
RANDOM EVOLUTIONS AND PIECING OUT OF 
MARKOV PROCESSES 

BY RICHARD J. GRrnGo< 1l AND ALBERTO MoNCAYo< 2l 

Introduction 

In this paper we show the equivalence of two probabilistic methods of solving 
certain systems of partial differential equations. 

Griego and Hersh [1, 3] have shown how to solve systems of differential equa­
tions of the form 

(1) 

where each Ads the generator of a (not necessarily stochastic) semigroup T;(t) on 
a single Banach space Band Q = (q;i) is the infinitesimal matrix of a Markov 
chain. The system (1) is solved by a method of selecting at random by means of 
Markov chain from then semigroups Tlt) thereby obtaining what is termed a 
"random evolution". The average of a random evolution determines a semi­
group, the so-called expectation semigroup, that gives the solutions of (1). This 
method is somewhat analytic in that the only probabilistic mechanism employed 
is that of the Markov chain. 

Heath [2] has given a more probabilistic interpretation of essentially the same 
problem. He used the idea of piecing out of Markov processes, thereby replacing 
the above random evolution by a "pieced process" whose semigroup is associated 
with the system (1). 

The two respective methods have their advantages. Griego and Hersh apply 
their form of the solution of (1) to obtain interesting results about hyperbolic 
partial differential equations including a generalization of a result of Kac about 
the n-dimensional telegraph equation. They are also able to prove a singu­
lar perturbation theorem employing the central limit theorem in a novel 
way. Heath's method allowed him to study boundary value problems associated 
with ( 1) in certain cases. Heath poses and solves a Dirichlet like problem and 
obtains a representation theorem for the solutions. Also, his method relaxes sign 
restrictions on the coefficients q;j that the Griego-Hersh method imposed. How­
ever, Griego and Hersh can handle more general semigroups T;(t) and their 
method is more explicit. 

By the fact that the infinitesimal generator determines a semigroup we see that 
the semigroup obtained from the random evolution and the semigroup obtained 
from the pieced process are in fact the same semigroup. However, it would be of 
interest to directly obtain the random evolution from the pieced process. This 
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would give insight as to how the piecing mechanism relates to the semigroup 
structures. In this article we carry out this connection. As a result we will see why 
the operators in the definition of a random evolution seem to be in reverse order 
of what one would naturally expect. This point until now seemed somewhat 
mysterious. 

_Notation 

We use the notation of [4]. For each i E I = {1, • • •, n} let Xi = (n\ ffii(t), 
X'(t), e/, P,,'; x EE) be a right continuous strong Markov process with left 
limits and state space E, where E is a locally compact Hausdorff space with a 
countable base. Thus the processes X' have a common state space. Let E = 
E U { A} be the one-point compactification of E if E is not compact, otherwise let 
A be an isolated point. For simplicity we assume the sample spaces n• are mµtally 
disjoint and, furthermore, a._"sume ti == oo where r• is the lifetime of X', that is, 
the processes Xi are conservative. 

The composite process 
0 • 

We construct a new process X from the X' -processes as follows. 
Let n° = U i=l n• and <B0 ( t) = er( U i=J <B'( t)), the smallest er-algebra contain­

ing the <B\t). Also, let X 0 (t, w0) = (Xi(t, w•), i) and ei°(w0) =' e/(~•) if 
w0 = w' En·. WedefineP(x,ii°(A) = P,,'(A nn·) for A E <B0 ( oo) = er(Ui CB0(t)), 
x E E and i E I = { 1, • • • , n}. Finally, let t 0 = oo • . .. 

We easily see that X 0 = (rt°, ru0(t), X°(t), ei°, P<x,il0 ; (x, i) E E X I) is a right 
continuous, conservative, strong Markov process with left limits and state space 
S =EX I. X 0 is called the composite process formed from the x•'s. • 

The killed process 

Let V = (W, <B(t), v(t), 81, P;; i E J) be a right continuous (stationary) 
Markov chain with state space I = { 1, • • • , n}. 

We "kill" the composite process X° by means of the chain .V as folfows: let 
r1 be the first jump time for V. . • . 

We define fi = n° X W, &(t) = IB0(t) X ill(t), 0t(w) = (0t°(w0 ), 81(w)). 
Furthermore, 

X(t, w) = X°(t, w0 ) if t < r1(w) where w = (w0, w) or X(t, w) = A otherwise. 

Letl\,,,ii(A XI')= P<x,;/(A)·P;(I'), for A E IB0 (oo), r E CB.(oo} = 
a-( U 1ffi(t)) and (x, i) E S. Finally, we letf(w) = r1( w). 

It is well known that X = (fl, &(t), X(t), 01, P<x,i) ; (x, i) E S) is a. right 
continuous strong Markov process with left limits and state space S = FJ • X I. 
The lifetime of Xis f. We call X the killed process. 

The instantaneous distribution 

Below we will want to piece out the killed process X to obtain a new process of 
interest. In order to accomplish this we must construct an instantaneous distribu-
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tion. We give the following definition relative to our process X, although it is 
clear that the definition holds for more general Markov processes. 

Definition. A real-valued function µ(w, A) on fi X Sis an instantaneous distri­
bution for X if 

( i) for each w E fi, µ(w, ·) is a probability measure on IB(S), the Borel 
sets of S, where we put the natural product topology on S; 

(ii) for each A E CB ( S) , µ( • , A) is an & ( oo ) -measurable function on 
fi;and 

(iii) for each &(t)-Markov time 'l.' and each (x, i) E S, we have, 

l\,,i)(µ(w, ·) = µ,(8Tw, • ), T < f) = P(x,i)(T < f). 

We now construct an instantaneous distribution for X. For w E fi, A = B X 
J E G3( S) where Bis a Borel set in E and J C I, we define 

(2) µ,(w, B X J) = IBxiXv(D)(f-), v(f) ), 

that is, if w = ( w \ w) and v( o, w) = i, then 

µ(w, BX J) = IBxJ(Xi(r1-(w), wi), v(ri(w), w)), 

where f- and n - denote the left hand limts of f and r1 , and I BXJ is the indicator 
function of B X J. By the assumption of the existence of left limits for Xi our 
definition makes sense. 

THEOREM 1. µ is an instantaneous distribution for X. 

Proof. Properties (i) and (ii) are clearly satisfied. Now, let 'l.' be· a &(t)­
Markov time. If 'l.' < f then f O 8'i' = f - 'l.'. Thus, if 'l.' < f 

Xv(D,6T)(f- o 8'i'' 8T) = Xv(f,)(f- - T, 8T) = Xv(D)(f-) 

and 

v(f O 8T, Br) = v(f - 'l', 8'i') = v(f). 

Hence, if 'l.' < f we have µ,(w, ·) = µ(8f,w, •),and this clearly implies (iii), thus 
showing that µ is an instantaneous distribution. 

The pieced process 

Based upon the above instantaneous distribution we can now construct our 
final process, the so-called pieced process. 

Let W' = W/ = fi X Sand CB' = IB/ = &( oo) X CB(S) for i = 1,2, • • • , 
where <B( oo) = u( U1&(t)) and CB(S) = Borel sets of S. We define O = U~1W.' 
and G3 = U~1 IB/. 

Furthermore, we define a stochastic kernel Q((x, i), dw') = Q(:,;,;)(dw') on 
S X W' by 

(3) 

for(x,i) ES=EXlandACW'=fiXS,AE IB'= &(oo) X IB(S). 



MARKOV PROCESSES 25 

As shown in [4] we have the following result. 

THEOREM 2. There exists a unique system 
measures on (SJ, ill) such that for each n ~ 1 

{P<x,i> ,(x, i) E Sl of probability 

(4) 
P<,,,ii(dw/ X dw/ X • • • X dw,,.') 

where 

Now, let X(t, w') = X(t, w) if t < f(w) and X(t, w') = (x, i) if t ~ f(w), 
where w' = (w, (x, i)). 

We now define the sample functions for the pieced process. First, for 
w = (wi', w21, • • ·) E n where w/ = (wi, (xi, i;)) E W' we define N(w) = inf 
{j:f(w;) = Ol, or + oo if the set in brackets is empty. Also. let u .. (,,.,) 

L.7-1 f ( w;). Finally we define 

X(t, w/) if O ::; t ::; u1(w) 

X(t - u1(w), w/) if u1(w) < t::; u2(w) 

if t ~ <TN(co/w). 

It is shown in [4] how to define a--algebras <:B(t) on n and 0t so that X 
(SJ, CB(t), X(t), 0t, P<x,i), (x, i) EE X I) is a right continuous strong Markov 
process with left limits and state space E X I. Clearly t(w) = <TN(col (w) is the 
lifetime of X. We call X the pieced process obtained from the processes X', 
i = 1, · · ·, n, by means of the Markov chain V. We emphasize that EX I, 
not E, is the state space of X. 

In spite of all the complications, the description of the pieced process is 
intuitively very simple. If the Markov chain starts out in its i th state then we 
begin our pieced process X in the i th Markov process X; and let it run until 
the time -r1 of the first jump of the chain ( this is the first piece of X), where­
upon if the chain jumps to thejth state, X switches to X 1 and stays in this process 
until the next jump of the chain and so on. The instantaneous distribution 
merely implies that the new piece takes up at the point in E where the old piece 
left off. 

The random evolution 

We now introduce the analytic structure of our study. We retain our previous 
notation. 
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Let B(E) be the Banach space of bounded real valued CB-measurable func­
tions on E, where CB is the o--algebra of Borel sets of E. The semigroup { T; (t), 
t ?:. 0} of X; is given by T;(t)f(x) = Ex;[f(X'(t))], for i E I, and t ?:. 0, x E E, 
wheref E B(E). We have T; (t) :B(E) ------t B(E). 

Furthermore we assume each semigroup { Ti(t), t ?:. 0} is strongly continuous 
on B(E). 

Let T1 (w), r2 (w), ···be the successive jump times (for the path w) of 
the Markov chain V. Also let N(t, w) be the number of jumps for Vin the. time 
interval [o, t]. 

Fort ?:. 0, we define M(t, w), w E W, by 

(6Y M(t) = Tv(O) (r1)Tv(ri) (r2 - T1) "· Tv(rN(t)) (t - TN(t)),. 

The family of random operators { M ( t), t ?:. 0} is called the random evolution 
associated with the semigroups T; and the Markov chain V. The ,random evo­
lution describes the selection by means of the Markov chain from the 'ri'l~ws of 
evolutions corresponding to the semigroups. The evolution stays in a semigroup 
until the chain jumps to a new state whereupon the evolution e~olves in the 
corresponding new semigroup, except that the last semigroup ( up to time t) 
operates first and so on back to the initial semigroup. 

As explained in f3] the random evolution M ( t) determines a semigroup on 
B(E X I), the Banach space of bounded measurable functions on E X I, 
where the obvious product topology is introduced into E X I. Indeed, if 
f E B(E X I) then 

(7) T(t)f(x, i) = E;fM(t)f(x, v(t))] 

defines the semigroup { T(t), t ?:. 0} where the expectation refers to the chain 
starting in state i. 

H0wever, the pieced Markov process X determines its own semigroup 
{T(t), t?:. 0} onB(E XI). Givenf E B(E XI) we have 

(8) T(t)f(x, i) = Ecx,i) [f(X(t))] 

where the expectation refers to the pieced process starting in state (x, i). 

The main theorem 

• The main result of this article states that the semigroups T(t) ~nd T(t) are 
in fact the same semigroup. Thus we have the following theorem. 

Main Theorem. { T(t), t ?:. O}, the semigroup determined by the random evolu­
tion {M(t), t?:. 0} and given by T(t)f(x, i) = E;fM(t)f(x, v(t))] is equal to the 
semigroup { T(t), t ?:. 0} determined by the pieced process X that is given by 
T(t)f(x, i) = E(x,;i[f(X(t))], wheref EB (EX I). 

The proof will depend on the following lemma. 

LEMMA. Let <P(w, • • • , w; x, i) be a measurable function on W X xwx 
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EX I, where the product involving Wis an n-fold product. Then 

Jw1' Q(x,o(dwi') J W2' Q(x1,i1)(dw/) ''' J Wn' Q<xn-1,in-1)(dwn') 

·cp(w1,W2, ••• ,wn;Xn,in) = Ei[T,,(o)(r1)Tv(T1)(1"2 - r1) 

·Tv(,,._1)(Tn - Tn-1)cp(w,0,1w, ••• ,0r,._1w;x,v(rn)] 

where r i is the jth jump time of the chain V. 

27 

Proof. We first consider the case n = 1, so that cp( w; x, i) is a function on 
W X E X I. Assume cp is of the form cp = hxBXJ , where A, B and J are meas­
urable sets in the respective spaces W, E, and I. Then 

f w1 ' Q(x,i) (dw/)cp(W1; Xi, i1) 

= f w P;(dw1) f n;P/(dwi")h(w1)µ(w1\ W1, B X J) 

fwP;(dw1) f n; P,/(dw1') IAXBXJ (w1, x•<o,wil (r1-(w1), w/), v(r1(w1),w1)) 

E;{ExifhxBxJ(W1, x•<O,wil (r1-(w1), w;'), v(r1(w1), W1))l) 

E;[TvcoJ (r1-)hxBXJ(w1, x, v(r1))] 

E;[T,(o)(n)cp(w1, x, v(n))], 

by the strong continuity of Ti( t). The result for general cp( w; x, i) now follows 
easily. Now suppose n = 2. Applying the above to the function 

v,,(w1;x1,ii) = Jw2 ·Q(,,1 ,; 1) (dw/)cp(w1,w2;X?.,¼) 

we have 

I - Jw1 'Q(x,i)(dw/) Jw2 •Q(x 1 ,i 1)(dw/)cp(w1,w2;x2,i2) 

E;[Tv(O,w1) ( n( W1)) f W2'Q(x,v(ri(w1) ,w1)) ( dw/)cp( W1, W2, X2; i2)] 

E;{ Tv(O,w1) ( nC-w1) )E,(TJ(W1) ,w1)[T,co,w2) ( r1( W2) )cp(w1, W2; x, v( T1( W2), W2))]}. 

Let F(w2) ·= T,(o,w2J (n(w2)),o(w1, w2; x, v(r1(w2), w2)), where W1 is.fi;xed. 
We easily check that r1 ° 0,1 = r2 - r1 , so that • • 

F(0,1(w2)) = Tv(T1(w2),w2)( riw2) - r1(w2)),o(w1' 0,1W2; x, v( T2(w2), W2) ). 

By the strong Markov property of the chain V we have 

Ev(71 (w1) ,w1) [F ( W2)] = E;[F( 0,1 ( W2)) I ij71] ( W1) • 

Hence, 

1.. :=;,, E,[Tv(O)( T1)E,[Tv(, 1)(T2 - r1),o( ·, 0,1 ·; X) v( r2)) I ij, 1]] ' ' . ~ . • • ' . 

= E;[T,(oiCr1)T,(,1J(r2 - r1)i0(w, 0,1w; x, v(r2)] 

finishihg--th~' proof for n = 2. 
The proof in general _proceeds in the same manner, so we omit it. 
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Returning to the proof of the theorem we have 

T(t)f(x,i) E,,,,df(X(t))] 

I::=o E<,,,df(X(t)); N(t) = n] 

where we define N ( t, w) by <TFr(t ,w) ( w) ~ t < CTFr(t,wJ ( w), so that N ( t) is equal 
to the number of piecings up to time t. 

Recall that for w = (wi', w/, • • • ) we have, crn(w) = L.i=l f(w;) 
L1=1 r1(wJ) where w,- = (w/, WJ). Also 

X(t, w) = X(t - <Tn(w), w',,+1) if crn(w) < t ~ CTn+i(w). 

Now, An = {w:N(t, w) = n} = {w: L.i=I r(wJ) ~ t < I:7!lr1(w;) }. On this 
set, t - LJ=1 r1(wJ) < r1(w1+1), so that by the definition of X we have on 
this set X(t - <Tn(w), Wn+i') = X°(t -un(w), Wn+1°), or X(t - crn(w), Wn+i') = 
( Xi ( t - LJ=1 r1 ( w ;) , w~+1), i) for starting point ( x,i). 

Hence, 

E<,,,i>[f(X(t)); N(t) = n] 

= f W1'Q(,,,i)(dw/) • • • f w,,' Q,,,n-1,in_,)(dwn') 

· f wn+i' Q(:cn,i,.)(dwn+i')J(X\t - L.i=l T1(w;)), i) ·h,. 

Now let 

= f Wn+i' Q(Xn,in)(dwn+i')f(X\t - L.t=l T1(w;)), i) ·l~ · 

By the lemma we see that 

E(x,df(X(t)); N(t) = n] 

= E;[Tv(O)(T1) ••• Tv(Tn-1J(Tn - Tn-l)<p(w, 0riw, ···, 0,,._lw;x,v(rn))] 

However, in general r1°0,;_ 1 = r; - T;_,, so that L.i=l ( r 1°0,;_ 1) = Tn, 

where we define ro = 0. 
Thus, for fixed w, 

<p(w, 8qw, • • ·, 0,,._,w; x, v(rn(w), w)) 

where 

h,: = {wn+1:r,.(w) ::;; t < Tn(w) + r1(Wn+1)}. 

Since Q<x,i)(dw') = P,/'(dwi)P,(dw)µ(w, d(x, i)), we have letting v,. = 
v( rn(w), w) that 

<p(w, 0,iw, •• ·, 0,,._lw; x, v,.) = E,,""[f(x•n(t - r,.(w), Wn+1·"), v,.)]P.n(A/) 

= T.,.(t - Tn)f(x, v,.)P.n( An'). 
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We note by the strong Markov property of the chain V that 

Pv,.(A/) = P;({rn St< Tn+1} j ijrn). 

Therefore 

E<z,i>[f(X(t)); N(t) = n] 

= E;[T•(O) ( r1) • • • Tv(r,._1) ( T,. - Tn-1) Tv(r,.)( t - r,.)f(x, v( r,.) )Ei[I r,. I ijr,.]] 
E;[Tv(O)( r1) • • • Tv(r,.)(t - r,.) f(x, v( Tn)); Tn S t < Tn+i] 

E,[T.co)(r1) ••• T•(r,./t- r,.)f(x,v(t));N(t) = n] 

where N(t, w) is the number of jumps in [O, t] for the chain V. 
Summing over n, we obtain finally that 

T(t)f(x, i) = Ecz,i)[f(X(t) )] 

= E;[Tv(O)(T1)Tv(r1)(T2 - Ti) • •. Tv(TN(t)l (t - TN(t)f(x, v(t))] 

E;[M(t)f(x, v(t) )] 

- T(t)f(x, i), 

terminating the proof of the theorem. 
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