ON THE ISOMORPHISMS OF BOOLEAN RINGS

BY ALEXANDER ABIAN

It is well known that the Stone isomorphism θ (see below) of a Boolean ring *B* maps *B* into a ring of sets. In this paper we prove that if *B* is an infinite Boolean ring (not necessarily with a unit) then θ is not onto. Moreover, there exists a subset *H* of *B* such that

$$
\bigcap \theta[H] \qquad \text{or} \qquad \bigcup \theta[H]
$$

is not in the range of *0.*

Let us recall that a Boolean ring is a ring B such that $x^2 = x$ for every $x \in B$, and that \leq is a partial order in *B* where \leq is defined by:

$$
(1) \t x \leq y \t \text{if and only if} \t xy = x
$$

for every element *x* and *y* of B. Moreover, a nonzero element *a* of Bis called an *atom* $[1, p. 27]$ of *B* if and only if for every element *x* of *B*

(2)
$$
x \le a
$$
 implies $x = a$ or $x = 0$

i.e., if and only if for every element *x* of *B*

$$
(3) \hspace{1cm} ax = a \hspace{1cm} or \hspace{1cm} ax = 0
$$

Let us recall that a subset *M* of *B* is called an *ultrafilter* of *B* if and only if $B - M$ is a proper prime ideal of B. It is well known [2, p. 105] that for every subset F of B if $0 \notin F$ and if F is closed under multiplication then there exists an ultrafilter M of B such that $F \subset M$. It can be readily verified that if M is an ultrafilter of *B* with $a \in M$ and $b \in M$ then $ab \in M$ and vice versa.

There exists always an isomorphism from a Boolean ring *B* into a ring of sets, where the set-theoretical symmetric difference and intersection are respectively taken as addition and multiplication, and, where

(4) \leq *corresponds to* \subset

One of the abovementioned isomorphisms is the Stone isomorphism θ of *B* defined by:

(5)
$$
\theta(x) = \{M \mid M \text{ is an ultrafilter of } B \text{ and } x \in M\}
$$

Clearly, θ maps B into the ring of sets of all the subsets of the set of all the ultrafilters of B, see [3].

LEMMA 1. Let M be an ultrafilter of a Boolean ring B and let $a = \inf M$. Then *either a is an atom of B and a* \in *M or a* = 0.

Proof. Let us observe that if $x \in B$ is a nonzero lower bound of M, then by (1) we have $xm = x \neq 0$ for every element *m* of *M*. But then $x \in M$ because otherwise, M $\bigcup \{x\}$ *with* $0 \notin (M \cup \{x\})$ would be closed under multiplication implying that the ultrafilter M of B is properly contained in another ultrafilter of B,

which is a contradiction. Now, let $a \neq 0$ and $a = \inf M$. Thus, $a \in M$. If $x \in B$ is such that $x \neq 0$ and $x \leq a$ then *x* is a nonzero lower bound of *M* and hence $x \in M$. But then $a \leq x$. Consequently, $x = a$ which in view of (2) implies that *a* is an atom of *B.*

LEMMA 2. *Let B be an infinite Boolean ring with a unit e. Then e is not a finite sum of atoms of B.*

Proof. Assume the contrary, and let $e = a_1 + \cdots + a_n$ where a_i is an atom of B for $i = 1, \dots, n$. Let x be an element of B. Then $x = ex = (a_1 + \dots + a_n)x =$ $a_1x + \cdots + a_nx$, which in view of (3) implies that every element *x* of *B* is a sum of some of a_i with $i = 1, \dots, n$. But this contradicts the fact that *B* is infinite.

LEMMA 3. *Let B be an infinite Boolean ring with a unite. Then there exists an ultrafilter M of B such that no atom of Bis an element of M.*

Proof. Consider the set

 $F = {e + f | f is a finite sum of atoms of B}$

Let $e + f_1$ and $e + f_2$ be elements of *F*. In view of (3) it is obvious that $f_1 f_2$ is a finite sum f_3 of atoms of *B*. Consequently, $(e + f_1)(e + f_2) = e + f_1 + f_2 + f_3$ and therefore, $(e + f_1)(e + f_2)$ is an element of *F*. Thus, *F* is closed under multiplication. Moreover, $0 \notin F$ since otherwise $0 = e + f$, i.e., $e = f$, contradicting Lemma 2. Thus, there exists an ultrafilter *M* of *B* such that $F \subset M$. We claim that no atom *a* of *B* is an element of *M*. Because, if $a \in M$ then $(e + a)a$ $a + a = 0$ would be an element of M, contradicting that $0 \notin M$.

LEMMA 4. Let θ be the Stone isomorphism of a Boolean ring B. Then $\theta(a) = \{M\}$ *if and only if a is an atom of B and M is an ultrafilter of B with* $a \in M$ *.*

Proof. Let $\theta(a) = \{M\}$. Since $\{M\} \neq \emptyset$, we see that $a \neq 0$. Now, let *x* be an element of *B* such that $x \le a$. But then by (4), we have $\theta(x) \subset \theta(a) = \{M\}.$ Thus, $\theta(x) = \{M\}$ or $\theta(x) = \emptyset$ implying that $x = a$ or $x = 0$. Hence from (2) it follows that *a* is an atom of B. Clearly, (5) implies that M is an ultrafilter of B and $a \in M$.

To prove the converse, in view of (5) , it is enough to show that if M and N are ultrafilters of *B* such that $M \neq N$ and $a \in M$ for some atom *a* of *B*, then $a \notin N$. Assume on the contrary that $a \in M$ and $a \in N$. Since $M \neq N$, there exists $b \in B$ such that, say, $b \in N$ and $b \notin M$. But then since N is an ultrafilter $ab \in N$, and, since $0 \notin N$, from (3) it follows that $ab = a$. Thus, $ab \in M$ which in view of the fact that *M* is an ultrafilter implies $b \in M$ which is a contradiction.

LEMMA *5. Let B be an infinite Boolean ring with a unit. Then there exists an ultrafilter* M of B such that $\{M\}$ is not in the range of the Stone isomorphism θ of B.

Proof. By Lemma 3, there exists an ultrafilter *M* of *B* such that no element of

46 ALEXANDER ABIAN

M is an atom of B. But then by Lemma 4, we see that $\{M\}$ cannot be in the range of θ .

THEOREM 1. *Let B be an infinite Boolean ring. Then there exists a set V of ultrafilters of B such that V is not in the range of the Stone isomorphism* θ *of B.*

Proof. Assume on the contrary that every set of ultrafilters of *B* is in the range of θ . This would imply (since θ is an isomorphism) that B is a complete Boolean ring. Consequently, B would have a unit. But then by Lemma 5, for some ultrafilter M of B, the set $\{M\}$ would not be in the range of θ , contradicting the above assumption.

In view of Theorem 1, we have the following:

COROLLARY 1. For no infinite Boolean ring B does the Stone isomorphism of B *map B onto the set of all the subsets of the set of all the ultrafilters of B.*

Next, we prove:

THEOREM 2. Let B be an infinite Boolean ring. Then there exists a subset H of B *such that*

(6) $\bigcap \theta[H]$ *or* $\bigcup \theta[H]$

is not in the range of the Stone isomorphism 0 of B.

Proof. Since *B* does not necessarily have a unit, two cases may occur:

(i) There exists an ultrafilter *M* of *B* such that $\{M\}$ is not in the range of θ ,

(ii) for every ultrafilter *M* of *B* the set $\{M\}$ is in the range of θ .

Let (i) occur. We show that $\bigcap \theta[M]$ is not in the range of θ . Assume on the. contrary and let $\theta(a) = \theta[M]$ for some element *a* of *B*. But then from (4) it follows that $a = \inf M$. Hence, in view of Lemma 1, either a is an atom of B and $a \in M$, or, $a = 0$. But the first alternative is impossible since then (5) and Lemma 4 would imply that $\theta(a) = \{M\}$ which would contradict (i). Likewise, the second alternative is impossible since if $a = 0$ then on the one hand $\theta(a) = \emptyset$ whereas on the other hand, by (5), for every element *m* of *M* we would have $\{M\} \subset \theta(m)$ which would imply $\{M\} \subset \bigcap \theta[M] = \theta(a) \neq \emptyset$.

Thus, if (i) occurs then (6) is valid for $H = M$.

Next, let (ii) occur. By Theorem 1 there exists a set $V = \{M, N, K, \cdots\}$ of ultrafilters M, N, K, \cdots of B such that V is not in the range of θ . However, by (ii) there exist elements (in fact atoms) m, n, k, \cdots of *B* such that $\theta(m) = \{M\}$, $\theta(n) = \{N\}, \theta(k) = \{K\}, \cdots$ let $H = \{m, n, k, \cdots\}.$ Clearly,

$$
\bigcup \theta[H] = \{M, N, K, \cdots\} = V
$$

and since V is not in the range of θ , we see that if (ii) occurs then (6) is valid.

As expected, a Boolean ring is called *complete* if and only if every subset of *B* has infimum (or supremum) with respect to \leq , as given in (1).

Based on Theorem 2 we have the following:

COROLLARY 2. *Let 0 be the Stone isomorphism of a complete infinite Boolean*

ON THE ISOMORPHISMS OF BOOLEAN RINGS 47

ring B. Then there exist subsets E and G of B such that

 θ (inf E) $\neq \theta$ θ [E] and θ (sup G) $\neq \theta$ θ [G]

Proof. If $\bigcap \theta[H]$ mentioned in (6) is not in the range of θ , then it is enough to take $E = H$ and $G = \{e + h | h \in H\}$. On the other hand, if $\bigcup \theta[H]$ mentioned in (6) is not in the range of θ , then it is enough to take $E = \{e + h | h \in H\}$ and $G = H$. Clearly, e is the unit of B which exists since B is complete.

Remark. Corollary 2 shows that the Stone isomorphism of a complete infinite Boolean ring preserves neither infima nor suprema. Thus any isomorphism from a complete infinite Boolean ring *B* into a ring of sets which preserves infima (or suprema) cannot be the Stone isomorphism of B.

IowA STATE UNIVERSITY AMES, IOWA

REFERENCES

[l] R. SIKORSKI. Boolean Algebras, Springer Verlag, Berlin 1964.

(2] N. H. McCOY. *Rings and ideals.* The Carus Mathematical Monographs, No. 8, Published by the Math. Assoc. Amer. 1948.

[3] A. ABIAN, *The stone space of a Boolean ring,* L'Enseignment Mathematique, 11 (1965), 194-98.