
DEHN'S CONSTRUCTION ON KNOTS 

BY F. GoNZALEz-Acu:&A 

1. Introduction 

Our main concern is the study of homology 3-spheres obtained by Dehn's 
method, i.e. by removing a knotted solid torus from 83 and sewing it back. in a 
different way. 

Several people have considered a homology cobordism invariant µ of homology 
3-spheres (see e.g. [15] or §2 ). 

In this paper we are interested in the following two questions: 
1. What is the µ-invariant of homology spheres obtained by Dehn's method? 
2. Can the fundamental group of such a homology sphere be trivial? 
The answer to the first question is given by Theorem 4 which says that 

µ = v • x where xis the Arf invariant of the core of the solid torus we are removing 
and v is an integer which indicates how the solid torus is sewn back. 

The second question is more difficult. A conjecture might be that the funda­
mental group of a 3-manifold obtained by removing a knotted solid torus from 
8 3 and sewing it back differently is never trivial. 

This conjecture is true if the core of the solid torus is a torus knot ([39, §13]; 
see also [13]). 

A modification of the proof of [31, Satz 1], using a remark in [2, page 101], 
shows that the conjecture is true if the core of the solid torous is a composite 
knot. 

We also prove the conjecture if the core is a doubled knot, a cable knot of type 
r, s with r ~ I and rs ~ 2, or a knot contained in a knotted solid torus with zero 
winding number and non-zero self-linking in it. 

As a consequence we obtain that knots of any of the types mentioned above 
are characterized by the topological type of their complement or, in view of 
Waldhausen's results ([43]), by the group system of the knot. Another conse­
quence is that a homotopy 3-sphere is 8 3 if it is the disjoint union of a (tame or 
wild) solid torus and the complement of any of the previously mentioned knots. 

As by-products we obtain some contractible 4-manifolds different from D4, 
links cobordic to zero which are not slice links in the weak sense (see [16]) and a 
sharpening of a result of Burde and Zieschang: the only Neuwirth knots of 
genus 1 are the trefoil and figure eight knots. 

Bing and Martin ([3]) have independently obtained some of the results of this 
paper. 

I should like to express my sincerest gratitude to Professor R. H. Fox for his 
encouragement and supervision of this work which formed part of my thesis at 
Princeton. 
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2. The group JC3 

We will define the group JC3 of homology 3-spheres. 

DEFINITION. Two oriented closed manifolds Mo, M1 are homology-cobordant 
if there is an oriented cobordism W between them such that the inclusion of Mi 
in W induces isomorphisms in all homology groups for i = 0, I. 

Clearly homology-cobordism is an equivalence relation. 
If Mis an oriented manifold we denote by -M the manifold obtained from 

M by reversing the orientation. 
LetJC3 be the set ofhomology-cobordism classes of oriented homology 3-spheres. 

(A homology 3-sphere is a closed manifold with the same homology groups as 83). 
It is not difficult to see that the connected sum (see [17J) induces an abelian 

group structure in JC3• The trivial element of :JC3 is represented by any oriented 
homology 3-sphere which bounds an acyclic manifold; the inverse of the class 
represented by M is represented by - M. 

Higher dimensional analogues of JC3 and groups of pairs of homology spheres 
are studied in (11]. For example, if we are working in the differentiable category, 
Jen is isomorphic to the Kervaire- Milnor group on of homotopy n-spheres ([17]) 
for n ¥ 3. In the PL category Jen is trivial for n ¥ 3 and in the topological 
category JC" is trivial for n ¥ 3, 4. 

The structure of JC3 is not known. A homomorphism µ: JC3 - Z 2 can be defined 
using Rohlin's theorem ((37]) as follows: 

If M 8 is a homology sphere, let w4 be a simply connected manifold with even 
quadratic form which has M 3 as boundary. (See e.g. (14]). The signature (index) 
of w4 is a multiple of 8 because its quadratic form is unimodular and even ((411). 
Define 

where u denotes signature. 
To see thatµ is well defined suppose that W/, W/ are 1-connected manifolds 

with even quadratic form and that bW/ = bW/ = M 8• Pasting together W1 and 
W2 by the identity map on M, we obtain a simply connected closed manifold 
w4 with even quadratic form. The quadratic form of W is the direct sum of the 
quadratic forms of W1 and - W2 . Hence W has an even quadratic form and 

u(W) = u(W1) - u(W2), 

By Rohlin's theorem ((37] ), u (W) is a multiple of 16 so that 

u(W1)/8 = u(W2)/8 mod 2. 

If M 3 bounds an acyclic manifold Y4 we can do surgery on int Y4 to change Y 
into a simply connected 11'-manifold w4. The quadratic form of W4 is even (see 
[27], Lemma 3) and, since surgery does not change the signature, u (w4) = 0. 

Hence µ is well defined. 
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If w4 is the connected sum along the boundary of W/ and W/ we have 
a-(w4) = a-(W/) + a-(W/) so thatµ is a homomorphism. 

µ is onto. For example, the dodecahedral space bounds a 1-connected manifold 
with even quadratic form of signature 8. (See [15] and also §5.) 

3. Notation 

We shall be concerned mainly with the study of homology 3-spheres obtained 
by Dehn's method i.e. by removing a neighborhood of a knot in S 3 and sewing it 
back differently. 

Let V be the union of a disjoint collection of tame solid tori in S 3• Let V1 , Vi, 
• • • , Vn be different (but not necessarily all) components of V and let a1, a2, 
• • • , an be simple closed curves contained in b V1, b V2 , • • • , b V,. respectively. 
Assume that lxi is not contractible in bVi for i = 1, • • ·, n. Now, construct a 
3-manifold as follows. Let <P.:S1 X bD2 --+ b Vii = 1, · · · , n be homeomorphisms 
mapping 1 X bD2 onto ai. Now, in the disjoint union 

(S3 - int V) + (S1 X D 2 )1 + · · · + (81 X D 2 )n 

identifyx E (81 X bD2 ),with<Pi(x). 
The resulting manifold will be denoted by M (V, a) where a = Ui ai. It does 

not depend on the choice of <PiS, Define M (V, cf>) as 8 3 - int V and M ('P, <I>) 
as S 3. 

We give to 83 a canonical orientation and orient M (V, a) in such a way that 
M (V, a) and S3 induce the same orientation in S3 - int V. 

By [44] or [23], every closed orientable 3-manifold is homeomorphic to M ( V, a) 
for some V and a. 

The following properties are easy to establish. 
3.1 If v* is the union of another collection of disjoint solid tori and if there is a 
homeomorphism h from S3 - int V onto S3 - int v* then M (V, a) is homeo­
morphic to M(V*, a*), where a*= h(a). 
3.2 If a/ is a simple closed curve on b V. isotopic (or equivalently, by [1], homo­
topic) to ai in bVi i = 1, • • ·, n, then M(V, a) is homeomorphic to M(V, a') 
where a' = U. a/. 
3.3 If a component ak of a bounds a disk in a component Vk of V thenM (V, a) 
is homeomorphic to M (V - Vk , a - ak). 

4. Theµ invariant of M(V, a) 

Let V be a tame solid torus and let k be its core. The Arf invariant x (k) of k 
is defined by 

x (k) = L~-1 V2i--1,1,;_1V2i,2i mod 2 

where (v;1) is a 2h. X 2h Seifert Matrix for k ([21], [36], [29]). 
It can be shown ([21], [29]) that 

(k) = {O if the determinant of k is ± 1 mod 8 
X 1 if the determinant of k is ±3 mod 8 
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An oriented simple closed curve a on the boundary b V of the solid torus V 
represents an element mPl v of '11"1 (b V ), where m and l are represented by a meridian 
and a longitude respectively. If p ~ 0 the orientation of a may be so chosen that 
pis positive. Since H1 (M (V, a)) is cyclic of order p, M (V, a) is a homology sphere 
if and only if p = ± 1, i.e., if and only if p = 1 when a is properly oriented. 

THEOREM 4. Let V be a closed regular neighborhood of k and let a be an oriented 
simple closed curve on b V representing the element ml • E '11"1 (b V) where m and l are 
represented by a meridian and longitude respectively. Then, if µ:JC 3 - Z2 is the 
homomorphism defined in § 2, we have 

µ([M(V, a)]) = v·x(k) 

where x (k) is the Arf invariant of k 
For instance, if M is the dodecahedral space or if M is the example in [2, 

page 102] then µ([M]) ~ 0. 

Proof of Theorem 4. We may assume that k and V are differentiable sub­
manifolds. 

Let Ev = B/ X D2 2 +,. B/ X D1 2 where B/, D22, B/, D/ are 2-disks and 
h identifies bB/ X D2 2 with bB/ + D/ as follows. If we think of the 2-disks as 
copies of the unit disk in C, h:bB/ X D/ - bB/ X S/ is defined by 

h(e;,\ pei8 ) = (i\ pe'(e+v"f)). 

The disks and their boundaries have canonical orientations. 
Now define an imbedding ip:B/ X bD/- bD4 = S3 with cp(B/ X bD/) = V 

'P ({ 0} X bD/) = k and such that the image, under 'P, of the oriented curves 
bB/ X 1 and 1 X bD/ are, respectively, an oriented meridian represented by m 
and an oriented longitude represented by l. Then we have that 

( *) iph ( bB: X { 1}) is a curve homo topic to a in b V. 

In the disjoint union Ev + D4 identify x E B/ X bD/ with 'P (x) E bD4 to 
obtain a 4-manifold w4 which can be given a natural differentiable structure. 
By (*) and 3.2, bW 4 is homeomorphic to M (V, a). 

2 2 u Let S1 = {0} X D1 Ck where Ck denotes the cone over k with vertex 
0 E D4. Let S/ = (B/ X {0}) U (Bl X {0} ). 

Oriented properly S/ and S/ represent, respectively, classes x and y which 
generate H2(W 4 ).~ ZEB Z with the following intersection numbers 

x·x = 0 x·y = y·x = 1 and y·y = ±v. 

If v is even the quadratic form of W4 is even and its signature is zero, so that 
µ([M(V, a)])= 0. 

Now consider the case where v is odd. 
Let Y4 be a simply connected smooth manifold with even quadratic form and 

b Y4 = b w4 (see [14]). Let u be the signature of Y4. Pasting together W4 and - Y4 

by the identity map on their boundaries we obtain a simply connected closed 
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orientable, smooth manifold N4. The sphere S/ c W 4 c N 4 is the image of a 
combinatorial imbedding of the 2-sphere into N4. It has one singularity at the 
vertex of Ck. Since JJ;J (V, a) is a homology sphere there is a natural isomorphism 

,::::; 

where i: W 4 
- N 4 and j: Y 4 

- N 4 are the inclusions. If z E H 2 (N4 ) is in the image 
of j* wehavei*(x)·z = 0andz·z is even.Alsoi*(x)-i*(y) = 1 and i*(y)·i*(y) 
= ±v. Hence, if x' E H2 (N4 ; Z2) is the mod 2 reduction of i* (x ), x' • z = z • z 
for all z E H2 (N4; Z2). 

By Wu's formula i* (x) is therefore dual to the Stiefel Whitney class w2 (N4 ) 

i.e. the natural homomorphisms 

H2(N 4
; Z2) - H2(N 4

; Z 2 ) -H 2 (N 4
; Z2) 

(reduction mod 2 followed by Poincare duality) carry i* (x) to wz (N4 ). 

Hence, there is an imbedding of S2 into N 4 having S/ as image, which is ad­
missible for the knot k in the sense of [36] and 

x(k) = (i*(x)·i*(x) - (J'(N4 ))/8 = CT(N4 )/8 = µ([M(V, a)]) mod 2. 

Consequently, the formula 

µ([M(V, a)])= v·x(k) mod 2 

holds both for v even and v odd. This completes the proof of the theorem. 
Let ko and k1 be cobordant knots ([9]). Then there is a locally flat annulus 

A 2 in Sa X I, which we may assume is a differentiable submanifold, with 
A 2 n (Sa X { i} ) = ki, i = 0, 1. Let W 4 be a tubular neighborhood of A 2 in 
Sa X I. Write Vi = W n (Sa X { i} ). Wis homeomorphic to A 2 X D2 and Vo, Vi 
are solid tori. Let m; and li be respectively an oriented meridian and longitude in 
b Vii = 0, 1. We assume that the orientations are chosen in such a way that m0 

is homotopic to m1 and lo is homotopic to l1 in bW - int (Vo U V1). Also mi, l; 
will denote the elements of 1r1 (b Vi) represented by the corresponding curves. 

Now, let v be an integer. Suppose that a; is a curve on b V; which represents, 
with some orientation, the element m;l/. 

PROPOSITION 4.1. If (Vo, ao) and (Vi , a1) are as described above, then JJ;J (Vo , ao) 
and M (V1, a1) are homology-cobordant. 

Proof. Construct the manifold Y 4 = S 3 X I - W +h S1 X D 2 X I where 
h:bW - int (Vo U V1) - S1 X bD2 X I is a diffeomorphism onto, which maps 
aionto /pl x bD2 x {i},p E s1, i = o, 1. 

Y4 is a cobordism between JJ;J (Vo, ao) and M (Vi, a1). By considering a Mayer­
Vietoris sequence it is seen that 

H (Y4) = {O if q 'F-0, 3 
q Z if q = 0, 3 

It follows, then, from the homology sequence of the pair (Y4, M (V;, a;)) 
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i = O, 1, that M (Vo, a:o) and M (V1, a:1) are homology cobordant. This completes 
the proof. 

Consequently, for every integer 11, a map D,:0 3'1 - X 3 can be defined by 
D, ([k]) = [M (V, a)] where Vis a tubular neighborhood of k and a: is an oriented 
curve on b V representing the element ml'. Here we assume that the oriented 
meridian, represented by m, has linking number 1 with k when k is given the 
orientation which makes it homotopic in V to an oriented longitude representing 
l. I do not know whether D, is a homomorphism or not. 

The diagram 

is commutative (Theorem 4). 
Proposition 4.1 says, in particular, that if V is a regular neighborhood of a 

slice knot k, then M (V, a) bounds an acyclic manifold, provided that the linking 
number of a: and k is ± 1. 

For example, if k is the stevedore's knot (see [7], Example 10 ), and V is a 
regular neighborhood of k, then M (V, a) even bounds a contractible manifold. To 
see this consider the 2-disk D2 imbedded iri. the 4-disk D4, with D2 n bD2 = bD2 = k, 
described in Example 10 in [7}. We remove a neighborhood of D2 in D4 an:d sew 
it back in such a way that we obtain a manifold W.4 having M (V, a) as boundary. 
One can see that W.4 is acyclic. The group 1r1(D4 - D2 ) has a presentation 
{x, a; xa2 = ax}. The fundamental group of W,4 is obtained by adjoining to this 

h l • l' 1 h d l -2 -2 2 -1 -1 -1 -2 2 group t e re at10n m = w ere m = x an = x a xa x a x axa x . 
One can see that, in the presence of the relation xa2 = ax, the relation mt = 1 is 
equivalent to x = a2'. It is now easy to see that 

1r1(W/) = {x, a; xa2 = ax, x = a2'} 

is trivial. It follows that W/ is contractible. 
By Theorem 5; if 11 ¥- 0 the boundary of W.4 is not simply connected so that 

W.4 is not the 4-disk. Examples of such contractible 4-manifolds have been given 
by Poenaru ([35]), Mazur ([26]) and Curtis. 

Furthermore, if vis even W,4 X I~ D5• To verify this it suffices to show, be­
C/l,USe of the Poincare Conjecture in dimension 5, that the boundary of W,4 XI, 
i.e. the double of W, 4, is s4. 

The double of W.4 can be obtained as follows. Take two copies (D/, D/), 
(D_4, D_2 ) of the pair (D4, D2 ) given above. Paste the two copies by the identity 
map on their boundaries to obtain a knotted 2-sphere D/ U D_ 2 in 8 4 = D/ U D_ 4. 
Let N be a tubular neighborhood of D/ U D_2 in 84• There is a diffeomorphism 'P 

from (D/ U D_2 ) X D2 onto N. Now in the disjoint union (84 - int N) + 
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(D/ U D_ 2 ) X D 2 identify (z., ei8 ) E D.2 X bD2 E = +, - with 
cp ( i" 0 z. , i 0 ) E bN where all 2-disks are considered as the unit disk in the 
complex numbers. The resulting manifold is the double of W.4. 

If v is even, then the autohomeomorphism of (D/ U D_ 2 ) X D2 which 
carries (z,, ei8) to (i" 8z. , i 8 ) is isotopic to the identity map. It follows that, 
if vis even, the double of W,4 is S4. Hence, by the Poincare Conjecture in dimen­
sion 5, W} X I ~ D5 if v is even. The examples given by Poenaru and Mazur 
also have the property that their product with the unit interval is D5• 

5. Doubled knots 

Now we will look at the fundamental group of homology spheres obtained by 
Dehn's method. We consider in this section doubled knots ([45], [7] page 144 ). 

THEOREM 5. Let V be a tame solid torus in 83 whose core is a nontrivial doubled 
knot and let a be a simple closed curve on b V which does not bound a disk in V. Then 
M (V, a) is not simply connected. 

We will prove the theorem first for the case where the core is the double of a 
nontrivial knot. In this case there is a knotted solid torus W which contains Vin 
its interior and there is a, not necessarily faithful, homeomorphism from W onto 
an unknotted solid torus Vi' which maps V onto the unknotted solid torus V2 
as shown in Fig. 1 b ). 

Let a2 be the image of a under this homeomorphism; a2 is not a meridian. Let 
Vi = 83 - int Vi'. The manifold M (V, a) can be expressed as (S3 - int W) U 
(W - int V) +h SI X D2 where h:bV .- SI X bD2 is a homeomorphism that 
maps a onto 1 X bD2, l E SI. 

The homomorphism 1r1 (b (S3 - int W)) .- 'll"I (83 - int W) induced by inclusion 
is a monomorphism since W is knotted. 

(W - int V) +h SI X D 2 is homeomorphic to (Vi' - int V2) +k SI X D2 

where k: b V2 -----+ SI X bD2 is a homeomorphism which carries a2 to 1 X bD2; this 
is precisely M (V1 U Vi, a2). 

Now, there is an autohomeomorphism of S3 which maps V1 onto V2 and Vi 
onto V1 . Let a 1 be the image of a 2 under this homeomorphism; aI is not a meridian 
i.e. it does not bound a disk in V1. By 3.1 M (Vi U V2, a2) is homeomorphic to 
M (V1 U V2, a1). If Hr (M (V1 U V2 , a1)) r= Z, M (V, a) will not even be a 
homology sphere. The group H1 (M (V1 U V2, aI)) is Z only if a1, with some 
orientation, represents an element of 1r1 (b V1) of the form ml • where m is repre­
sented by a meridian and l by a longitude of b V1 . We may assume this is the 
case. Since aI is not a meridian v r= 0. Then there is a disk D2 in S3 such that 
D n V1 = bD and D n a1 consists of one point. We obtain a homeomorphism of 
8 3 - int VI onto itself as follows. Cut S3 - int V1 along D. Twist one of the now 
exposed faces through v revolutions and sew back together along D. If the twist­
ing is done in the right direction, the image of a1 under this homeomorphism will 
be a meridian of V1. 

The homeomorphism changes V2 to a solid torus V3 whose core is the double of a 
trivial knot with twist v or -v. 



DEHN'S CONSTRUCTION ON KNOTS 65 

a) 

C) d) 

el f) 

FIG. 1. 

By 3.1 and 3.3, M (V1 U V2 , a1) is homeomorphic to M (Va, <I>). Since Va is 
knotted, the homomorphism 11'1 (bM (Va , <I>)) - 11'1 (M (Va , if>)), and therefore 
the homomorphism 11'1 (b ( (W - int V) +,. 8 1 X D2 )) - 11'1 ( (W - int V) 
+,. 81 X D2 ), induced by inclusion, is a monomorphism so that 11'1 (M (V, a)) 
is the free product with amalgamation 11'1 (S3 - int W) * ,..1(bw) 11'1 ( (W - int V) +,. 
8 1 X D2 ) which is non trivial. This completes the proof of the theorem for doubles 
of non trivial knots. 

(Alternatively, the theorem for doubles of non trivial knots is a consequence of 
theorem 9 since I (W, k) = { ± 1, 0, 0, • • ·} where k is a core of V). 

We now consider the case of doubles of the trivial knot. 
Let V be a tame solid torus whose core is the double of the trivial knot with 
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twist p. Let m and l be a meridian and longitude with the orientations indicated 
in Fig. 2 a). 

We also denote by m and l the elements of 71"1 (b V) or of 71"1 (S3 - int V) repre­
sented by these curves. (Say we have chosen m n las base point). Let a be a 
curve on b V which, when oriented, represents the element mrl ". The manifold 
M (V, a) will be a homology sphere if and only if I -r / = 1. We may assume 
changing the orientation of a if necessary, that a represents the element ml ". 
Then denote¥ (V, a) by M (p,-,,, ). In view of 3.2 this is well defined and to com­
plete the proof of the theorem it is sufficient to prove: 

PROPOSITION 5.1. M (p,-,,,) is not simply connected if both p and-,,, are non-zero. 

Notice that M (1,-,,,) is homeomorphic to M (1, -v) since the figure eight knot 
(the double of the trivial knot with twist 1) is amphicheiral. 

We give another description of M (p, -,,, ) . 
Let V1, m 1, l1 and D be the solid torus, oriented curves and disk shown in 

Fig. 2 b ). Just as in the proof of the theorem for doubles of non trivial knots, 
by cutting along D and twisting we define an autohomeomorphism of S3 - int Vi 
which maps V onto an unknotted solid torus V2, and the oriented meridian and 
longitude m, l onto the oriented meridian and longitude m2 , l2 . Again, m1 , l1 
mz , l2 will also denote the elements of 1r1 (S3 - int (V1 U Vi)) represented by 
these curves (after joining them to the base point). 

The image of m 1 under this homeomorphism is a curve a1 which represents the 
element m 1l/. The image of a is a curve a2 which represents m2fy_ ". 

Hence, M (p, -,,, ) can also be defined as M (Vi U V2 , a1 U a2) where a1 and a2 
represent, respectively, the elements m1l/ and m2l2 • of 1r1 (S3 - int (V1 U V2) ). 
Since there is a homeomorphism of S3 that interchanges V1 and V 2, m1 and 
m2 , li and l2, it follows that M (p, -,,, ) is homeomorphic to M (v, p ). 

1r1 (S3 - int (V 1 U V2)) has the presentation (see [30]) 

{ l l l -1 -1 -1 -1 
m1 , mz , 1 , 2 ; 1 = m111½ m1 m2m1m2m1 mz , 

l2 = mzm1- 1m2- 1m1mzm1m2- 1m1- 1, 

[m1, l1J = 1, [mz, l2] = l} 

We obtain 1r1M (p, v) by adjoining the relations m1l/ = 1, mi2 • = 1. 

( ) { l 1 l -1 -1 -1 -1 
1r1M p, -,,, = m1 , mz , 1, v.1 ; 1 = m1mz m1 mzm1m2m1 mz , 

l2 = mzm1- 1mz - 1m1mzm1m2- 1m1- 1, m1l/ = 1, 11½0 • = l} 

(1) 1r1M (p, v) 

LEMMA 5.1. 1r1M(p, v) has (2, 3, 6p + 1;-,,, + 1), (3, 3 / 3p + 1, 3-,,, + 1) and 
(4p + 1, 4 / 2-,,, + 1, 2) as factor groups where 

(l, m, n; p) = {A, B; At= Bm = (ABt = [A, BjP = l} 
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V 

b) 

Fm.2. 

and 

(l, ml n, p) = {A, B; A 1 = Bm = (ABt = (A- 1Bl = l} 

Proof. Adjoin to the presentation (1) the relation 

We obtain the group 

(2) 

67 

The isomorphism cp from the free group {m1 , m2} onto the free group {A, B} de­
fined by cp(m1) = AB, cp(m2) = (ABAB 2)- 1 carries m1(m1~- 1m1- 1m2m1m2· 

-1 -l)p v+l d -1 -1 -1 -1 t AB((AB)s(A-1B-2)2A-1B)P m1 ~ , m2 an m1 ~ m1~m1~ m1 o , 
(ABAB2)- v-l and AB 2 A 2BA respectively. Thus the group (2) can be presented 
as {A, B; AB((AB)8(A- 1B- 2)2A-1B/ = (ABAB 2) v+i = AB 2A 2BA = l}. 

Adjoining the relations A 2 = B3 =1 we obtain the desired group {A,B;A 2 = 
B3 = (AB) 6p+l = [A,B]'+1 = 1}. 

The isomorphism 1/; from {m1, m2} onto {A, B} defined by 1/;(m1) = B- 1A- 1, 

.,, ( ) AB2 d ( -1 -1 • -1 -1 )P d ( -1 -1 

.,, m2 = , sen s m1 m1m2 m1 ~m1m2m1 ~ an m2 m2m1 m2 m1 • 
m2m1fil2- 1m1-1 )" to B- 1A- 1 (B- 1A- 1B- 1AB 8AB- 1A- 1Y and AB 2 (AB 2AB- 1A- 2B- 1)' 

respectively. 
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Hence 1r1M (p, v) has the presentation 

{A, B; B- 1A- 1 (B- 1A- 1B- 1AB 3AB- 1A- 1)P = AB 2 (AB 2AB- 1A- 2B- 1 )" = l} 

If one adjoins the relations A3 = B3 = 1 one obtains the group (A, B; A3 = 
B3 = (AB) 3p+l = (A- 1B)3'+1 = l}, 

If, instead, one adjoins the relations A 2 = B4 = 1, one obtains (A, B; A2 = 

B4 = (AB/p+i = (AB2 ) 2'+1 = l} which is another presentation of the group 
(4p + 1, 4 j 2v + 1, 2). (See [5], page 77). This completes the proof of the lemma. 

LEMMA 5.2. a) If In I > 10 and Ip I > 5, (2, 3, n; p) is non trivial. 
b) If I n I > 5 and I p I > 5, (3, 3 j n, p) is non trivial. 
c) If k ~ 1, (6k + 1, 4 I 3, 2) and (6k + 3, 4 I 3, 2) are non 

trivial. 
d) (2, 3, 11; 5) is non trivial. 

Proof. We will show first, applying theorem IV .(i) of [24], that (2, 3, n; p) is 
neither trivial nor isomorphic to Z2 for n > 10, p > 5. We use the terminology 
of [24]. It suffices to show that B is not in the normal closure N of ( (ABf, 
[A,BY} inthefreeproduct{A;A 2 = l}*(B;B 8 = 1}. 

If n > 10 and p > 6, no element in the symmetrized set 

R = { (ABf, (BAt, (AB- 1t, (B- 1At, [A, B]P, [B, A]P, [A, B- 1y, [B- 1, AY} 

is a product of less than 6 pieces. Therefore, by Theorem IV (i) of [24], an 
element w in N must have reduced form bac, where r = ax1x2X3 reduced, for 
some r in R and pieces X1 , X2 , Xs . In our case, I r I ~ 22 and pieces have length at 
most 5. Therefore I a I ~ 7 and I w I ~ 7. In particular Bis not in N. 

Since (3, 3 In, p) is a subgroup of index 2 of (2, 3, 2n; p) (see [5] page 90) it 
follows that (3, 3 I n, p) is non trivial if I n I, I p I > 5. 

For c) we use the presentation 

{A, B; A2 = B4 = (AB/= (AB 2)3 = 1) of (l, 4 I 3, 2). 

A representation of (6k + 1, 4 j 3, 2), with k ~ 1, into the symmetric group 
k 

of degree 6k + 1 can be defined by sending A to the permutation II (6i - 5 
i=l 

k 

6i - 4) ( 6i - 3 6i) and B to II ( 6i - 4 6i - 3 6i - 2 6i - 1) (6i 6i + 1 ). 
i-1 

Fork ~ 2, one can define a representation of (6k + 3, 4 j 3, 2) into the sym­
metric group of degree 6k + 3 by sending A to 

II1:,;i9'-2 (6i - 5 6i - 4)(6i - 3 6i) (6k - 11 6k - 10) (6k - 9 6k - 2) • 

(6k - 6 6k - 5) (6k - 4 6k + 3) (6k - 1 6k) (6k + 1 6k - 7) 
and B to 

IL99 _2 (6i - 4 6i - 3 6i - 2 6i - 1) (6i 6i + 1). 

(6k - 10 6k - 9 6k - 8 6k - 7)(6k - 5 6k - 4 6k - 3 6k - 2)· 

( 6k 6k + 3 6k + 2 6k + 1) ( 6k - 6 6k - 1 ) . 
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The group (6k + 3, 4 j 3, 2) is .also non trivial for k = 1. In fact it is the 
group LF(2, 17). (See [5] page 75). 

Finally, a representation of {A, B; A 2 = B 8 = (AB)11 = [A, B]5 = 1} can be 
defined by sending A to (2 4)(5 7)(610)(9 11) and B to (123)(456) 
(7 8 9 ). The proof of Lemma 5.2 is complete. • 

Proof of Proposition 5.1. 

Case 1) Both p and v are different from -1, 1 and -2. 
Then the factor group (3, 3 / 3p + 1, 3v + 1) of 1r1M (p, v) is non trivial by 

Lemma 5.2 b). 

Case 2) One of the numbers p, v (we may assume it is 11) is -1. 
Then the factor group (2, 3, 6p + 1; v + 1) = {A, B; A 2 = B8 = (AB) 6P+1 = 1} 

is non trivial (see [4] page 67). 

Case 3) One of the numbers p, v, say v, is 1. 
Since M(p, 1) ~ M(-p, 1) we may assume p > 0. 
If p = 3r > 0, 1r1M (p, 1) has the factor gropp (12r + 1, 4 j 3, 2); if p = 3r + 1, 

r > 0, then 1r1M (p, 1) ~ 1r1M (-p, 1) has the factor group {A, B; A 2 = B4 = 
(AB )4c-sr-iJ+i = (AB2 ) 8 = • 1} ~ (12r + 3, 4 / 3, 2); if p = 3r + 2 > 0, then 
1r1M (p, 1) has the factor group (12r + 9, 4 / 3, 2). All these groups are non trivial 
by 5.2 c ). If p = 1, 1r1M (p, 1) ~ 1r1M (-1, 1) which is non trivial by case 2 ). 

Case 4) One of the numbers p, v, say p, is -2. 
If v > 4 or v < -6, the factor group (2, 3, 6p + 1; v + 1) of 1r1M (p, v) is non 

trivial by Lemma 5.2 a). 
1r1M ( - 2, - 6) has (2, 3, 11; 5) as factor group which is non trivial (Lemma 

5.2 d) ). 
1r1M (-2, -5) has (19, 4 / 3, 2) asfactor group. This is non trivial by Lemma 

5.2 c). 
1r1M (-2, -4) has (15, 4 / 3, 2) as factor group. This is non trivial by Lemma 

5.2 c). 
1r1M ( -2, -3) has (3, 3 j 5, 8) as factor group which in turn has the non trivial 

(see [5] page 84) group (3, 3 / 5, 4) as factor group. 
1r1M ( -2, -2) has (4, 7 / 3, 2) as factor group, which is non trivial ([5] page 

83). 
1r1M ( - 2, -1) is non trivial by case 2). 
1r1M ( - 2, 1) is nontrivial by case 3). 
1r1M (-2, 2) has (9, 4 / 3, 2) as factor group. This is non trivial ([5] page 84). 
1r1M ( - 2, 3) has (13, 4 / 3, 2) as factor group. By Lemma 5.2 c) this group is 

non trivial. 
Finally, 1r1M ( -2, 4) has (2, 3, 11; 5) as factor group which is non trivial 

(Lemma 5.2 d) ). 
Cases 1 ), 2), 3) and 4) cover all possibilities. The proof of Proposition 5.1, and 

therefore of Theorem 5, is complete. 

Remarks. Since the Arf invariant of a doubled knot with twist p is p mod 2, it 
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follows from Th. 4 thatµ ([M (p, ")]) = "· p mod 2. In particular M (p, ") does not 
bound an acyclic manifold if p and " are odd. 

M (2, ") bounds a contractible manifold for all "· (See §4 ). 
The manifold M (1, 1) was considered by Bing in [2] page 102. Several descrip­

tions of M (1, 1) can be given as follows. 
1) M (1, 1) can be obtained by doing surgery to a trefoil knot (in other words 

M(l, 1) ~M(-1, 1)). 
2) M (1, 1) is the Seifert manifold (0 o; 0 I -1; 2, 1; 3, 1; 7, 1) ((39]). 
3) M (1, 1) is the p-fold cyclic covering of S3 branched over the torus knot of 

type q, r where p, q, r is any permutation of 2, 3, 7. 
4) M (1, 1 ) is the Brieskom manifold 

{ (zo, z1, z2) E O3 :z/ + z1 3 + z/ = 0, zozo + z1z1 + Z2Z2 = l}. 

5) M (1, 1) is the tree manifold ([42]) which corresponds to the tree 
• • I 

with all vertices weighted by 2. 
6) M (1, 1) is Friedge's generalized dodecahedral space (37 ([8]). That is to 

say, M (1, 1) can be obtained from a polyhedron having 2 heptagons as bases and 
14 pentagons as side faces, by identifying faces with their opposite ones. 

7) M (1, 1) can be obtained by doing surgery to the Borromean rin.gs. 
Hence, the fact that M (1, 1) is not simply connected can also be obtained from 

[39, §13], [39, Satz 12], [10] (see also (11] Prop. II 4.3), [281, [42] or [8]. 
Bing and Martin ([3]) ask whether the groups 7r1M (I,") have finite non trivial 

homomorphs. Our proof of Proposition 5.1 gives an affirmative answer to this 
question. 

6. Slice links in the weak sense 

In [16] the relationships between four possible definitions of slice link . are 
studied, the only open question being whether or not a link cobordic to zero is a 
slice link in the weak sense. We will see that, for example, the link whose com­
ponents are the cores of Vi and V2 in Fig. 2 c) is a link cobordic to zero which is 
not a slice link in the weak sense i.e., it does not bound a locally flat surface of 
genus O in D4. 

Suppose that this link is a slice link in the weak sense so that it is the boundary 
of a locally flat annulus A 2 in D4. We may assume that A 2 is a differentiable sub­
manifold ([19]). Let W4 be a tubular neighborhood of A 2, with w4 n bD4 = 
V1 U V2 where Vi and Vi are as in Fig. 2 c). Let a be a simple closed curve on b Vi 
representing, with some orientation, the element m1l1 of 7f1 (b Vi) where mi 

represents a meridian and l1 a longitude of b V1. Let 0:2 be a simple closed curve 
which with some orientation, is homotopic to ai in bW - int (V1 U V2). Then 0:2 

represents the element m2 ± 1l/ 1 of 7f1 (b Vi) where m2 and /z are represented by 
meridian and longitude of b V2 . 

As in the proof of Prop. 4.1 remove Wand sew it back so as to obtain an acyclic 
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manifold whose boundary is M(Vi U Vi, a1 U a2) ~ M(±l, ±1). However, 
M (p, v) does not bound an acyclic manifold if p and v are odd (see remarks after 
Corollary 5.1 ). Tl].is contradiction proves that the link we are considering is not a 
slice link in the weak sense; it is a link cobordic to zero by [16, Lemma 8]. 

In fact one can define an Arf invariant for a certain kind of link called proper in 
[36], and this definition is such that if).. is a proper link which is a slice link in the 
weak sense, then x ()..) = 0. (See [36].) Definitions follow. 

A differentiably imbedded link "with oriented components k1, • • • , k,. is called 
a proper link if, for every j, the sum of the linking numbers of k; with the rest of the 
components is an even integer. Notice this property does not depend on the 
orientation of the components. 

Now, suppose that M 2 is a 2-manifold of genus O differentiably imbedded in 
S3 X I with bM.2 = M 2 0 b (S3 XI) and such that M 2 0 (S3 X {0}) is a proper 
link).. in Ss X {0} and M 2 0 (Ss X { l}) is a knot kin Ss X { l}. Then, define .the 
Arf invariant x (t-.) of ).. to be the Arf invariant x (k) of k. By [36, Th. 2] this is 
well defined. , , 

If " is a proper link which is a slice link in the weak sense, then x (t-.) is the .Arf 
invariant of the trivial knot, and this is zero. • 

The link).. of two components that we were considering above is a proper.link 
and x ()..) ,;c. O. Hence the Arf invariant also shows that" is not a slice link in the 
weak sense. 

7. Composite knots 

Noga ([31, Satz 1)] has proved that if a regular neighborhood of a composite 
knot is removed from S3 and sewn back differently, then the manifold obtained 
is not ss. A modification of his proof, using a remark in [2, page 101], shows that 
this manifold is not even simply connected. We give the details. 

THEOREM 7. If the core of a tame solid torus Vis a composite (non prime) knot 
and a is a simple closed curve on b V which does not bound a disk in V, then M (V, a) 
is not simply connected. 

LEMMA 7.1. (See [2] page 101) Let T 2 be a two-dimensional torus tamely imbedded 
in a homotopy 3-sphere M3• Then the closure of one of the components of M3 ....:.. T2 

is homeomorphic to Vs # ~3 where Vs is a solid torus, 1:3 is a homotopy sphere and # 
denotes connected sum. In particul,ar the fundamental group of this component is 
infinite cyclic. 

Proof of Lemma. Let A and B be the closures of the components of M - T. 
Let i*:,r1(bA) - ,r1(A), j*:,r1(bB) - ,r1(B) be induced by inclusions .. Now 
i* and j * cannot be both mono morphisms because this would imply that ,r1 (M3 ) 

is the free product with amalgamation ,r1(A) \ 1 cTl 7r1(B), which would con­
tradict the fact that M 3 is simply connected. Thus i* , say, is not a monmppr­
phism. Then by the loop theorem ([33]) and Dehn's lemma ([34]) there is a 
disk D 2 in A with bD2 = D 2 0 bA. A regular neighborhood N of bA U D2 in A is 
homeomorphic to a solid torus with a 3-cell removed. One of the components of 
bN is a 2-sphere S 2• Since M 3 is simply connected, the closures of the comporients 
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of MB - S2 are homotopy cells. One of these components is A - N. Thus A is 
the sum of a homotopy cell A - N with N, a solid torus with a 3-cell removed, 
that is to say, A is the connected sum of a homotopy sphere with a solid torus. 

Proof of Theorem 7. Suppose that k1 # k2 is the core of V, with k1 and k2 non 
trivial. Let S2 be a 2-sphere which cuts k1 # k2 in two points and such that, for 
i = 1, 2, the component A; of SB - S 2 cuts from k1 # k2 an arc that together with 
an arc of S2, forms a knot equivalent to ki . We can take S2 so that S2 n V con­
sists of two meridian cells. 

Consider the torus T2 = (S2 - int V) U (A1 n bV) imbedded in M(V, a). 
One of the components of M (V, a) - T is A1 - V, whose fundamental group 
is not Z since k1 is not trivial. 

The other component can be expressed as (A2 - int V) +h' S1 X D2, where h' 
is a homeomorphism from bV - Tinto S1 X bD2 to be described now. M (V, a) 
is defined by (S3 - int V) +i.S 1 X D 2 wherethehomeomorphismh:b(S 3 - int V) 
--t S1 X bD2 maps a onto 1 X bD2. We define h' as the restriction of h to b V - T. 
Since a is not a meridian, the annulus h' (b V - T) is not contractible in S1 X D2 

so that the homomorphism 1r1 (h' (b V - T)) --t 1r1 (S1 X D 2 ) induced by inclusion 
is a monomorphism. 

Now, 1r1 (b V - T) --t 1r1 (A2 - int V) is also a monomorphism. 
Thus, 1r1( (A2 - int V) +h' S1 X D2 ) is a free product with amalgamation 

1r1 (A2 - int V) * ,.-1cbv-T) 1r1 (S1 X D2 ) which is not infinite cyclic since its sub­
group 11'1 (A2 - int V) is not Z. In view of Lemma 7.1 this completes the proof of 
the theorem. 

8. Cable knots 

In this section we consider cable knots. Let k1 be a tame knot in 8 3 and let k 
be a simple closed curve in the boundary of a regular neighborhood T of k1 such 
that k represents the element m'l' of 11'1 (bT) where rands are relatively prime 
positive integers, mis represented by a meridian and l by a longitude of bT. 
Then k is called a cable knot of typer, s about ki. 

THEOREM 8. Let k be a cable knot of iype r, s about a non trivial knot k1 with 
r ;;,E= 1 and rs ;;,E= 2. Let V be a closed regular neighborhood of k and a a simple closed 
curve on b V which does not bound a disk in V. Then M (V, a) is not simply connected. 

Remark. If k1 is trivial i.e. if k is a torus knot then the theorem holds provided 
r, s ;;,E= 1. (See [39, §13] or (13] ). 

Proof. We may assume that a represents an element of the form ml' E 71"1 (b V) 
with v ;;,E= 0, where m is represented by a meridian and l by a longitude of b V. 

Let W be a closed regular neighborhood of k1 which contains V in its interior. 
Then M (V, a) can be obtained by pasting together along their boundaries 
SB - int Wand N = (W - int V) +1> S1 X D2 where cp:bV --t S1 X bD2 is a 
homeomorphism that maps a onto 1 X bD2• 

Since Wis knotted, 71"1 (SB - W) ~ Z. Hence, to prove the theorem, it suffices, 



DEHN'S CONSTRUCTION ON KNOTS 73 

by Lemma 7 .1, to prove that .1r1 (N) is not infinite cyclic. N has a Seifert fibration 
([39]) with two exceptional fibers. To see this, we first fiber Win such a way that 
the ordinary fibers are cable knots of type r, s about k1 and Vis a union of ordinary 
fibers so that W - int Vis fibered. The fiber in b V represents an element m±r•l±I 
in 'lrI (b V) so that a is not homotopic in b V to a fiber and the image, under cp, of a 
fiber is not a meridian in SI X D2. Hence the fibration of S1 X bD2, induced VJ.a cp 
by the fibration of b V, can be extended to a Seifert fibration of SI X D2• We have 
then a Seifert fibration of N with two exceptional fibers with multiplicities r and 
I vrs - 1 j (compare [39, §13]). Then 1r1 (N) has a presentation of the form (see 
[32, §1, (1.1)]) 

{t1, qi, q2, h; [qi, h] = [q2, h] ~ q1"t!h/3i = q2"12hfl2 = tiqiq2h-b = ll 

where 'YI and 'Y2 are the multiplicities of the exceptional fibers i.e. -y1 = r and 
-y2 = I vrs - I I. By the hypothesis on r and s, 'Y1 and 'Y2 are greater than 1. 

If we adjoin the relation h = 1 to the presentation of 1r1 (N), we obtain the 
free product Z"/1 * z"t·2 • Hence 1ri(N) is not infinite cyclic. This finishes the proof 
of the theorem. • 

9. Some knots contained in knotted solid tori 

We will prove in this section a theorem for certain knots contained in knotted 
solid tori with zero winding number, which is analogous to Theorems 5, 7 and 8. 

Let W be a tame solid torus in S3• Let k be a tame simple closed oriented curve 
contractible in int W. Let V be a closed regular neighborhood of k contained in 
int W and a simple closed curve on b V representing the element ml' in 'lrI (b V), 
where rn is represented by a meridian and l by a longitude. Let 

X = (W - int V) +q, SIX D 2, 

where cp: b V '---+ SI X D2 is a homeomorphism that carries a onto {I} X bD2 • 

The first homology group of Xis infinite cyclic. We want to compute the Alexan­
der polynomial of 1r1 (X). 

Consider the universal cover W of W; then Wis contractible. Lett be a genera-
. tor of the group of covering transformations. Take a fixed lift ko of k. Define km 

by km = tm(ko) where mis any integer. Orientations of Wand all km are deter­
mined by the orientations of S 3 and k. Denote by ai the linkir{g number L(ko ,.ki) 
for i =;z£c O; we have ai = a_i. Define the self-linking I (W, k) of k in W to be the 
sequence (aI, ~, • • • ). (Compare [12, §4]). Now, write bi = vai for i =;ec O and 
bo = 1 - Li>"'O bi (notice that only a finite number of bis are non zero.) 

LEMMA 9.1. The Alexander polynomial of 'lrI (X) is L-oo<i<oo bi. 
Proof. (Compare [22] 140-141) Let X be the universal abelian covering of X. 

Let V be the inverse image of V under the covering map and let &i be a lift of a 
which lies in the same component of Vas lei. Write 'I' = W - int V. We obtain 
X if we attach solid tori to 'I' along each component of b V in such a way that a 
meridian from each solid torus goes to a curve ai . Now, we have the exact 
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sequence of JZ-modules 

o = H2(W) - H2(W, T) - H1(T) - H1(W) = o. 
By excisionH 2 (W, T), and therefore H 1 (T), is a free JZ-module on one genera­

tor. A generator 'Y of Hi (T) is represented by a curve on bT that has linking 
number 1 with k0 and linking number O with all other k, . 

In the exact sequence 

H2 (.X, T) ~ H1 ('I') - H1 (X) - H1 (X, T) 

we have, by excision, H 1 (X, T) = 0, and the image of~ is generated by the 
class of ao . This class can be expressed as A· 'Y where A = L; ci and Ci = 
L(ao, k;) = va; = b; if i ~ 0. 

A relation matrix for H1 (.X) is then the 1 X 1 matrix (A(t)) so that "11.(t) is. 
the Alexander polynomial of 1r1(X). Since H1(X) = Z we have "11.(1) = 1 and 
therefore co = 1 - L;.-o c; = 1 - L;;,<o b; = bo . This completes the proof of the 
lemma. 

THEOREM 9. Let W be a closed regular neighborhood of a non trivial knot; let 
V c int W be a tame solid torits contractible in Wand let a be a simple closed curve 
on b V which does not bound a disk in V. If I (W, k) ~ (0, 0, 0, • • • ) where k is an 
oriented core of V, then M (V, a) is not simply connected. 

Proof. As in the proof of Theorem 8, it suffices to show that the fundamental 
group of X = (W - int V) +q, S1 X D2 is not infinite cyclic where 
cp: b V - S1 X bD2 is a homeomorphism which maps a onto 1 X bD2• 

Since I (W, k) ~ (0, 0, 0, • • • ), the Alexander polynomial of 1r1 (X) is not 1. 
Hence 1r1 (X) is not infinite cyclic. This completes the proof. 

10. Complements of knots 

We will prove in this section that the knots considered in §5, §7, §8 and §9 
are determined by their complements or by their (external) group system. 

Let k be a tame non trivial knot in S3• We state: 

Conjecture k. If V is a closed regular neighborhood of k and a is a simple closed 
curve in b V which does not bound a disk in V, then M (V, a) is not simply connected. 

Special cases of this conjecture have been proved in §5, §7, §8 and §9. It is not 
true if k is a trivial knot. 

The exterior of a knot k in S 3 is the closure of the complement of a regular 
neighborhood of k. We observe that the complement and the exterior of a knot 
are equivalent invariants. More precisely 

PROPOSITION 10.1. The complements of two tame knots in S 3 are homeomorphic 
if and only if their exteriors are homeomorphic. 

Proof. The exterior of a knot k is a manifold E (k) with boundary. It is easy 
to see that the complement of k is homeomorphic to the interior of E (k). Now 
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Theorem 3 in [6] says that two compact 3-manifolds with boundary are homeo­
morphic if and only if their interiors are homeomorphic. The proposition follows. 

Remark. The proposition also holds for differentiable n-knots with n ~ 3. 
To prove this, one uses the fact that an h-cobordism between SI X Sn and itself is 
diffeomorphic to SI X sn X I. (See [18] and [38]). 

Two knots k and k' are said to have isomorphic (external) group systems if 
there are isomorphisms 

<p:1rI(Sa - k)-+ 1r1(SB - k') it,:1r1(bV)-+ 1r1(bV1) 

such that the diagram 

1r1(SB - k) ~ 1r1(s8 - k') 

ii* i j* 
,{, I 

1r1(bV) - 1r1(bV) 

commutes, where V and V' are closed regular neighborhoods of k and k' respec­
tively, and i*, j* are induced by inclusions. 

PROPOSITION 10.2. Let k and k' be tame knots such that Conjecture k is true. Then 
the fallowing are equivalent 

a) The group systems of k and k' are isomorphic. 
b) The complements of k and k' are homeomorphic. 
c) k and k' are equivalent (i.e. there is an autohomeomorphism of Sa which maps 

k onto k'). 

Proof 
c) =} a) This is clear. 
a)=} b) This has been prqved by Waldhausen ([43]), Corollary 6.5). 
b) =} c) By Prop. 10.1 there is a homeomorphism h from the exterior Sa -

int V' of k' to the exterior Sa - int V of k. Let a' c b V' be a meridian 
and let a= h(a'). By 3.1, M(V, a) is homeomorphic to M(V', a') 
which is homeomorphic to SB. By hypothesis this implies that a is a 
meridian. Since h / b V maps a meridian onto a meridian, h can be ex­
tended to an autohomeomorphism of SB. We can choose the extension 
so that k is mapped onto k', since any two cores in the interior of a 
solid torus are isotopic under an ambient isotopy leaving the bound­
ary fixed. Thus k and k' are equivalent. This finishes the proof. 

Remark. By Dehn's Lemma, the conclusion of Proposition 10.2 is valid if k is 
the trivial knot. 

From theorems 5, 7, 8, and 9 we obtain 

COROLLARY 10.1. Let k be any of the following knots 
1 ) a d<YUbled knot, 
2) a composite knot, 
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3) a cable knot of typer, s around a knot, where r, s are relatively prime positive 
integers and r ¥- 1, rs ¥- 2, 

4) an oriented knot contractible in a knotted solid torus W with I (W, k) ¥- 0. 
• Let k' be an arbitrary tame knot. • 
Then, conditions a), b ), c) of Prop. 10.2 are equivalent. 

In other words, any of the knots 1), 2), 3), 4) is characterized by the topological 
type of its complement or by its group system. 

Burde and Zieschang ([461) have proved that a Neuwirth knot (a knot whose 
group has a finitely generated commutator subgroup) of genus 1 is either the 
trefoil knot or its complement is homeomorphic to that of the figure eight knot. 
By Corollary 10.1 (the figure eight knot is a doubled knot) this result can now be 
improved to 

Theorem. The only Neuwirth knots of genus 1 are the trefoil and the figure eight 
knots. 

11. Relations with the. Poincare Conjecture 

Conversations with Prof. Moise were very helpful to obtain the results of this 
section. 

THEOREM 11.1. Let k be a .tame knot in S 3 such that Conjecture k is true (see 
§10 ). Then a homotopy 3-sphere is S 3 if it is the disjoint union of a (tame or wild) 
solid torus arid the complement of k. 

Proof. Let T be a solid torus topologically imbedded in the homotopy 3-sphere 
M 3 and let h be a homeomorphism from lYI - Tonto S 3 - k. 

By [25], (see the remark after Corollary 1.3 ), there is a cube with handles C in 
M 3 which contains Tin its interior. Take a closed regular neighborhood V of kin 
S3 which does not intersect h (M3 - G). Let W be the closure of the component of 
M 3 - h-I (b V) which contains T. Then bW is a tame torus in M 3 and M 3 - int W 
is homeomorphic to S3 - int V. Since k is non trivial, it follows, by Lemma 7.1, 
that W is the connected sum of a solid torus and a homotopy sphere. But W is 
contained in a cube with handles so that every homotopy 3-disk contained in W 
is a 3-disk. Hence W is a solid torus and M 3 is homeomorphic to M (V, a) for 
some a. 

Since we are assuming that Conjecture k holds, ii must be a meridian so that 
M (V, a) is a 3-sphere by 3.3. 
, An alternative proof of Theorem lLl, which shows also that its conclusion is 
true when k is a trivial knot, may be given as follows. Construct C, V and W as 
above. Since W - Tis homeomorphic to SI X SI X [O, 1), any arc in W - T with 
end points on b Wis homotopic, with fixed end points, to an arc on b W. By Lemma 
2 of [25], given any arc A with bA. c b W, there is a homeomorphism from W onto 
itself which maps A onto an arc disjoint from T. It follows that 'll'I (W, bW) = 1. 
Now the proof of Theorem 19.1 of [33], using that any homotopy 3adisk in Wis a 
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3-disk; shows that Wis a solid torus. If k is not trivial continue-as in the proof 0£ 
the theorem. If k is trivial then we have that the I-connected manifold M 3 is ob­
tained by pasting two solid tori along their boundari~s. His weHkliown (see foi 
example [21) that this implies M 8 must be the.3~sphere. 

COROLLARY 11. 1. Let k be a. knot belonging to any of the classes l ) , 2), 3), 4 ) of 
Corollary 10.l. Then a homotopy 3-sphere is S3 ~fit is the disjoint .union of a (tame 
or wild) solid torus-and the. complement of k. 

Finally,' we inentiori a cl~ss of links which do not lead to counterexamples to 
the Poincare Col).jecture when S'\U'gery is done on .theIIl, , 

Let T be a tree (a connected graph without circuits) with vertices V1, • • • , Vn, 

Let D1, .; • · ,Dn. be disks in S3 such that • 
a) bD; U bDi is a pair of simply li~ed.circ'les if v; and v1 are joined by an edge 

in~ . ••• . • 

,• b) D; n D, ~ 4> if V; and v;· are not joined by~ edge in Tandi ,;;z!= J. 
Then we call the. link bD1 U • • • U bDn a tree link associated to the tree T. 
Now, suppose that 'Pl,. ••• ' 'Pn~S1 X D 2 -+8 3 are differentiable imbeddings 

with disjoint images such that <Pr (S1 X {O}) U • • • U \On (S1. X {O}) is a tree link. 
Consider the manifold x{'Pi, • • ·., <Pn) obtained from the disJoirit union 

(S8 - LJ;rp;(S1 X intD 2)) + (D2 X S1)i + (D2 X S1)2 + · ·." + (D2 X S1 )n 

byidentifyingrp;(u,v),foru E S1,v E S1with (u,v) E· (D2 X 81).,i = 1, • -- ,n. 
Then x (rp1 , • • • , <Pn) is a tree mainfold ([42]) and by [42, Vi, 1.5] x (rp1 , • • • , <Pn) 

is S3 if it is simply connec;ted. . . 
Thus counterexamples to th~ Poincare Conj{!ctu~e cannot be obtained by doing 

surgery to tree links. 
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