DEHN’S CONSTRUCTION ON KNOTS

By F. GoNzALrz-AcUuRa
1. Introduction

Our main concern is the study of homology 3-spheres obtained by Dehn’s
method, i.e. by removing a knotted solid torus from 8° and sewing it back in a
different way. ‘ o

Several people have considered a homology cobordism invariant x of homology
3-spheres (see e.g. [15] or §2).

In this paper we are interested in the following two questions:

1. What is the p-invariant of homology spheres obtained by Dehn’s method?

2. Can the fundamental group of such a homology sphere be trivial?

The answer to the first question is given by Theorem 4 which says that
p = v-x where x is the Arf invariant of the core of the solid torus we are removing
and v is an integer which indicates how the solid torus is sewn back.

The second question is more difficult. A conjecture might be that the funda-
mental group of a 3-manifold obtained by removing a knotted solid torus from
S? and sewing it back differently is never trivial.

This conjecture is true if the core of the solid torus is a torus knot ([39, §13];
see also [13]). o

A modification of the proof of [31, Satz 1], using a remark in [2, page 101],
shows that the conjecture is true if the core of the solid torous is a composite
knot.

We also prove the conjecture if the core is a doubled knot, a cable knot of type
r, s with 7 % 1 and rs # 2, or a knot contained in a knotted solid torus with zero
winding number and non-zero self-linking in it. :

As a consequence we obtain that knots of any of the types mentioned above
are characterized by the topological type of their complement or, in view of
Waldhausen’s results ([43]), by the group system of the knot. Another conse-
quence is that a homotopy 3-sphere is S’ if it is the disjoint union of a (tame or
wild) solid torus and the complement of any of the previously mentioned knots.

As by-products we obtain some contractible 4-manifolds different from D
links cobordie to zero which are not slice links in the weak sense (see [16]) and a
sharpening of a result of Burde and Zieschang: the only Neuwirth knots of
genus 1 are the trefoil and figure eight knots.

Bing and Martin ([3]) have independently obtained some of the results of this

paper.
I should like to express my sincerest gratitude to Professor R. H. Fox for his

encouragement and supervision of this work which formed part of my thesis at
Princeton.
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» 2. The group 3¢°
We will define the group 3¢’ of homology 3-spheres.

DeriNirioN. Two oriented closed manifolds My, My are homology-cobordant
if there is an oriented cobordism W between them such that the inclusion of M;
in W induces isomorphisms in all homology groups for ¢ = 0, 1.

Clearly homology-cobordism is an equivalence relation.

If M is an oriented manifold we denote by —M the manifold obtained from
M by reversmg the orientation.

Let 3¢’ be the set of homology-cobordism classes of oriented homology 3-spheres
(A homology 3-sphere is a closed manifold with the same homology groups as S°).

It is not difficult to see that the connected sum (see [17]) induces an abelian
group structure in 3¢°. The trivial element of 3¢* is represented by any oriented
homology 3-sphere which bounds an acyclic manifold; the inverse of the clags
represented by M is represented by — M.

Higher dimensional analogues of 3¢’ and groups of pairs of homology spheres
are studied in [11]. For example, if we are working in the differentiable category,
3C" is isomorphic to the Kervaire-Milnor group 6" of homotopy n-spheres ([17])
for n # 3. In the PL category 3" is trivial for n # 3 and in the topological
category 3C" is trivial for n = 3, 4. ’

The structure of 5¢° is not known. A homomorphism u:3¢* — Z, can be defined
using Rohlin’s theorem ([37]) as follows:

If M° is a homology sphere, let W* be a simply connected manifold with even
quadratic form which has M° as boundary. (See e.g. [14]). The signature (index)
of W*is a multiple of 8 because its quadratic form is unimodular and even ([41]).
Define

w(M°]) = o(W*)/8 mod 2

where o denotes s1gnature

To see that u is well defined suppose that Wy* B W' are 1-connected mamfolds
with even quadratic form and that bW, = bW," = M>. Pasting together W;and
W, by the identity map on M, we obtain a simply connected closed manifold
W* with even quadratic form. The quadratic form of W is the direct sum of the
quadratic forms of Wi and —W,. Hence W has an even quadratic form and

o(W) = a(W1) — o (W2).
By Rohlin’s theorem ([37]), o (W) is a multiple of 16 so that
G'(W1)/8 = G'(Wz)/s mod 2,

If M° bounds an acyclic manifold ¥* we can do surgery on int ¥* to change ¥
into a simply connected w-manifold W* The quadratic form of W*is even (see
[27], Lemma 3) and, since surgery does not change the signature, ¢ (W*) =

Hence p is well defined.
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If W* is the connected sum along the boundary of W,* and W' we have
e (W) = a (W) + o (W,') so that p is a homomorphism.

u is onto. For example, the dodecahedral space bounds a 1-connected manifold
with even quadratic form of signature 8. (See [15] and also §5.)

3. Notation

We shall be concerned mainly with the study of homology 3-spheres obtained
by Dehn’s method i.e. by removing a neighborhood of a knot in S* and sewing it
back differently.

Let V be the union of a disjoint collection of tame solid tori in S°. Let V3 , Va,
-+« , V. be different (but not necessarily all) components of V and let o1, a2,

-+, an be simple closed curves contained in bVy, bV,, ---, bV, respectively.
Assume that a; is not contractible in bV for ¢ = 1, --- | n. Now, construct a
3-manifold as follows. Let ¢;:8" X bD*—bV,i = 1, - - - ,n be homeomorphisms

mapping 1 X bD’ onto a; . Now, in the disjoint union
(8 —int V) + (8 X D*)1+ -+ + (8 X D),

identify € (8" X bD?); with ¢;(z).

The resulting manifold will be denoted by M (V, a) where & = U;a;. It does
not depend on the choice of ¢;s. Define M (V, &) as 8° — int V and M (3, &)
as S°.

We give to S° a canonical orientation and orient 2/ (V, &) in such a way that
M (V, &) and S* induce the same orientation in 8° — int V.

By [44] or [23], every closed orientable 3-manifold is homeomorphic to M (V, &)
for some V and a.

The following properties are easy to establish.

3.1 If V" is the union of another collection of disjoint solid tori and if there is a
homeomorphism % from S° — int ¥V onto S* — int V™ then M (V, a) is homeo-
morphic to M (V¥, &*), where a® = h(a).

3.2 If &/ is a simple closed curve on bV isotopic (or equivalently, by [1], homo-
topic) to a; in bV;4i = 1, -+, n, then M (V, &) is homeomorphic to M (V, o)
where (xi = U,' Olii. )

3.3 If a component oy of & bounds a disk in a component V;, of V then M (V, &)
is homeomorphic to M (V — Vi, a — az).

4. The u invariant of M(V, «)

Let V be a tame solid torus and let & be its core. The Arf invariant x (k) of k
is defined by
x(k) = ELl V2i1,9i1Ve:,2: od 2

where (v;;) is a 2k X 2k Seifert Matrix for & ([21], [36], [29]).
It can be shown ([21], [29]) that

() = 0 if the determinant of k is 4=1 mod 8
X ~ |1 if the determinant of & is 43 mod 8
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An oriented simple closed eurve « on the boundary bV of the solid torus V
represents an element m® ” of m (bV'), where m and # are represented by a meridian
and a longitude respectively. If p > 0 the orientation of « may be so chosen that
pis positive. Since H, (M (V, «)) is eyclic of order p, M (V, o) is a homology sphere
if and only if p = ==1, i.e., if and only if p = 1 when « is properly oriented.

TaBorEM 4. Let V be a closed regular neighborhood of k and let a be an oriented
stmple closed curve on bV representing the element mt * € w1 (bV ) where m and { are
represented by a meridian and longitude respectively. Then, if u:5° — Zy is the
homomorphism defined in § 2, we have

MV, a)]) = v-x(k)

where x (k) 1s the Arf invariant of k
For instance, if M is the dodecahedral space or if M is the example in [2,

page 102] then u([M]) = 0.

Proof of Theorem 4. We may assume that k& and V are differentiable sub-
manifolds.

Let B, = By’ X D +4 B® X Dy’ where By’, Dy, B, D;® are 2-disks and
% identifies bB;" X D’ with bB:> + D;® as follows. If we think of the 2-disks as
copies of the unit disk in C, A:6By* X D;* — bBy® X 8¢’ is defined by

h(e", pe”) = (&7, p'™).

The disks and their boundaries have canonieal orientations.

Now define an imbedding ¢:B;* X bD,* — bD* = §* with ¢ (B* X bD’) = V
e ({0} X bD)®) = k and such that the image, under ¢, of the oriented curves

bB;* X 1and 1 X bD;® are, respectively, an oriented meridian represented by m
and an oriented longitude represented by {. Then we have that

(*) oh (bB. X {1}) is a eurve homotopic to « in bV.

In the disjoint union B, + D* identify & € By* X bDy’ with ¢ (z) € bD* to
obtain a 4-manifold W* which can be given a natural differentiable structure.
By (*) and 3.2, bW* is homeomorphic to M (V, ).
Let Si = {0} X D;’U Ck where Ck denotes the cone over &k with vertex
0€ D" Tet S’ = (B X {0}) U (B X {0}).
Oriented properly S;® and S° represent, respectively, classes z and y which
generate Hy(W*) ~ Z @ Z with the following intersection numbers

zz=0 zy=yz=1 and Y-y = =,

If » is even the quadratic form of W* is even and its signature is zero, so that
WM (V, ) = 0. |

Now consider the case where » is odd.

Let Y* be a simply connected smooth manifold with even quadratic form and
bY* = bW* (see [14]). Let o be the signature of Y*, Pasting together W* and — ¥*
by the identity map on their boundaries we obtain a simply connected closed

J



62 F. GONZALEZ-ACUNA

orientable, smooth manifold N*. The sphere Sy’ € W* < N*is the image of a
combinatorial imbedding of the 2-sphere into N*. It has one singularity at the
vertex of Ck. Since M (V, a) is a homology sphere there is a natural isomorphism

~
~

ix + jeiHa(W*) + Hy(—Y*) ———  Hy(N*)
where ¢:W*— N* and j:Y*— N*are the inclusions. If z € H,(N*)is in the image
of js wehaveix(x) 2 = 0andz-zis even. Also 74 () -4+ (y) = 1and 44 (y) 74 ()
= 4v.Hence, if z' € Hy (N*; Z,) is the mod 2 reduction of ix@), 22 = 22
for all z € Hy(N*; Zs).
By Wu’s formula 7 (z) is therefore dual to the Stiefel Whitney class w, (N*)
i.e. the natural homomorphisms

Hy(N*; Zo) — Hy(N*; Zo) — H'(N'; Z2)

(reduction mod 2 followed by Poincaré duality) carry ¢« (z) to we (N*).
Hence, there is an imbedding of S* into N* having 8" as image, which is ad-
missible for the knot % in the sense of [36] and

x (k) = (ix(2)-ix(@) — o(N*))/8 = o (N*)/8 = u((M (V, &)]) mod 2.
Consequently, the formula
p(M(V, @)]) = v-x (k) mod 2

holds both for » even and » odd. This completes the proof of the theorem.

Let ko and %; be cobordant knots ([9]). Then there is a locally flat annulus
A% in 8 X I, which we may assume is a differentiable submanifold, with
A* N (8* X {i}) = ki, 7 = 0, 1. Let W* be a tubular neighborhood of A* in
S® X I.Write V; = W 0 (8° X {7} ). W is homeomorphic to 4*> X D*and V,, V;
are solid tori. Let m; and #; be respectively an oriented meridian and longitude in
bV = 0, 1. We assume that the orientations are chosen in such a way that m,
is homotopic to m, and % is homotopic to 4 in bW — int (Vo U V;). Also m., &
will denote the elements of n(bV;) represented by the corresponding curves.

Now, let » be an integer. Suppose that «; is a curve on bV, which represents,
with some orientation, the element m.i,".

Proposrrion4.1. If (Vo, a0) and (V1, au) are as described above, then M (Vo , an)
and M (V1, ar) are homology-cobordant.

Proof. Construet the manifold Y* = 8 X I — W 4+, 8" X D* X I where
h:dbW — int (Vo U V1) — 8' X bD* X I is a diffeomorphism onto, which maps
a; onto {p} X bD* X {i},p € 8", ¢ = 0, 1.

" Y*is a cobordism between M (Vo, a) and M (Vi , e1). By considering a Mayer-
Vietoris sequence it is seen that

0 if g 0,3
Ha<Y">={z1fZ=o 3

It follows, then, from the homology sequence of the pair (Y*, M (V;, a:))
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1 =0, 1, that M (Vo, a) and M (V1, a;) are homology cobordant. This completes
the proof

Consequently, for every mteger v, a map D,:6°" — 3¢ can be defined by
D, ([k]) = [M (V, )] where V is a tubular neighborhood of % and « is an oriented
curve on bV representing the element m#’. Here we assume that the oriented
meridian, represented by m, has linking number 1 with & when £ is given the
orientation which makes it homotopic in V to an oriented longitude representing
%. I do not know whether D, is 2 homomorphism or not.

The diagram

31*—"—"3(’,3

is commutative (Theorem 4).

Proposition 4.1 says, in particular, that if ¥ is a regular neighborhood of a
slice knot &, then M/ (V, @) bounds an acyelic manifold, provided that the linking
number of « and & is £1. .

For example, if k is the stevedore’s knot (see [7], Example 10), and V s a
regular neighborhood of k, then M (V, a) even bounds a coniractible manifold. To
see this consider the 2-disk D*imbedded in the 4-disk D*, with D* NbD* = bD* = k,
described in Example 10 in [7]. We remove a ﬁeighborhood of D*in D* and sew
it back in such a way that we obtain a manifold W,* havmg M (V, a) as boundary.
One can see that W," is acyclic. The group ™ (D — D”) has a presentation
{z, a; xa” = ax}. The fundamental group of W,* is obtamed by ad301mng to thls
group the relation m# = 1 where m = z and ¢ = & °ad "z’ ‘@ 'z ‘aza z’.
One can see that, in the presence of the relation za’ = au, the relation m¥’ = 1 is
equivalent to 2 = @”. It is now easy to see that

m(W,}) = {, a; za® = az, z = o}

is trivial. It follows that w,!is contractible.

By Theorem 5, if » 5 0 the boundary of W,* is not simply connected so that
W, is not the 4-disk. Examples of such contractible 4-manifolds have been given
by Poenaru ([35]), Mazur ([26]) and Curtis.

Furthermore, if » is even W,* X I = D°. To verify this it suffices to show, be-
cause of the Poincaré Conjecture in dimension 5, that the boundary of W,* X I,
i.e. the double of W,", is S

The double of W,* can be obtained. as follows. Take two copies (D%, D),
(D_*, D_?) of the pair (D*, D*) given above. Paste the two copies by the identity
map on their boundaries to obtain a knotted 2-sphere D,’UD_*in §* = D,*UD_*
Let N be a tubular neighborhood of D,* U D_*in §* There is a diffeomorphism ¢
from (D,* U D_*) X D’ onto N. Now in the disjoint union (S* — int N') -+
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(D2 U DY X D* identify (z, €?) € D X bD*e = -+, — with
0 (€2, €”) € bN where all 2-disks are considered as the unit disk in the
complex numbers. The resulting manifold is the double of W,k

If » is even, then the autohomeomorphism of (D, U D_?) X D’ which
carries (z., €”) to (¢”%., €”) is isotopic to the identity map. It follows that,
if » is evern, the double of W, is 8*. Hence, by the Poincaré Conjecture in dimen-
sion 5, W,* X I ~ D®if  is even. The examples given by Poenaru and Mazur
also have the property that their product with the unit interval is D°.

5. Doubled knots

Now we will look at the fundamental group of homology spheres obtained by
Dehn’s method. We consider in this section doubled knots ([45], [7] page 144).

TEEOREM 5. Let V be a tame solid torus in S° whose core is a nontrivial doubled
knot and let a be a simple closed curve on bV which does not bound a disk in V. Then
M (V, a) ts not simply connected. .

We will prove the theorem first for the case where the core is the double of a
nontrivial knot. In this case there is a knotted solid torus W which contains V in
its interior and there is a, not necessarily faithful, homeomorphism from W onto
an unknotted solid torus Vy" which maps V onto the unknotted solid torus V»
as shown in Fig. 1 b).

Let o be the image of o under this homeomorphism; oy is not a meridian. Let
Vi = 8 — int V. The manifold M (V, ) can be expressed as (S° — int W) U
(W — int V) 45 8" X D* where h:bV — §' X bD” is a homeomorphism that
maps « onto 1 X bD’, 1 € S

The homomorphism 7 (b (S* — int W)) — 71 (S* — int W) induced by inclusion
is & monomorphism since W is knotted.

(W — int V) 4+, 8" X D? is homeomorphic to (Vy' — int V3) +4 8' X D?
where k:bV, — 8' X bD*? is a homeomorphism which carries o to 1 X bD?; this
is precisely M (V1 U Va, o).

Now, there is an autohomeomorphism of S* which maps V; onto V, and V,
onto V1. Let a; be the image of o under this homeomorphism ; a; is not & meridian
i.e. it does not bound a disk in V3. By 3.1 M (V1 U V3, az) is homeomorphic to
MV UV, ). W H,(M V1 U7V, an)) # Z, M(V, a) will not even be a
homology sphere. The group Hy(M (Vi U Vi, a1)) is Z only if oy, with some
orientation, represents an element of 7;(b¥7) of the form mi * where m is repre-
sented by a meridian and by a longitude of bV;. We may assume this is the
case. Since oy is not a meridian » # 0. Then there is a disk D’ in S? such that
D N V; = bD and D (N o consists of one point. We obtain a homeomorphism of
S® — int Vi onto itself as follows. Cut 8° — int V; along D. Twist one of the now
exposed faces through » revolutions and sew back together along D. If the twist-
ing is done in the right direction, the image of «; under this homeomorphism will
be a meridian of V;.

The homeomorphism changes V; to a solid torus V; whose core is the double of a
trivial knot with twist » or —».
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R

e) f)
Fia. 1.

By 3.1 and 3.3, M (V1 U V,, 1) is homeomorphic to M (V;, ®). Since Vs is
knotted, the homomorphism m (bM (Vs, ®)) — m (M (Vs, ®)), and therefore
the homomorphism m ®((W — int V) +4 § X D*)) — o ((W — intV)
4+, 8* X D?%), induced by inclusion, is a monomorphism so that m (M (V, &))
is the free product with amalgamation 71 (8° — int W) *,,¢w) m((W — int V) +4
S! X D*) which is non trivial. This completes the proof of the theorem for doubles
of non trivial knots.

(Alternatively, the theorem for doubles of non trivial knots is a consequence of
theorem 9 since I (W, k) = {=+1,0,0, - - -} where k is a core of V).

- 'We now consider the case of doubles of the trivial knot.
Let V be a tame solid torus whose core is the double of the trivial knot with
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twist p. Let m and { be a meridian and longitude with the orientations indicated
in Fig. 2 a).

We also denote by m and # the elements of 7y (bV) or of w1 (S* — int V) repre-
sented by these curves. (Say we have chosen m N # as base point). Let a be a
curve on bV which, when oriented, represents the element m™ *. The manifold
M (V, a) will be a homology sphere if and only if {T[ = 1. We may assume
changing the orientation of « if necessary, that o represents the element mi ”.
Then denote M (V, a) by M (p, »). In view of 3.2 this is well defined and to com-
plete the proof of the theorem it is sufficient to prove:

ProrosiTioN 5.1. M (p, v) is not simply connected if both p and v are non-zero.

Notice that M (1, ») is homeomorphic to M (1, —») since the figure eight knot
(the double of the trivial knot with twist 1) is amphicheiral.

We give another description of M (p, »).

Let Vi, mi, & and D be the solid torus, oriented curves and disk shown in
Fig. 2 b). Just as in the proof of the theorem for doubles of non trivial knots,
by cutting along D and twisting we define an autohomeomorphism of §* — int V;
which maps 7 onto an unknotted solid torus V>, and the oriented meridian and
longitude m, { onto the oriented meridian and longitude ms, #;. Again, m;, 4
ma, & will also denote the elements of 71 (S* — int (Vy U V3)) represented by
these curves (after joining them to the base point).

The image of m; under this homeomorphism is a curve oy which represents the
element m’. The image of o is a curve o, which represents mst, .

Hence, M (p, ») can also be defined as M (V; U Va, oy U az) where a; and o
represent, respectlvely, the elements mlil and meh, ” of m (S® — int (V1 U Vy)).
Since there is a homeomorphism of S* that interchanges V; and V,, m and
ms , b and &, it follows that M (p, v) <s homeomorphic to M (v, p).

71(S° — int (V1 U V3)) has the presentation (see [30])

fmi,me, b, b3t = m1ﬂh_lm1_lm2m1m2m1~1m2~1,
b = mgmi my mumemgms_my ",
[mi, bl = 1, [me,d] = 1}
We obtain mM (p, ») by adjoining the relations md;” = 1, mpely " = 1
oM (o, v) = {my, ma, b, by b = mume my mamomamy my 7,
L o= mami my mamamams my ", miby® = 1, mh " = 1}
(1) mM(p, ») = {ms, ms;m (mlm'lmflmzmmmflmfl)“
= my (mamy my mumgmymemy ) * = 1}

Levma 5.1. w1 (o, v) has (2,3, 6p + 1;» + 1), (3,3]3p + 1 3v 4 1) and
4p+1 4I 2v + 1, 2) as factor groups where

@, m,n;p) = {4, B; A* = B" = (4B)" = [4, Bf" = 1}
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and

@ m|n,p) = {4, B; A* = B" = (4B)" = (A7B)" = 1
Probf. Adjoin to the presentation (1) the relation

: ~1 -1 -1 —1
NNy M MaMeyMiMse My = Mgz.

We obtain the group
. -1 -1 -1 -1 +1
(2) {my, ma ; ma(mema My mamumamy” me ) = mg =
-1 -1 -1 -1
mi1 Mg MMMy M1 = = 1}

The isomorphism ¢ from the free group {m; , me} onto the free group {4, B} de-
fined by ¢(m1) = AB, o(m:) = (ABAB?)™ carries mi (mams ‘my " mamoms-
mymg )P, mg "t and ma T 'me mymamams 'mi "+ to AB((AB)*(A7'B?)*4AT'BY’,
(ABAB*)™ "™ and AB’A’BA respectively. Thus the group (2) can be presented
as {A, B; AB((ABY(A7'B*’A7'B)* = (ABAB®) "' = AB’A’BA = 1}.

Adjoining the relations 4> = B* =1 we obtain the desired group {4,B;4* =
B = (AB)*™ = [4,B]™" = 1].

The isomorphism ¢ from {m;, ms} onto {A, B} defined by ¢ (m;) = BA7},
Y(my) = ABz, sends my (mlmg—lmflmgmlmszlmq_l)" and me (mszlmz_lml-
mamamemy ")’ to BTATN(BTAT'BT'AB* ABT' 4™ and AB*(AB’ABT'AT*B™Y)”
respectively. B ‘ .
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Hence mM (p, v) has the presentation
{A, B; B‘IA—I (B—IA—IB—IAB3AB—1A~1)IJ — AB2 (ABZAB—IA—2B—1)V = 1}

If one adjoins the relations A* = B® = 1 one obtains the group {4, B; 4° =
B3 = (AB)3/:+1 — (A~IB)37+1 = 1}.

If, instead, one adjoins the relations A*> = B* = 1, one obtains {4, B; A* =
B* = (AB)*™ = (4B")*"' = 1} which is another presentation of the group
(4p + 1,4| 2v + 1,2). (See [5], page 77). This completes the proof of the lemma,

Lemma 5.2, a) If{n| > 10and|p| > 5, (2,3, n;p) is non trivial.
b) If |n| > 5and | p| > 5, (3, 3| n, p) is non trivial.
¢) Ifk > 1, (6k + 1, 4|3, 2) and (6k + 3, 4|3, 2) are non
trivial.
d) (2, 3, 11; 5) s non trivial. _
Proof. We will show first, applying theorem IV _(i) of [24], that (2, 3, n; p) is
neither trivial nor isomorphic to Z, for n > 10, p > 5. We use the terminology
of [24]. It suffices to show that B is not in the normal closure N of { (4B)",
[4, BJ*} in the free product {4; A* = 1}x{B; B’ = 1}.
If n > 10 and p > 6, no element in the symmetrized set

R = {(4B)", (BA)", (AB™')", (B"A)", [4, B, |B, AI", [4, BT, [B™, A"}

is a product of less than 6 pieces. Therefore, by Theorem IV (i) of [24], an
element w in N must have reduced form bac, where r = axzsrs reduced, for
some 7 in K and pieces 1, Z,, %3 . In our case, ] r l 2 22 and pieces have length at
most 5. Therefore | a| > 7 and |w| > 7. In particular B is not in N.

Since (3, 3|7, p) is a subgroup of index 2 of (2, 3, 2n; p) (see [5] page 90) it
follows that (3, 3|7, p) is non trivial if [n|, |p| > 5.

For ¢) we use the presentation

{A,B; A> = B* = (AB)* = (AB*)’ = 1} of (%, 4|3, 2).
A representation of (6k 4 1,4 [ 3, 2), with £ > 1, into the symmetric group

of degree 6k + 1 can be defined by sending A to the permutation [] (6 — 5

i=1
.
6¢ — 4) (61 — 3 67) andBtoH(Gi— 46t —361—26:i— 1) (6164 1).
i=1
For k > 2, one can define a representation of (6% 4+ 3, 4{ 3, 2) into the sym-
metric group of degree 6k + 3 by sending A4 to

Tli<icis (60 — 5 60 — 4)(6i — 3 66)(6k — 11 6k — 10)(6k — 9 6k — 2)-

6k — 6 6k — 5)(6k — 4 6k + 3)(6k — 1 6k)(6k + 1 6k — 7)
and B to

Tlicict—s (66 — 4 66 — 3 66 — 2 65 — 1) (65 65 + 1)-
(6k — 10 6k — 9 6k — 8 6k — 7)(6k — 5 6k — 4 6k — 3 6k — 2)-
(6% 6k + 3 6k + 2 6k + 1)(6k — 6 6k — 1).



DEHN’S CONSTRUCTION ON KNOTS 69

The group (6k + 3, 4|3, 2) is also non trivial for ¥ = 1. In fact it is the
group LF (2, 17). (See [5] page 75).

Finally, a representation of {4, B; A*> = B’ = (AB)" = [4, B’ = 1} can be
defined . by sending 4 to (2 4)(57)(6.10)(9 11) and B to (123)(456)
(7 8 9). The proof of Lemma 5.2 is complete.

Proof of Proposition 5.1.

Case 1) Both p and » are different from —1, 1 and —2.
Then the factor group (3, 3 ] 3p 4+ 1,3y + 1) of mM (p, v) is non trivial by
Lemma 5.2 b).

Case 2) One of the numbers p, » (we may assumeitisy)is —1. - ‘
Then the factor group (2,3,6p+ 1;7+1) = {4,B;4> = B* = (AB)*™ = 1}
is non trivial (see [4] page 67).

Case 3) One of the numbers p, v, say », is 1.

Since M (p, 1) ~ M (—p, 1) we may assume p > 0.

If p = 3r > 0, mM (p, 1) has the factor group (12r + 1, 4] 3,2);ifp=3r+ 1,
r > 0, then mM (p, 1) ~ mM (—p, 1) has the factor group {4, B; 4> = B* =
(ABY U1 = (AB’)® =1} &~ (12r + 3,4]3, 2);if p = 3r + 2 > 0, then
mM (p, 1) has the factor group (12r + 9,4 | 3, 2). All these groups are non trivial
by 5.2¢). If p = 1, mM (p, 1) =~ mM (—1, 1) which is non trivial by case 2).

Case 4) One of the numbers p, », say p, is —2.

If» > 4 or» < —6, the factor group (2, 3,6p + 1;» + 1) of mM (p, ») is non
trivial by Lemma 5.2 a).

mM (—2, —6) has (2, 3, 11; 5) as factor group which is non trivial (Lemma

524d)).

mM (—2, —5) has (19, 4] 3, 2) as factor group. This is non trlwal by Lemma
5.2¢).

M (—2, —4) has (15,4 [ 3, 2) as factor group. This is non trivial by Lemma
52c¢).

M (—2, —3) has (3,3 [ 5, 8) as factor group which in turn has the non trivial
(see [5] page 84) group (3, 3 ] 5,4) as factor group.
mM (—2, —2) has (4, 7]3, 2) as factor group, which is non trivial ([5] page
83).
mM (—2, —1) is non trivial by case 2).
mM (—2, 1) is nontrivial by case 3).
mM (—2,2) has (9,4 3, 2) as factor group. This is non trivial ([5] page 84).
mM (—2, 3) has (13, 4] 3, 2) as factor group. By Lemma 5.2 ¢) this group is
non trivial.
Finally, mM (—2, 4) has (2, 3, 11; 5) as factor group which is non trivial
(Lemma 5.2 d)).
Cases 1), 2), 3) and 4) cover all possibilities. The proof of Proposition 5.1, and
therefore of Theorem 5, is complete.

Remarks. Since the Arf invariant of a doubled knot with twist p is pmod 2, it
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follows from Th. 4 that u ([M (p, »)]) = »: pmod 2. In particular M (p, ») does not
bound an acyclic manifold if p and » are odd.

M (2, v) bounds a contractible manifold for all ». (See §4). :

The manifold M (1, 1) was considered by Bing in [2] page 102. Several descrip-
tions of M (1, 1) can be given as follows.

1) M (1, 1) can be obtained by doing surgery to a trefoil knot (in other words
MQA,1)x M(—1,1)).

2) M (1, 1) is the Seifert manifold (0 o; 0| —1;2,1;3,1;7,1) ([39]).

3) M(1,1)is the p-fold cyclic covering of S° branched over the torus knot of
type g, r where DT is any permutation of 2, 3, 7.

4) M (1, 1) is the Brieskorn manifold

{(@,21,20) € Cia” + 2° + 2 = 0, 2% + 221 + 23 = 1}.
5) M (1, 1) is the tree manifold ([42]) which corresponds to the tree

T

with all vertices weighted by 2.

6) M (1, 1) is Friedgé’s generalized dodecahedral space 8" ([8]). That is to
say, M (1, 1) can be obtained from a polyhedron having 2 heptagons as bases and
14 pentagons as side faces, by identifying faces with their opposite ones.

7) M (1, 1) can be obtained by doing surgery to the Borromean rings.

Hence, the fact that M (1, 1) is not simply connected can also be obtained from
[39, §13], [39, Satz 12], [10] (see also [11] Prop. IT4.3), [28], [42] or [8].

Bing and Martin ([3]) ask whether the groups =M (1, ») have finite non trivial
homomorphs. Our proof of Proposition 5.1 gives an affirmative answer to, this
question. ‘

6. Slice links in the weak sense

In [16] the relationships between four possible definitions of slice link . are
studied, the only open question being whether or not a link cobordic to zero is a
slice link in the weak sense. We will see that, for example, the link whose com-
. ponents are the cores of V; and V, in Fig. 2 c) is a link cobordic to zero which is
not a slice link in the weak sense i.e., it does not bound a locally flat surface of
genus 0 in D*,

Suppose that this link is a slice link in the weak sense so that it is the boundary
of a locally flat annulus 4% in D*, We may assume that A® is a differentiable sub-
manifold ([19]). Let W* be a tubular neighborhood of 4°% with W* N »D* =
V1 U V; where V1and V; are asin Fig. 2 ¢). Let a be a simple closed curve on bV
representing, with some orientation, the element midy of m (bVy) where ma
represents a meridian and f; a longitude of bV, . Let o be a simple closed curve
which with some orientation, is homotopic to a; in W — int (V3 U V3). Then o,
represents the element me= L™ of w1 (bV,) where m, and % are represented by
meridian and longitude of bVs;.

As in the proof of Prop. 4.1 remove W and sew it back so as to obtain an acyclic
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- manifold whose boundary is M (Vi U Vi, on U @) &~ M (%1, 2=1). However,
M (p, ») does not bound an acyelic manifold if p and » are odd (see remarks after
Corollary 5.1). This contradiction proves that the link we are considering is not a
slice link in the weak sense; it is a link cobordic to zero by [16, Lemma 8].

In fact one can define an Axf invariant for a certain kind of link called proper in
[36], and this definition is such that if A is a proper link which is a slice link in the
weak sense, then x (\) = 0. (See [36].) Definitions follow.

A differentiably imbedded link A with oriented components &, - - - , k, 1s called
a proper link if, for every 7, the sum of the linking numbers of &, with the rest of the
components is an even integer. Notice this property does not depend on the
orientation of the components

Now, suppose that M is a 2-manifold of genus 0 differentiably” 1mbedded in
S X I with bM® = M* N b(S* X I) and such that M* N (S* X {0} ) is a proper
link A in 8° X {0} and M* N (8° X {1})isaknot k in §° X {1}. Then, define the
Arxf invariant x (\) of A to be the Arf invariant x (k) of %. By [36, Th. 2] this is
well defined.

If A is a proper link which is a slice link in the weak sense, then x (A) is the Arf
invariant of the trivial knot, and this is zero.

The link \ of two components that we were considering above is a proper, hnk
and x (\) # 0. Hence the Arf invariant also shows that X is not a slice link in the
weak sense. , v ' ‘

7. Composite knots

Noga ([31, Satz 1)] has proved that if a regular neighborhood of a composite
knot is removed from S° and sewn back differently, then the manifold obtained
is not 8°. A modification of his proof, using a remark in [2, page 101], shows that
this manifold is not even simply connected. We give the details.

TurOREM 7. If the core of a tame solid torus V is a.composite (non prime) knot
and « is a stmple closed curve on bV which does not bound a disk in V, then M (V, &)
1s not stmply connected.

Levma 7.1, (See [2 page 101) Let T* be a two-dimensional torus tamely zmbedded :
in a homotopy 3-sphere M’. Then the closure of one of the components of M =T
is homeomorphic to V* § Z* where V° is a solid torus, 3’ is a homotopy sphere and %
denotes connected sum. In particular the fundamental group of this component is
infinite cyclic.

Proof of Lemma. Let A and B be the closures of the components of M — 7.
Let i5:m(0A4) — m(4), jx:m(BB) — m (B) be induced by inclusions. Now
i and jx cannot be both monomorphisms because this would imply that = (M)
is the free product with amalgamation m;(4) *;,r) m1(B), which would con-
tradict the fact that 3/° is simply connected. Thus 7y, say, is not a monomor-
phism. Then by the loop theorem ([33]) and Dehn’s lemma ([34]) there is a
disk D?in A with bD* = D* N bA. A regular neighborhood N of b4 U D*in 4 is
homeomorphic to a solid torus with a 3-cell removed. One of the components of
bN is a 2-sphere 8°. Since M is simply connected, the closures of the components
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of M° — 8 are homotopy cells. One of these components is A — N. Thus 4 is
the sum of a homotopy cell A — N with N, a solid torus with a 3-cell removed,
that is to say, 4 is the connected sum of a homotopy sphere with a solid torus.

Proof of Theorem 7. Suppose that k; # k, is the core of V, with k; and k. non
trivial. Let S* be a 2-sphere which cuts k; # k; in two points and such that, for
i = 1, 2, the component A4; of §* — S° cuts from % % k, an arc that together with
an arc of S%, forms a knot equivalent to k; . We can take S so that S* N ¥ con-
sists of two meridian cells.

Consider the torus 7% = (§* — int V) U (4; N bV) imbedded in M (V, ).
One of the components of M (V, o) — T is A1 — V, whose fundamental group
is not Z since k; is not trivial.

The other component can be expressed as (4, — int V) 45 S* X D?, where A’
is a homeomorphism from bV — T into 8* X bD* to be described now. M (V, )
isdefined by (S* — int V) 448" X D* where the homeomorphism A:b (S* — int V')
— 8* X bD” maps a onto 1 X bD®. We define /' as the restriction of 4 to bV — T.
Sinee « is not a meridian, the annulus 2’ 3V — T') is not contractible in S'x D*
so that the homomorphism m (3’ OV — T)) — m (S' X D?) induced by inclusion
is a monomorphism.

Now, m(®V — T) — m(4s — int V') is also a monomorphism.

Thus, m((4; — int V) 4+ 8 X D?) is a free product with amalgamation
m(4s — int V) *,,6v—m m (S X D) which is not infinite cyclic since its sub-
group m (A2 — int V') is not Z. In view of Lemma 7.1 this completes the proof of
the theorem.

8. Cable knots

In this section we consider cable knots. Let k; be a tame knot in S° and let &
be a simple closed curve in the boundary of a regular neighborhood 7' of k; such
that & represents the element m't" of = (b7 ) where r and s are relatively prime
positive integers, m is represented by a meridian and ¢ by a longitude of dT.
Then £ is called a cable knot of type r, s about k; .

TueoreM 8. Let k be a cable knot of type r, s about a non trivial knot ky with
r # 1 and rs 5% 2. Let V be a closed regular neighborhood of k and o a simple closed
curve on bV which does not bound a disk in V. Then M (V, o) 1s not simply connected.

Remark. If &, is trivial i.e. if k is a torus knot then the theorem holds provided
r, s % 1. (See [39, §13] or [13]).

Proof. We may assume that o represents an element of the form mt’ € m (bV')
with » 5% 0, where m is represented by a meridian and ¢ by a longitude of bV.

Let W be a closed regular neighborhood of k; which contains V in its interior.
Then M (V, a) can be obtained by pasting together along their boundaries
S —int Wand N = (W — int V) 4, 8" X D* where ¢:bV — §' X bD’ is a
homeomorphism that maps a onto 1 X bD?

Since W is knotted, m (S° — W)  Z. Hence, to prove the theorem, it suffices,
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by Lemma 7.1, to prove that m; (V) is not infinite cyclic. N has a Seifert fibration
([39]) with two exceptional fibers. To see this, we first fiber W in such a way that
the ordinary fibers are cable knots of type r, s about %; and V is a union of ordinary
fibers so that W — int V is fibered. The fiber in bV represents an element m™"*#
in 71 (bV) so that « is not homotopw in bV to a fiber and the image, under ¢, of a
fiber is not a meridian in 8* X D®. Hence the fibration of 8 X bD?, induced via ¢
by the fibration of bV, can be extended to a Seifert fibration of §' X D*. We have
then a Seifert fibration of N with two exceptional fibers with multiplicities » and
] yrs — 1| (compare [39, §13]). Then m1 (V) has a presentation of the form (see

[32, §1, (L.1)])
{t1, @1, @2, b5 1, Bl = [@e, h] = ¢a"*W'* = @ = tigugeh™ = 1}

Where v; and v, are the multiplicities of the exceptional fibers i.e. v; = r and
l vrs — 1 [ By the hypothesis on 7 and s, v1 and v. are greater than 1.
If we adjoin the relation 2 = 1 to the presentation of x; (), we obtain the
free product Z,, * Z,, . Hence w1 () is not infinite cyeclic. This finishes the proof
of the theorem. ’

9. Some knots contained in knotted solid tori

We will prove in this section a theorem for certain knots contained in knotted
solid tori with zero winding number, which is analogous to Theorems 5, 7 and 8.

Let W be a tame solid torus in 8°. Let & be a tame simple closed oriented curve
contractible in int W. Let V be a closed regular neighborhood of % contained in
int W and a simple closed curve on bV representing the element m& in = (BV),
where m is represented by a meridian and { by a longitude. Let

X = (W —int V) +,8 X D,

where ¢:bV — S§' X D® is a homeomorphism that carries o onto {1} X bD*
The first homology group of X is infinite cyclic. We Want to compute the Alexan-
der polynomial of m (X).
Consider the universal cover W of W; then W is contractible. Let ¢ be a genera-
- tor of the group of covering transformations. Take a fixed lift ko of k. Define k.,
by kn = t" (ko) where m is any integer. Orientations of W and all k,, are deter-
mined by the orientations of 8* and k. Denote by a; the linking number L (ko , k:)
for 7 # 0; we have a; = a_;. Define the self-linking I (W, k) of k in W to be the
sequence (ai, @z, ). (Compare [12, §4]). Now, write b; = »a; for ¢ % 0 and
bo = 1 — D s b; (notice that only a finite number of b;s are non zero. )

Levma 9.1. The Alexzander polynomial of w1 (X) s D —wcice bit'.

Proof. (Compare [22] 140~141) Let X be the universal abelian covering of X.
Let V be the inverse image of ¥ under the covering map and let &; be a lift of «
which lies in the same component of V as k;. Write T = W — int V. We obtain
X if we attach solid tori to 7' along each component of b7 in such a way that a
meridian from each solid torus goes to a curve &;. Now, we have the exact
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sequence of JZ-modules
0= H,(W)— H,(W, T) - Hy(T) » H:(W) = 0.

By excision H, (W, T'), and therefore Hy (T'), is a free JZ-module on one genera-
tor. A generator v of H:(T) is represented by a curve on b7 that has linking
number 1 with ko and linking number 0 with all other %; .

In the exact sequence

(X, T)—— B,(T) > H:(X) > B (X, T)

we have, by excision, H;(X, T) = 0, and the image of A is generated by the
class of @. This class can be expressed as N-y where A = 2 ;ci’ and ¢; =
L(&o, ki) = va; = bi if 7 % 0.

A relation matrix for H;(X) is then the 1 X 1 matrix (\(¢)) so that A (¢) is .
the Alexander polynomial of 7 (X). Since Hy(X) = Z we have A\(1) = 1 and
therefore co = 1 — D imoci = 1 — D i b; = by. This completes the proof of the
lemma.

TueoreM 9. Let W be a closed regular neighborhood of a non trivial knot; let
V C int W be a tame solid torus contractible in W and let « be a simple closed curve
on bV which does not bound a disk in V. If I (W, k) # (0,0,0, - -- ) where k is an
oriented core of V, then M (V, a) s not simply connected.

Proof. As in the proof of Theorem 8, it suffices to show that the fundamental
group of X = (W — int V) 4, 8 X D’ is not infinite cyclic where
o bV > 8 X bD*is a homeomorphism which maps « onto 1 X bD’.

Since I (W, k) # (0,0, 0, ---), the Alexander polynomial of =, (X') is not 1.
Hence 71 (X)) is not infinite eyclic. This completes the proof.

10. Complements of knots

We will prove in this section that the knots considered in §5, §7, §8 and §9
are determined by their complements or by their (external) group system.
Let & be a tame non trivial knot in S°. We state:

Conjecture k. If V is a closed reqular netghborhood of k and « is a simple closed
curve in bV which does not bound a disk in V, then M (V, a) 1s not simply connected.

Special cases of this conjecture have been proved in §5, §7, §8 and §9. It is not
true if k is a trivial knot.

The exterior of a knot k in S* is the closure of the complement of a regular
neighborhood of k. We observe that the complement and the exterior of a knot
are equivalent invariants. More precisely \

PropostTioN 10.1. The complements of two tame knots in S° are homeomorphic
if and only if their exteriors are homeomorphic.

Prbof. The exterior of a knot k is a manifold E (k) with boundary. It is easy
to see that the complement of % is homeomorphic to the interior of E (k). Now
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Theorem 3 in [6] says that two compact 3-manifolds with boundary are homeo-
morphic if and only if their interiors are homeomorphic. The proposition follows.

Remark. The proposition also holds for differentiable n-knots with n > 3.
To prove this, one uses the fact that an A-cobordism between 8* X S and itself is
diffeomorphic to §* X S” X I. (See [18] and [38]).

Two knots k and %’ are said to have isomorphic (external) group systems if
there are isomorphisms

om (S — k) = m(S® —E)¢:imOV) = m@V)

- such that the diagram

(S — k)~ m (S — &)
n®V) —= n V)

commutes, where V and V' are closed regular neighborhoods of k& and &’ respec-
tively, and 74, j« are induced by inclusions.

ProrosrTioN 10.2. Let k and k&' be tame knots such that Conjecture k is true. Then
the following are equivalent

a) The group systems of k and k' are isomorphic.

b) The complements of k and &' are homeomorphic.

c) k clmd k' are equivalent (i.e. there is an autohomeomorphism of S° which maps
k onto k).

Proof

¢) = a) This is clear.

a) = b) This has been proved by Waldhausen ([43]), Corollary 6.5).

b) = ¢) By Prop. 10.1 there is a homeomorphism 4 from the exterior S* —
int V’ of &’ to the exterior §* — int V of k. Let o' < bV’ be a meridian
and let & = A(a’). By 3.1, M (V, ) is homeomorphic to M (V', ')
which is homeomorphic to S°. By hypothesis this implies that « is a
meridian. Since 4 | bV maps a meridian onto a meridian,  can be ex-
tended to an autohomeomorphism of S*. We can choose the extension
so that k is mapped onto k', since any two cores in the interior of a
solid torus are isotopic under an ambient isotopy leaving the bound-
ary fixed. Thus k and &’ are equivalent. This finishes the proof.

Remark. By Dehn’s Lemma, the coneclusion of Proposition 10.2 is valid if k is
the trivial knot.
From theorems 5, 7, 8, and 9 we obtain

CoroLLARY 10.1. Let k be any of the following knots
1) a doubled knot,
2) a composite knot,
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3) a cable knot of type r, s around a knot; where r, s are relatively prime positive
wnlegers and r #= 1, rs % 2,
4) an oriented knot contractible in a knotted solid torus W with I (W, k) = 0.
‘Let k' be an arbitrary tame knot.
Then, conditions a), b), ¢) of Prop. 10.2 are equivalent.

In other words, any of the knots 1), 2), 3), 4) is characterized by the topological
type of its complement or by its group system.

Burde and Zieschang ([46]) have proved.that a Neuwirth knot (a knot whose
group has a finitely generated commutator subgroup) of genus 1 is either the
trefoil knot or its complement is homeomorphic to that of the figure eight knot.
By Corollary 10.1 (the figure elght knot is a doubled knot ) this result can now be
improved to

Theorem. The only Newwirth knots of genus 1 are the trefoil and the figure eight
knots.

A

11. Relations with the Poincare Conjecture

Conversations with Prof. Moise were very helpful to obtain the results of this
section. ‘

TarorEM 11.1. Let k be a tame knot in S° such that Congjecture k is true (see
§10). Then a homotopy 3-sphereis S° if 4t ds the dzsjomt union, of a (tame or wild)
sohd torus and the complemem‘ of k.

Proof Let T be a sohd torus topologlcally 1mbedded in the homotopy 3-sphere
M? and let A be a homeomorphism from M — T onto 8° — k.

By [25], (see the remark after Corollary 1.3), there is a cube with handles C in
M ‘Whlch contains 7' in its interior. Take a closed regular neighborhood V of k in
S® which does not intersect A (M° — C'). Let W be the closure of the component of
M? — B (V) which contains 7. Then bW is a tame torusin M°® and M* — int W
is homeomorphic to S* — int V. Since % is non trivial, it follows, by Lemma 7.1,
that W is the connected sum of a solid torus and a homotopy sphere. But W is
contained in a cube with handles so that every homotopy 3-disk contained in W
is a 3-disk. Hence W is a solid torus and- M® is homeomorphic to M (V, a) for
some a.

Since we are assuming that Con]ecture & holds, & must be a merldlan so that
M (V, &) is a 3-sphere by 3.3.

. An alternative proof of Theorem 11.1, which shows also that its conclusion is
true when £ is a trivial knot, may be glven as follows. Construet C, Vand W as
above. Since W — T is homeomorphic to ' X 8' X [0,1), any arcin W — T with
end points on bW is homotopie, with fixed end points, to an arc on bW. By Lemma,
2 of [25], given any arc A with b4 C bW, there is a homeomorphism from W onto
itself which maps A onto an arc disjoint from 7. It follows that m (W, bW ) = 1.
Now the proof of Theorem 19.1 of [33], using that any homotopy 3-disk in W is a
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3-disk; shows that W is‘a:solid torus. If & is not trivial continue as in the proof of
the theorem. If % is trivial then we have that the 1-connected manifold Mis ob-
tained by pasting two solid tori along their boundaries. It is well known (see for
example [2]) that this implies M° must be the 3-sphere. :

CoroLLARY 11.1. Let k be a knot belongmg to any of the classes 1 ), 2), 3), 4) of
Corollary 10.1. Then a homotopy 3-sphere is S* if it is the disjoint union of a (tamé
or wild) solid torus - and the complement of k. .

Finally, we mention a class of links which do not lead to counterexamples to
the Poincaré Conjecture when surgery-is done on them.. - D

Let T be a tree (a connected graph w1thout cucmts) w1th Vertlces V1, 5 Un.
Let Dy, <~ +, D, be disks in §* such that 2

a) bD U bD; is a pair of s1mply hnked mrcles if v and v, are Jomed by an edge

in T,
- b) D;ND; = <I> 1f V5 and v, are not Jomed by an edge inT and 7% 7.

Then we call the link bD; U :-- U bD, atree link associated to the tree 7'.

Now; suppose that ¢, -, go,,-:‘»S’1 X D* - 83 are’differentiable imbeddings
with disjoint images such that ¢, (;S1 X{oHU---Ueg, (§"X {0})isa tree hnk
Consider the manifold x(e1, - - -, ¢a) obtained from the. dlsmmt union

(S — U; 0:(S" X int D*)) + (1)2 X S+ (D' X S‘)2 -+ D X 8.

byldentlfymg(pi(u v),foru € 8% v 6 S with (u,v) € (D* X Sl),,o, =1, ,n:
Then x (g1, - -+ , ¢n) is a tree malnfold ([42]) and by [42, VI 1 5 x(<p1 yT ga,,)
15 S° if 4t 18 simply connected. '
Thus counterexamples to the Pomcaré Con]ecture cannot be obtamed by domg
surgery to tree links, I : '
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