A NOTE ON ANALYTIC STRUCTURAL STABILITY IN COMPACT M²

· · · · · ·

By Carlos Perelló

Let M be a compact real analytic manifold of dimension 2, which we may assume properly embedded in an euclidean space of large enough dimension.

Consider now the B-space \mathfrak{X}^r of the C^r -smooth vector fields over M with the C^r norm, where r is some positive integer larger or equal to 1.

We say two vector fields X and Y are equivalent, denoted $X \sim Y$, if there exists a homeomorphism h of M onto M taking the integral curves (orbits) of X onto the orbits of Y.

We say X is C^r -structurally stable if a whole neighborhood of it in \mathfrak{X}^r consists of equivalent vector fields. Let Σ^r denote the set of all C^r -structurally stable vector fields in \mathfrak{X}^r . Evidently Σ^r is open.

The following two theorems are due to Peixoto [1]:

- I. (Genericity): Σ^r is open and dense in \mathfrak{X}^r for all $r \geq 1$.
- II. (Characterization): X belongs to Σ^r if and only if
 - 0) $X \in \mathfrak{X}^r$
 - 1) a) X has a finite number of critical elements
 - b) All the critical elements are non-singular (Non-imaginary eigenvalues)
 - 2) The asymptotic manifolds of X intersect transversally

3) There is no non-trivial recurrence.

Let now \mathfrak{X}_r^{ω} denote the subset of \mathfrak{X}^r consisting of all real analytic vector fields on M. Owing to the Weierstrass approximation theorem, \mathfrak{X}_r^{ω} is dense in \mathfrak{X}^r . \mathfrak{X}_r^{ω} becomes a normed vector space (non complete) under the C^r -norm.

We say X, a member of \mathfrak{X}_r^{ω} , is C_r^{ω} -structurally stable if all vector fields in a whole neighborhood of X (in \mathfrak{X}_r^{ω}) are equivalent to X. Let Σ_r^{ω} denote the set of all the C_r^{ω} -structurally stable vector fields on M. Clearly Σ_r^{ω} is open in \mathfrak{X}_r^{ω} .

We prove now:

I'. (Genericity): Σ_r^{ω} is open and dense in \mathfrak{X}_r^{ω}

II'. (Characterization): X belongs to Σ_r^{ω} if and only if

0)' X belongs to \mathfrak{X}_r^{ω} , and

(1)', 2)', 3)' the same as 1), 2), 3) in II.

We first prove $\Sigma^{\omega} = \Sigma^{r} \cap \mathfrak{X}^{\omega}$. (We drop the subscripts, because II' shows that all the Σ_{r}^{ω} are the same).

a) $\Sigma^{\omega} \supset \Sigma^{r} \cap \mathfrak{X}^{\omega}$: As we are using for \mathfrak{X}^{ω} the relative topology, the result is immediate: if a small perturbation of X in Σ^{r} gives an equivalent vector field, the same is true for a small analytic perturbation.

b) $\Sigma^{\omega} \subset \Sigma^r \cap \mathfrak{X}^{\omega}$: As Σ^r is dense we approximate X in Σ^{ω} by $\{Y_n\} \subset \Sigma^r$. Each Y_n can in turn (Weierstrass) be approximated by X_n in \mathfrak{X}^{ω} . Hence, for some n we have $X \sim Y_n$. (Because Σ^{ω} is open in \mathfrak{X}^{ω}). Now, using II we see that X must

fulfill 1a), 2) and 3). On the other hand it must fulfill 1b), also, or a small analytic perturbation would render a non equivalent vector field. Hence X belongs to Σ^r

To end the proof we have to show the density of Σ^{ω} in \mathfrak{X}^{ω} :

Let X be in \mathfrak{X}^{ω} and approximate it by $\{Y_n\}$ in Σ^r . Each Y_n , in turn can be approximated by X_n in $\Sigma^r \cap \mathfrak{X}^{\omega} = \Sigma^{\omega}$.

The problem remains on what is the situation when we furnish \mathfrak{X}^{ω} with a more natural topology turning it into a complete space.

CENTRO DE INVESTIGACION DEL IPN.

References

 M. M. PEIXOTO, Structural stability on two-dimensional manifolds, Topology 1(1962), 101-20.

Sec. 1

í.