopy commutative, where px_1 is homotopic to the adjoint
of the identity and fi—1\e—1%-1 is a homotopy adjoint of the classifying map for
E; . The main object of this section is then to establish;

TrreoreM 2.1. The existence of diagram I_y tmplies the existence of diagram I .
This result will follow from the following two lemmas.

Lemma 2.2. Given diagram .1, then there exists a mapping M:ME, — Ay
such that
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ok

ME_k E— Q#rE—k

|

pY
ME, — A4,

|

MEwy, — Apa
18 a homotopy commutative diagram.

LemMa 2.3. There exist mappings gx, i so that the following diagram homotopy
commutes: )

=M0,;]1 s 'y,

/7
91:—1 \gk / G Gy

ME, M AkJ » LBF,

b, \
1
A1

ME;_I —_——> Ak—l T) BFk
Lemma 2.3 shows that we can take the k-invariants of Az.q — A4; in such a
way that they are mapped by A * to the k-invariants of Ej;1 — B cupped with
the Thom class of ME, . Then, using (2.2), we obtain a diagram I .

Proof of 2.2. The adjoint of fi 1M—1ti— is & map Hyy — 'BF; . It induces a
map §:E, — Q' LBF;, where LBF} is the space of paths over BF}, such that we
have a commutative diagram

B —2 o'LBF,

|

' Ek_1 — QTBFIC .
Let g: ME, — LBF), be the adjoint of §. Then we have a commutative diagram,

(2.4) l \\

M.E_’k_1 — MEw _‘ﬁ-‘) BF;,

where u = fi—1hi—1.
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We can extend g to M E, — LBF}, since LBF} is contractible. We will also de-
note by ¢ this extension. We then have

ME, — ME, — LBF,

7| .
ME_'k_1 - ME},.J,. — BFy

Let p:ME, — ME,_; ; it is not necessarily true that up = mg. We now define a
map j which is “homotopic” to u such that gp = mg. We first replace ME;_; by
the mapping eylinder of 5, M3, and similarly we replace M E;_; by the mapping
cylinder of p, M, .

We want to define a map

F:MEk XI— BF],
such that F is an extension of the map

where
ngi(x)  ifx € ME,

Gz, t) = <mg(x) ifx € ME and ¢ =0
up (x) ifx € MEyand t = 1.
Since BF} is a product of Eilenberg-Maclane spaces, we can use obstruction
theory as given in [1, Chapter III] to prove that ¢ can be extended to F. The ob-
structions are readily seen to be zero. Using F' we define
ME, X I U, ME, ,—— BF,
by
Az, t) = F(z,¢)
{ A(y) = ny).
Then
ap(x) = Az, 0) = =g ().
We may extend u itself to u': M, — BF; by setting
{ﬂ'(ﬂ«", t) = up(x)
v () = u@®).

Then £ is homotopic to ', since we have

M.Ek_1—s‘> Mp—:t,-> BF,
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and s = u's, but s is a homotopy equivalence. We thus have a commutative
diagram

ME, — ME. — LBF,
Mz — MP’TBF]G.

We therefore obtain a commutative diagram

ME,~—">a— g

\f
N N
Y (1, g) Al

where fjxpr is an adjoint of g, i.e. fikor = g._
Now we want to define a mapping ¢:ME, — u'' (LBF}) such that

ME]; __Pk__) Q—TE_'k

(25) :pj ij

W (LBF,) —— A4, —— LBF.

is commutative.

We have
ME,—— uE,~%> LBF,
N
1

Q._T.E—'k _— A k;
so, if we define o: ME, — u'{(LBF}) by

e = (s1, g7),
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then ffo (x) = g¢i(z). Now
ME,1— M, — Awa

AN v
\\. //

ME; .

is commutative, so that (2.5) is commutative.
Because the mappings i and p’ are homotopic, there is a homeomorphism
¢: @' (LBF:) — '\ (LBF}). Consider the diagram

ME, — u""(LBF:)

i s

ME, 29 fi'(LBFy).
We now show this diagram is homotopy commutative. Using (2.4) we see that
the mappings u'7 and @:Mp — Mp — BF; coincide. Then the bundles
(u'7)'(LBF:) and (@1)'(LBF}) are naturally homeomorphic under the homeo-
morphism ¥, which acts as the identity.

Let H be a homotopy between p” and ji. Then Hinduces a bundle X over M3 X I
such that above M3 X 0 and M3 X 1, we have the same space (iz)!(LBFy)
(identified under ¢,). Now the homeomorphism y::X — (@)!(LBF:) X I
constructed as in [11; 11.4] gives a homotopy of ¢ | (42)!(LBF%) to ¢o. This
homotopy extends to a homotopy of ¥ giving a map ¢ i (LBF;) — u'' (LBF})
which when restricted to (4z)!(LBF%) is just ¢o. Then ¢/ (s, ¢)i = ¢'(si, gi) =
(s, ¢7) and thus ¢ is homotopic to ¢ (s, g)z.

Consider

ME, 2> o H,

MEx  op'(s,g) A

P
ME k-1 —> A k—1.
N1

The upper square homotopy commutes from the above. Finally if we take ¢
instead of ¥ in the lower square,
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Oy (s, g) (ex) = 0P (sex, ger) = 0(ser, Yger) = (Ne—per, (¥g)ex)

and thus 64 (s, g) makes the above diagram homotopy commutative. Hence
taking 8¢ (s, g) = M, we have established (2.2).

Proof of (2.3). Make X into an inclusion. Let M), be the mapping cylinder of A.
Extend g to My . Now fgr— is nul-homotopic; let Hy be a nul-homotopy. Take
any lifting @:B80,[j] — Ei of BSO,[j] — Ei- . This lifting induces a lifting
Gi :2MO,[j] — MEy of §r1:2MO,[j] — ME_1. Now p\gi represents a null
homotopy of fAi_1gs—'. Also let G be a homotopy between g, s\ and Ne_1g:,
then G, together with pi\iji’, gives another nul-homotopy H; of fg._s\. Since nul-
homotopies are liftings

 LBF,

Ve
’
.«'/
7
/

2'MO.[5] 7 BF,;
the two homotopies Hy\ and H; determine an element @ € [Z0,[j], @BF,], the
difference class. If we take the Thom isomorphism of the map ¢, we obtain a map
&:BO0,[j] — Q'BF; . There exists a lifting ¢: BSO,[4j] — E; whose difference class
with & is just the cohomology classes determined by . If we now use the lifting
given by ¢ to define g, then the difference class between the two liftings pi\ags’
and H, is zero. Indeed,

E ——— BSO0,[j]

! !
K(Z:,j — 1) — BSO[j]

may be induced. Then, if we look at

SUME — 3UMO,[j] — 2V

] A8
1
Ay — BFy,

the Thom isomorphism of the map a; restricted to Z?ME is just the adjoint of
a; . Now, because the difference cohomology classes between liftings are additive
and the new ¢ compares correctly with the lifting going via Q"2Y, , it will do so
after taking adjoints, i.e., after the Thom isomorphism. Since ¢* is a mono-
morphism, the claim follows.

Now extend H, to a nul-homotopy of fgs—1, which commutes with the nul-
homotopy of f\i1ge— given by pi\gi . Thus these two nul-homotopies are com-
patible liftings ¢, and g .
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3. Proof of the remaining propositions
Proof of (1.6). Consider
E=E — - —FH=KU,jit—1)—1)

Lk

E = Eal'—‘) ce —)Eo = BO[j(t)]
and let 5::E; — Er; and @:E — Ej be the fiber maps of the E-tower. Let
pi:Er — Ejx_3 and ¢x: E — Ej be the corresponding ones for the E-tower.

We first observe_ that H* (gi’) =~ H*(B,) ® H*(V,) additively in dimensions
< 2',s0 that H* (B) = H* (B,) ® H*(V,) in this range, and therefore ;*: H™ ()
—H*(E)isa monomorphism in this range. Again H*(B,) =~ H*(B,) @ H*(F,)
and therefore H* (£,) =~ H*(B,) ® H*(F,), so that

w*: H* (B) — H* ()
is a monomorphism in dimensions < 2. Moreover ¢.*:H " (Ey) — H*(E) and
G :H*(B,) — H*(E) are epimorphisms. Then, it follows by [4; (2.8)], that for
E>1
Ker gi—1 = Ker p*
and
Ker gu-1 = Ker pi".

Suppose that we have proved that ¢;* is a monomorphism for j < k and in
dimensions < 2°. We have the Serre exact sequence in the fiber space

Fk_')Ek’L)Ek—l

so that if z € H™ () restricts non-trivially to the fiber, 4. * (z) % 0. Now suppose
z = p’(y) and &*pc* (¥) = 0. Then G*5i"ies (v) = i"q’"P* () = 0, so
@ pe (y) = 0,ie., gi (y) =0, but then p,*(y) = 0 and soz = 0. Thus 4% is a
monomorphism.

Proof of (1.7). Consider
_ _ m - I
By X Ey1— Eja— BFy

T X 'l:lo—IJ, J,'ik—l lidentity

Ei1 X Exa —ZL—)Ek—l _j_";-) BFy.

Thenif o € H* (BF})is afundamental class, we assume that (5—1 X 1) *m ™" (a)
=fia ® 1 + 1 ® fi*a. But since (4_1 X 4%_1)* is a monomorphism, m*f*a =
fita ® 1 + 1 ® fi*e, and we may extend 4., to 4 such that
E, X E_k — E
) I
E; X Ey — E;.
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Proof of (1.13). We have a mapping square

ME —3ZY,

1 l
ME, - K(Z,r)

and up to the range of dimensions of interest, the left fiber space is induced from
the one on the right. Hence when we take Postnikov decompositions of both fiber
spaces, they will map into each other and the k-invariants will map across. But as
remarked after (1.11), the k-invariants for ME, — ME,— are {U < ki}, where
the k; are the k-invariants of B — Ej.
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