ON CERTAIN NON-HOMOTOPY ABELIAN LOOP SPACES

By JOHN R. HARPER

Introduction

5 H.W.

In [3] an example is given of an H-space X such that ΩX has the homotopy type of a product of Eilenberg-MacLane spaces, but when ΩX is considered as an *H*-space with loop multiplication, it does not split this way. The example in [3] is homotopy abelian In this note we give examples Y with the property that ΩY is not homotopy abelian under loop multiplication, but ΩY has the homotopy type of a product of Eilenberg-MacLane spaces.

The examples

Let Q_i be the unique element of the mod 2 Steenrod algebra A satisfying the following conditions.

- a) degree $Q_i = 2^i 1$
- b) $Q_i^2 = 0$
- c) Q_i is primitive.

Let $E_{n,i}$ be the principal fibre space over $K(Z_2, n)$ with fibre $K(Z_2, m-1)$ and k-invariant $b_n \cup Q_i b_n$ where $m = 2n + 2^i - 1$ and b_n is the fundamental class of $K(\mathbb{Z}_2, n)$. We assume $n \geq 2^i - 1$.

Our examples are the spaces $\Omega E_{n,i}$. We clearly have

$$\Omega E_{n,i} \simeq K(Z_2, n-1) \times K(Z_2, m-2)$$

if we ignore the *H*-structure.

The Theorem

The fact that $\Omega E_{n,i}$ is not homotopy abelian is a consequence of the following theorem giving the structure of $H^*(\Omega E_{n,i}; Z_2)$ as a Hopf algebra over Z_2 .

THEOREM. There exists a class $e \in H^{m-2}(\Omega E_{n,i}; Z_2)$ which restricts to the fundamental class of the fibre and with coproduct $1 \otimes e + b_{n-1} \otimes Q_i b_{n-1} + e \otimes 1$.

Proof. To simplify notation, we drop the subscripts n, i and write $K(Z_2, n)$ as K_n . We also delete the coefficient group which is always Z_2 . Define a map $h: K_m \to K_p$ by $h^*(b_p) = Qb_m$. Then the composite hf satisfies $f^*h^*(b_p) =$ $(Qb_n)^2 = \operatorname{Sq}^q Qb_n$, with q = p/2. Since $n \ge 2^i - 1$, $\operatorname{Sq}^q Q$ is admissible. Furthermore hf is an H-map. Consider the following commutative diagram of fibre spaces,

G is the principal fibre space over K_n induced by hf. The map $g: E \to G$ exists because hfp is homotopically trivial. Now consider the functor Ω applied to (1). $\Omega(hf)$ is homotopically trivial. Hence, ignoring the H-structure, we have

$$\Omega G \simeq K_{n-1} \times K_{p-2}.$$

We also have an *H*-map $\Omega g: \Omega E \to \Omega G$. The Serre spectral sequence for the path-loop fibration $\Omega G \to PG \to G$ is a spectral sequence of Hopf algebras over Z_2 . A straightforward argument (as in [3] or [1]) gives an element $w \in H^{p-2}(\Omega G)$ restricting to the fundamental class of the fibre and having coproduct

$$1 \otimes w + Qb_{n-1} \otimes Qb_{n-1} + w \otimes 1.$$

(This uses the admissibility of $\operatorname{Sq}^{q} Q$). We shall use this information and the H-map Ωg to make inferences about the H-structure of ΩE . We claim there exists a class $e \in H^{m-2}$ (ΩE) restricting to the fundamental class of the fibre and with the property that

$$Qe = \Omega g^*(w).$$

To see this consider any class $e' \in H^{m-2}(\Omega E)$ which restricts to the fundamental class of the fibre. Then a glance at the fundamental sequence [2] of ΩE shows

$$\Omega g^*(w) = Q e' + \Omega p^*(r)$$

for some $r \in H^{p-2}(K_{n-1})$. Write the coproduct of e' as

(2)
$$1 \otimes e' + \Sigma_i \Theta_i b \otimes \psi_i b + e' \otimes 1 \text{ with } \Theta_i, \psi_i \in A,$$

and that of r as

(3)
$$1 \otimes r + \Sigma_j r'_j \otimes r''_j + r \otimes 1, r'_j, r''_j \in H^*(K_{n-1}).$$

It is a known fact that $Qb \otimes Qb$ does not appear as a summand of (3). Thus we have

(4)
$$Qb \otimes Qb = \Sigma_i Q \Theta_i b \otimes \psi_i b + \Sigma_i \Theta_i b \otimes Q\psi_i b + \Sigma_j r'_j \otimes r''_j$$

By considering degrees we obtain the fact that if degree Θ_i , degree ψ_i are both positive, then $Q \Theta_i b \otimes \psi_i b$ appears in $\Sigma_j r'_j \otimes r''_j$. Since $r''_j \otimes r'_j$ also appears as a summand of $\Sigma_j r'_j \otimes r''_j$ we know that $\psi_i b \otimes Q \Theta_i b$ appears as a summand of (4). Similarly for each appearance of $\Theta_i b \otimes Q \psi_i b$ in (4) we have the appearance of $Q \psi_i b \otimes \Theta_i b$. From these two facts, we obtain the fact that both $\Theta_i b \otimes \psi_i b$ and $\psi_i b \otimes \Theta_i b$ appear in (2) if degree Θ_i and degree ψ_i are positive. Hence we can find an element s obtained by summing various $\Theta_i b \cup \psi_i b$ such that

$$r = Qs.$$

Set e = e' + s and we obtain $Qe = \Omega g^*(w)$. By the analysis above we see that the coproduct of e is of the form

$$1 \otimes e + \Sigma_i \Theta_i b \otimes b + \Sigma_j b \otimes \psi b + e \otimes 1.$$

In view of the formula for the coproduct of $Qe = \Omega g^*(w)$, a degree argument limits the possibilities to just two,

$$1 \otimes e + Qb \otimes b + e \otimes 1$$

or $1 \otimes e + b \otimes Qb + e \otimes 1$.

The result follows by adding $b \cup Qb$ to e if necessary.

THE UNIVERSITY OF ROCHESTER

References

- [1] J. R. HARPER, On the cohomology of stable two-stage Postnikov systems, to appear.
- [2] W. S. MASSEY and F. P. PETERSON, The mod 2 cohomology structure of certain fibre spaces. Mem. Amer. Math. Soc. 74 (1967), 97 pp.

[3] F. P. PETERSON, A note on H-spaces, Bol. Soc. Mat. Mex. 4 (1959), 30-1.