A NOTE ON ANALYTIC STRUCTURAL STABILITY IN COMPACT M2

以上(不)。

BY CARLOS PERELLÓ

Let *M* be a compact real analytic manifold of dimension 2, which we may assume properly embedded in an euclidean. space of large enough dimension.

Consider now the B-space \mathfrak{X}^r of the C^r -smooth vector fields over M with the C^r norm, where r is some positive integer larger or equal to 1.

We say two vector fields X and Y are equivalent, denoted $X \sim Y$, if there exists a homeomorphism *h* of *M* onto *M* taking the integral curves (orbits) of *X* onto the orbits of *Y.*

We say X is C' -structurally stable if a whole neighborhood of it in \mathfrak{X}' consists of equivalent vector fields. Let Σ^r denote the set of all C^r -structurally stable vector fields in \mathfrak{X}^r . Evidently Σ^r is open.

The following two theorems are due to Peixoto **[1]:**

I. (Genericity): Σ^r is open and dense in \mathfrak{X}^r for all $r \geq 1$.

II. (Characterization): *X* belongs to Σ^r if and only if

0) $X \in \mathfrak{X}^r$

A - 1

1) a) *X* has a finite number of critical elements

b) All the critical elements are non-singular (Non-imaginary eigenvalues)

2) The asymptotic manifolds of *X* intersect transversally

3) There is no non-trivial recurrence.

Let now $\mathfrak{X}_{r}^{\omega}$ denote the subset of \mathfrak{X}^r consisting of all real analytic vector fields on M. Owing to the Weierstrass approximation theorem, \mathfrak{X}_r^{ω} is dense in \mathfrak{X}' . \mathfrak{X}_r^{ω} becomes a normed vector space (non complete) under the C^r -norm.

We say *X*, a member of \mathfrak{X}_r^{ω} , is C_r^{ω} -structurally stable if all vector fields in a whole neighborhood of *X* (in \mathfrak{X}_r ") are equivalent to *X*. Let Σ_r " denote the set of all the C_r^{ω} -structurally stable vector fields on M. Clearly Σ_r^{ω} is open in \mathfrak{X}_r^{ω} .

We prove now:

I'. (Genericity): Σ_r^{ω} is open and dense in \mathfrak{X}_r^{ω}

II'. (Characterization): *X* belongs to Σ_r^* if and only if

0)' X belongs to $\mathfrak{X}, \overset{\omega}{\cdot}$, and

1)', 2)', 3)' the same as **1),** 2), 3) in II.

We first prove $\Sigma^{\omega} = \Sigma^r \cap \mathfrak{X}^{\omega}$. (We drop the subscripts, because II' shows that all the Σ_r^{ω} are the same).

a) $\Sigma^* \supset \Sigma^r \cap \mathcal{X}^*$: As we are using for \mathcal{X}^* the relative topology, the result is immediate: if a small perturbation of X in Σ^r gives an equivalent vector field, the same is true for a small analytic perturbation.

b) $\Sigma^{\omega} \subset \Sigma^r \cap \mathfrak{X}^{\omega}$: As Σ^r is dense we approximate *X* in Σ^{ω} by $\{Y_n\} \subset \Sigma^r$. Each Y_n can in turn (Weierstrass) be approximated by X_n in \mathfrak{X}^{ω} . Hence, for some *n* we have $X \sim Y_n$. (Because Σ^{ω} is open in \mathfrak{X}^{ω}). Now, using II we see that *X* must fulfill $1a$, 2) and 3). On the other hand it must fulfill $1b$, also, or a small analytic perturbation would render a non equivalent vector field. Hence X belongs to Σ^r

To end the proof we have to show the density of Σ^{ω} in \mathfrak{X}^{ω} :

 $\sim 10^6$

 $\sim 2\, \mathrm{M}_\odot$ $\bar{\mathbb{L}}$

οý,

レスト・方 \mathcal{G}_{GAP} , where \mathcal{G}_{GAP} $\frac{1}{2} \left(\frac{1}{2} \right)$. The $\frac{1}{2}$

tij en

Let X be in \mathfrak{X}^{ω} and approximate it by $\{Y_n\}$ in Σ^r . Each Y_n , in turn can be approximated by X_n in $\Sigma^r \cap \mathcal{X}^{\omega} = \Sigma^{\omega}$.

The problem remains on what is the situation when we furnish x^{ω} with a more µatural topology turning it into a complete space.

CENTRO DE lNVESTIGACION DEL **IPN.**

内部

 \mathbb{R}^3

 \sim \sim

W.

÷.

 $\sim 10^{-12}$

 $\Delta\omega_{\rm c}$ and $\Delta\omega_{\rm c}$

 $\sim 10^{-1}$ km

REFERENCES

[1] M. M. PEIXOTO, *Structural stability on two-dimensional manifolds,* Topology **1** (1962), **101-20.**

 $\label{eq:2.1} \Delta_{\rm{max}} = \frac{1}{2} \left(\frac{1}{2} \sum_{i=1}^n \frac{1}{2} \sum_{j=1}^n \frac{1}{2} \sum_{j=1}^n$

 $\chi \to 0$

in S

Vid.

 $\hat{\mathbf{y}}$ is $\hat{\mathbf{y}}$.