UNSTABLE DIVISIBILITY OF THE CHERN CHARACTER
By 8. GirLEr AND R. J. MILGRAM
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1. Introduction
In [1], F. Adams proved certain divisibility properties of the Chern character.
We begin by recalling these results. Let X be a finite CTW-complex and let K (X)
be the Grothendieck ring of complex vector bundles on X, (see [2]). Then K (X)
hag a filtration by skeletons, namely

(1.1) K,(X) = Ker (K(X) — K(X*™))
The Chern character is a ring homomorphism
(1.2) ch:K(X)— H”(X; Q)

Let ¢:Z — @ be the inclusion of the integers in the rationals. Then a class
z € H'(X; Q) is called integral if = 4y for some y € H*(X; Z). Let @, be the
ring of fractions whose denominators are prime to p and let 7,:Q, — @ be the
inclusion, then a class z € H*(X; Q) is called integral mod p if x = %,y for some
y € HY(X; Q,). Let p,:Q, — Z, be the quotient map. We will be interested in
mod 2 cohomology, so we set ¢ = %, and p = p». Note that if z is integral mod 2,
then p4 () is well defined. We will let H* (X ) denote cohomology with Z, coef-
ficients.

TueorEM 1.3 (Adams). Let u € K, (X), then chy (1) is integral and 2'chgyr (u)
s tntegral mod 2. Moreover

X (SG )ps (chapt) = ps (2 Chyrts)

In (1.3), x is the canonical antiautomorphism of the Steenrod algebra A.
The object of this paper is to obtain unstable divisibility properties of the Chern
character. Given integers m and n, let [m/n] denote the integral part of m/n.

TurorEM 1.4. Let X be a finite CW-complex such that H* (X ; Z) has no torsion.
Suppose that X embeds in the M-sphere 8*. Then for any pair of integers q and r such
that 0: H* (X ) — H**™ (X ) vanishes for all 6 € A, , we have: For any u € Kaq(X)
2" hgyr (u) 1 integral mod 2, wheret = [4r + 2¢ + 5 — M /4].

Let X be a finite CW-complex, then for any u € K(X), chn(n) = sn(u)/ml,
where s, (1) is integral. We say s, (u) is odd if px (8m(u)) 5= 0.

CoroLLARY 1.5. Let X be a finite CW -complex, such that H* (X ; Z) has no torsion.
If there exists u € Koo (X)) with sn(v) odd, then ¢ < a(m).If ¢ < a(m) then X does
not embed in St
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Remark 1.6. If ¢ = a(m), we have to add then hypothesis 6: H**™ (X) —

H™™ (X ) vanishes for all 6 € Asm_saim , and then we obtain X does not embed in
S4m—2a(m)+1'

Remark 1.7. Corollary (1.5) should be compared with the results of Atiyah-
Hirzebruch for manifolds, [2]. Their result does not involve the connectivity of ,
and thus for manifolds, are stronger. Our result (1.5) coincides with the results of
Atiyah-Hirzebruch only when ¢ = a(m) — 1. However, our results are true not
only for embedding of complexes, but also for stable embeddings, where we say
that X stably embeds in S* if there exists a complex ¥ such that Y is of the
homotopy type of =*X for some %, and ¥ embeds in S¥**.

Remark 1.8. Maunder in [4], defines a system of higher order cohomology opera-
tions x (¢2:™ ), and relates them to higher divisibility of the Chern character, for
instance, in (1.4), one has:

(1.9) X @2 ) ps (cha) = pie (2 ‘chgintt)

and this extends the Adams theorem (1.3), regarding the action of cohomology
operations.

2. Higher order cohomology operations

In this section we recall the notion of higher order cohomology operations as
axiomatized by Maunder in [3].
Let A be the Steenrod algebra over Z, and let C:

02
(2.1) Co—C < Cye— - (Cy

be an 4 -chain complex, i.e., C;is a free A-module, 9; is of degree 0 and 9,1 8; = 0.
Then a pyramid of stable operations ¢'**, where N > r > s > 0, associated with
(2.1) is an induective family of operations satisfying the following axioms:

Axziom I (Induction): The operations ¢™° for 4 > r > s > v are associated
with the chain complex

Cpée— o0 —0C,

Aziom II (Domain of definition): Let e:Co — H *(X) be an A-map. Then
3" (¢) is defined if ¢"°(e) is defined and contains the zero map, for ¢ = 1, - - -,
N — 1.

Awiom ITI (Values of the operation): Let e:Co — H*(X) be an A-map of
degree ¢, then if ¢"*°(¢) is defined, ¢"° (¢) consists of certain equivalence classes of
A-maps 7:Cy — H*(X) of degree ¢ — N + 1, where n ~~ ¢ if there exists u €
¢ (¢) such that n = p + 4" and where {:C; — H*(X) runs through all A-maps
of degree ¢ — 1 such that ¢"" (¢) is defined.

Axiom IV (Naturality): Let e:Co— H*(X) be an A-map such that ¢" " (e) is
defined. Then for every map f:¥ — X, ¢"*(f*¢) is defined and f*¢”°(e)
" (fe).
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Aziom V (Stability): Let =*:H*(X) — H*(ZX) be the suspension -ists
morphism. Then if e:Co — H*(X) is an 4- -map such that ¢"%(¢) is defined, then
¢V (%) is defined and =¥¢""(e) = ¢V (%), ,

Axiom VI (Second formula of Peterson—Stem): Let (X, Y) be a pair. Let
e:Cy — H*(X) be an A-map, such that ¢""'(¢) is defined and let p:Cpy —
H*(X, Y) be such that j*u E " %(e), then ¢"° (i) is defined and for every
such u, there exists 7:Cy — H*(Y), 7 € ¢"° (%) such that dy = ¢N‘N—1u.

Remark 2.2. Given a chain complex it may have no pyramld of hlgher order
cohomology operations associated with it.

Pyramids of higher order cohomology operations are constructed by means of

universal examples.
A realization § of the chain complex (2.1)is a  tower of principal fiber spaces

BF, BFins BF,  BF,

B o I
©3) Bya DL . PeLopo BB op B g

I’l;zv_l [’Lk ]il

Py R F

where BF} is a product of Eilenberg-Maclane spaces of type K (Z., q) and gk is
the classifying map for the fiber space F — Ej — Ex_1. Moreover we have A-
isomorphisms az:Cy — H*(F:) of degree —k and 8:Cy — H™(BFy) of degree
—k -+ 1in a certain range of dimensions and such thatin ‘

o*(Br,) &> * (Ek_l) B B

24) [ Jews
[ .
8 : : ) '
Crrr - - Ch - > Ca
the rectangle is commutatlve and g 3k+1 = 0. Let Gy = CN ®a 2. Then
gn"By (Gx) is & universal example for the operation ¢"* associated with the chain
complex (2.1) and the realization (2.2).

Remark 2.5. Given a chain complex as (2.1) it'may admit realizations & and
&' If Ey and Ey’ are spaces that are not of the same homotopy type then the coz-
responding operations ¢"° and ¢N * bear no relation to each other whatsoever

3. The Maunder hlgher order operatxons
Consider the chain complex C (N, r): '
3

ot
3.1) Coe—Cre --- ‘_‘aN—CN
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where -
Co has A-basis {co}
(3.2) , Cyx has A-basis {cn}
| Ck has A-basis {ck, ko, ", Cex}
for1<EkE<N-1
and where the boundary operators 9; are given by
x (8™ )eo
3.3) d1c10 = Sq'co

Il

911

_ ‘ _ dien = Sq”¢

andfor2 < k<N
ek = Sq' crs + 2820 x SA ) er-re 2<k<N

OxCro = Sq Chk—1,0 1<kE<N
Y| OkCr,i = Sqlck_l,,- + Sqm Ck—1,i—1 0<21<k<N

OxCrp = Sq”™ Ci1,61 1<k<N
where Sq” = 8q° + 8q” 8q.

Maunder in [4], constructed a realization & of (3.1) as follows: Let BU be the
classifying space for stable complex vector bundles and let BU[2¢] be the space
obtained from BU by killing its first (¢ — 1) non-trivial homotopy groups. Adams
in [1], showed that there exist natural integral classes ch,, € H*™ (B U[2q] Z)
such that if p,: BU[2¢] — BU is the projection, then
(3.5) m(r)pq (hetr) = txChy,r

where m (r) = ILp"/* ™.
Let BU[2q](r, s) be the fiber of the mapping

(3.4)

BU[2q] L2 K(Z,, 29 + 2r)

where if Yagior,s 1s the fundamental class of K (Z by 29 + 2r) with Z,, as coef-
ficients, then g, . * (vags2r.e) = pe *chq.r , Where p, *is reduction mod 2°. Then we have
a sequence of fibrations

36) BU[2¢q](r, N — 1) — --- — BU[2¢](r, 1) = BU[2q]
where the fiber at each stage is K (Z,, 29 + 2r — 1).
Maunder then constructed a realization Ey_y — - -+ — Eo of (3.1) and map-

pings fi: BU[2q] (r, k) — Ei such that, with the notation of (2.3),
fi' g Belers) =0 for 0<4i<k

3.7 ‘
®D fitgr Buler) = p* <% chq,,(é,k)>
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where Z, ; is the bundle over BU[2¢] (r, s) induced by the universal bundle ¢ over
BU.

Let {x(¢"")} N > r> s> 0, be the pyramid of higher order cohomology opera-
tions associated with (3.1) and the realization & satisfying (3.7).

Then we can state Maunder’s theorem:

TaroreM 3.7 (Maunder). Let {x (¢ )} N > s > t > 0 be the pyramid of
of higher order cohomology operations mentioned above. Let u € K, (X) be a bundle.
Then if 2" Peher, (u) s “integral mod 2, x (b2 ) (psche (1)) is defined and
px (2 chgrr () € X (") (0xchq (k).

(Here we have set x (2" °) = x (¢2").)

4. Dual cohomology operations

In this section, we describe the duality theorem of Maunder [3], for higher order
cohomology operations. _

Let M and N be free A-modules with A-basis {m.}, {n;} and let f: 4 — N be an
A-map such that fm; = Za;m;. Then we define x(f):M — N by x(f)m; =
Zx (asi)m; .

Consider now an A-chain complex C':

@.1) G2 g,

and let C* be the chain complex

* . *
(4.2) Cy™ ¢ xon) Cya oo = Cy "'_'*“‘—X(al ) Co
where C,* = Homy, (Cy, Z:) and 8;* is the dual of 9 . We refer to C* as the dual
complex of C.

Recall from [5], that two ﬁmte complexes X and Y are S-dual mod 2 if there
exists a mapping ¢:8" — =*¥Y A ='X such that ¢* determines a non-singular bi-
linear pairing

4.3) H*('Y) ® H*(EX) 2 HY(S") =~ 7

which we will simply write as < , >.
Given a pyramid of cohomology operations ¢™° associated with the chain com-
plex C of (4.1), we have that .

(4.4) ¢"":Ker (¢, 21X) — H*(le)/Im (™", X)
and we define inductively x (¢"°) and dual pairings
4.5) Ker (¢, 21X) @ H**Y)/Im(x (¢™"), ZY) — Z,

4.6) Ker (x(@™"), 2'Y) ® H*(FX)/Im(¢"""), 2'X) — Z,
such that
(4.7) x(¢7°):Ker (x (¢""1), ZY) > H*(Z*Y ) /Im (x ("), Z*Y)
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is defined by: -

48) @) W), m) =y, ¢ (=)

for y € Ker (x(¢"*""), 2¥Y) and all z € Ker (¢" ", ='X ), and now

TrEOREM 4.9 (Maunder). The functions {x (¢ NN>r>s> 0definea
pyramid of stable cohomology operations associated with the chain compler (4.2),
and x (¢°) is non-zero in =Y zf and only if ¢ is non-zero in ' X, where X and
Y are S-duals.

5. The dual Maunder cohomology operations

In this section we describe the cohomology operations, for which we will
prove in a later section evaluation theorems.

- We begin'by describing the chain complex C* (N, r) dual
to the chain complex C' (N, r) of §3. Let

(5.1) -

91 N
*
~Co — e —— O

be a chain complex, where
C* ha,s#A-basis {c™}

(5.2) Cx™ has A-basis {cy,o"}

_ Cr* has A-basis {¢.”, cko’, *++ , Covi}

for1 <k <N —1
and where the boundary operators are given by
T ‘0161 = Sq Co

(5'3) Q% ¥
[alcl,k = Sq e for 0<EkE<N-1

andfor2<n <N — 1

. - a,ncn = Sq Cn—l
(54) V. 2r—2k
0nCr, v Sq Cn—1,k ¥ Sq Cn k+1 + Sq Cot”
and for NV,
(5 5) Oncw, 0 = Sq CN-—l 0 + Sq CN—1 1 “I‘ SCI CN—l .

The chain complex (5.1)is dual to the cham complex (3.1) Whlch hasa reahza,-
tion. Therefore by (4.9), the chain complex (5.1) has a realization, namely the
realization associated to the dual operations of the Maunder system of §3.

We will now work with any realization of (5.1). Let
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BFy BFy_, BF, BF,

gNx gN-1 go )[Ag]

(5.6) v 225 By, 25 o5 B B R
ixa inos
Fy Fys F

be a realization of (56.1). We put K, = K(Z,, q), thus E, = K, for some n and
5.7) BF, = Kpp X Iid” ™ Kpyorai
Let BF) = Mieg" * Kpnyor—i. Then we can unfold (5.6) to the following tower.

(5.8)

BFy BFy_{ Ko BF,’ K.  BF/ Ko
7 T T T T T T

By PN-1 EN—2, gn—2 Exs PN-2 TN E1l Q1 o P1 Eol ) B,

We construct a tower

BFy BFyx_.  BFxy. BF, BF/
(5.9) 7 7 1 T
DN—1—>DN—2—>DN—3—> cor = Dy — Dy

over Dy = K(Z, n) in such a way that we have mappings f :Dx — E; and
Dys1 — Dy is induced from Eyy; — Ei’ by fi. We proceed inductively as follows.
Fork = 0,

EY

l
fo

Dy——Ey— Kun

where fo*vn = an., where a, € H" (Do) is the fundamental class. Recall that
H""(Dy) = 0, hence fo admits a lifting f;': Do — Ey and we take now

Ji

D]'—'—-)El

A l
i

Dy —= B¢

where D; — Dy is induced from Ei — Eo by fo. Note that H"(D;) = Z, and
H™™ (D) = 0. Suppose inductively we have constructed the tower (5.9) through
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k-stages, such that H" (D) = Z,, H*™ (D;) = 0. Then we have

i l
Jod!

Dyy —— Eiy
Now consider
B/
!
Ix
D, ——E,—> Kuna

because H*™ (Di) = 0, fi admits a lifting f, : Dy — Ei and we take the induced
fiber space

Diyy e, By
l l
In’

D, —— E/

and because of (5.7), we see that H" (Diy1) = Zs, H*" (Di1) = 0 and the tower
now exists through (¢ + 1)-stages. We continue this construection so as to obtain
(5.9).

Remark 5.10. The spaces D; so constructed are unique up to homotopy type.
The tower (5.9) “defines” a stable cohomology operation defined on integral
classes.

Let x € H*(X; Z) be a class, where X is a finite CW-complex. Let w:X — Dy
be a representation of . Then fow:X — FE, is a representation of x mod 2 and we
clearly have:

PropositioN 5.11. Suppose that w:X — Dy admits a lifting to wy_1:X —
Dy_a, then fy_awy—1:X — Ex_y ts a lifting of fow.

Remark 5.12. For cohomology operations (5.11) states that if on an integral
class, the stable operation defined for integral classes, is defined, then so is the
mod 2 stable operation and the values of the first are a subset of the values of the
second. Let us denote by {¢"°} the pyramid of operations having (5.9) as its
universal example. In particular we denote by ¥, the operation ¢~ *°.

6. Evaluation of the dual Maunder cohomology operations

In this section we will show that for integral classes of sufficiently low dimen-
sion, the operations x (¢ ") are universally defined and thus are primary opera-
tions.
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We begin by establishing a result on the Steenrod algebra A over Z, . Let B(q)
be the left ideal in A generated by all those admissible monomials of excess
greater than ¢ (see [6]).

ProrosiTion 6.1. Leta € A,,b € Apsandn — 2 > g be such that
Sq'a + 89" = 0 mod 4 Sq' + B(q)

then
o = 8q" a1 + 8q" s
b= Sq b + Sq" bﬁjtmod ASq + B(q — eny)
a = b
where e,,q 1s the smallest nonnegative mod 4 reduction of n + ¢ — 1.
For simplicity, we write I = (a1, *-*, ax) for Sq'. Then
1 L. _ (a1+1,a,2,-~-,ak) if @; is even
62) . Sq (@, m) = {0 if s is odd
and
(m+3, @, ,a)+ @+2,etl - a)

if a; and a; are even
(a'1+ 3sa’2s "',ak)
6.3) 89" (a1, -, ) =1 if a1 is even and a is odd
@+ 2,a+1 ---,a4)

if a3 is odd and a, is even
0 if a; and @, are odd

Now we have the following:
LeEvmA 6.4. Leta € A, b € A, and suppose that
Sq' @ + 8q™ b = 0 mod 4 Sq'
then

o ar+ 89" @ + e« Sq" )
q b+ Sq" b + e Sq”'2J$mod A 8q'

SIS
[/ T

3]
»

Proof. Write a = 2I + 2I; ,b = 2J; + 2J; as sums of admissible monomials,
where the second summands lie in 4 Sq’. By (6.2) and (6.3), we obtain
(6.5) =8¢ Iy + 28q"J; = 0 mod 4 Sq.
By (6.3), for every 7, Sq™ J; = Sq' I, for some I, unless J; = Sq™%. Moreover
Sq* Sq" + Sq" 8q™* + 8q" Sq' = 0. Hence (6.5) splits up into two relations if
8q™*is an element of =J;,

=28q' I +28¢"J/ =0
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and
Sq' 8q™ + 8q” 8¢ = 0 mod 4 Sq'
Hence
I/ = Sq a1 + Sq' @
=J; = 8q" b + Sq" b,
with

b = a

since A is a free module over the sub Hopf algebra generated by Sq' and Sq™.
Therefore @ = 8q' a1 + 84" o + 84", b = 8¢' b1 + 84" b + «8¢"" and
(6.4) follows.

Proof of (6.1). Recall that for a monomial I = (a1, ---, ax), we define
e(I) =a1— D fsa;andn(I) = Y ja;, hencen(I) + e(I) = 2a, and thus
e(I) and n(I) have the same parity.

Given a and b, we write them as sums of admissible monomials

a = 2I; + 2T, where e(I) < g, e(l) > ¢

b = =J; + 3J; where e(J;) < q, e(J:) > q,
then from Sq'a + Sq”b = 0 mod A 8q' + B(g) we obtain
(6.6) Sq' (2Ix) + 8q™ (2J;) = 0mod 4 8q' + B(g)

where e(I+) < ¢, ¢(J;) < .
We now consider four cases

Case I,n + g = 0 mod 4. For every monomial I in (6.6) we have n(l;) = n,
e(Ix) < ¢, and for every monomial J;,n{J;) = n — 2 and e(J;) < ¢. From the
abovee(lr) #q— 1,9 — 3,ande(J;) £ q— 1,g — 3. Ife(J;) = ¢ — 2, then
20, (J;) = n — 24+ g — 2 = 0 mod 4, so that a;(J;) is even and from (6.3),
Sq” J; contains an admissible monomial of excess ¢ + 1 and possibly a monomial
of excess ¢ — 1. If e(J;) = ¢ — 4, then 2a:(J;) = n — 2 4+ ¢ — 4 = 2 mod 4,
so that a;(J;) is zero or an admissible monomial of excess ¢ — 3. This implies
that

6.7) Sq' ') + 8q" E"J;) = 0 mod 4 Sq'
where we take all the summands of (6.6) such that e(lx) < ¢ — 2 and
e(Jj) <q— 2.

We apply (6.4) to (6.7) and since
a =2T,mod 48q" + B(g — 3) b=2"J;mod ASq" + B(g — 3)

the result follows.
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Case II,n + q = 1 mod 4. In this case we exclude in (6.6) those monomials
with excess g or ¢ — 2. If e(Iz) = ¢ — 1, we have ¢(3q' Ix) = ¢ and if
e(J;) =q— 1, wehaven — 2 4+ ¢ — 1 = 2 mod 4 so a:1(J;) is odd, then by
(6.3), 8q™ J; is zero or has excess ¢. It follows then that (6.6) holds mod 4 Sq*
and (6.4) establishes this case.

Case II1, n + ¢ = 2 mod 4. In this case, we exelude from (6.6) those mono-
mials with excessg — lorg — 3. Nowife(J;) = ¢ —2,n — 24+ ¢ — 2= 2mod 4,
s0 a1 (J;) is odd and by (6.3), 8™ J; is zero or has excess ¢ — 1. This implies that
if we restrict the sum in (6.6) to monomials of excess < ¢, we obtain a relation
mod A Sq', and (6.4) then implies this case.

Case IV, n + q¢ = 3 mod 4. In this case, we exclude from (6.6) those mono-
mials with excessgorg — 2. If e(J;) = ¢ — 1, thenn — 2 + ¢ — 1 = O mod 4,
so that ay (J;) is even and (6.3) gives that Sq” J; has an admissible monomial of
excess ¢ + 2 and possibly one of excess q. If e (J;) = ¢ — 3, then 8q” J; has excess
g — 2 or is 0. Hence if we restrict the sum of (6.6) to those monomials with
excess less than ¢ — 1, we obtain a relation mod 4 Sq' and (6.4) establishes the
last case.

CoROLLARY 6.9. Let o 0; € Aomsi,t = 0, -+ , k satisfy the following system
of relations

(2) 8q" dansi + Sq” Gamsis = 0 mod 4 8q* + B(2g)
fori=0,1, -, kthen of 2m — 2k 4+ 2¢ = 0 mod 4, we have

ol 1 ot 2
(b) Gzm—2; = Sq danss + 8q “2'”—2'} mod 4 8¢' + B(2g — 1)

Tom—2i = Qom—2i—2
fori=0,1, - k.

Proof. By induction on k. If £ = 1, we have 2m 4 2¢ = 2 mod 4 and the result
is true by (6.1). Assume (6.9) holds for sequences {a;} containing k elements.
Then in particular if (a) holdsfor< = 1, --- , %k, then (b) holdsfors =1, --- , k.
Consider the relation Sq' asm 4 Sq" tem—s = 0 mod 4 8q' + B(2¢). By induction,
toms = Sq" Gam—s’ + Sq” dam_s’ mod A 8q' + B(2¢ — 1). Therefore, we obtain,

Sq' (@em + Sq"‘ Tams') = O0mod A Sq' + B(2¢ — 1)
Let £ = asm + Sq” tam_s', then z = =1, where the I are admissible monomials
of degree 2m, excess < 2¢ — land I, ¢ 4 Sq'. Because n (1) and e (I;) have the
same parity, there is no monomial I with e (I;) = 2¢ — 1, and therefore Sq" (21;)
= Omod A Sq' + B(2¢ — 1) implies Sq* (ZI;) = 0in 4, i.e. I = Sq' aom’
and hence azm + Sq” Gom_s' = Sq'ten mod 4 Sq' + B(2¢ — 1) and (6.9) follows.

Consider now the tower (5.9). Let v(n, t, k) € H"*™(D,), for k = 0, 1,

,N —tand 1 <t < N — 1, be the images of the fundamental classes of
H * (BF ;). Then they satisfy,

(6.10) Sq'vn, t, k) + Sq"v(n, t, k + 1) = 0.
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We now consider the operations y»," (see (5.12)) defined on integral classes and
associated with the chain complex (5.1). We may now state the main theorem of
this section.

THEOREM 6.11. For any integral classz € H*(X) of dimensionq < 2r — 4N + 5
and any choice of the operation yu," , we have that ¥, (x) is defined and is a primary
operation. If ¢ < 2r — 4N - 5, then the primary operation is stable.

Proof. We prove (6.11) in the universal example. By abuse of notation, we
denote by X (t) any suspension of K (Z, t). Consider the tower (5.9),

Dy(n, r) <= +++ < Dy_1(n, r)
where Do(n, r) = K(Z,n).If t < {, we denote by X (t) — X (¢') the mappings
induced by =* 'K (Z, t) — K (Z, t'). Consider
X@2r —2(N —1)—1) —LDo(n, r) — BF{ (n, r),
it isnul-homotopie, so fo admits alifting to f1: X (2r — 2(N — 1) — 1) > Dy (n, r).
Assume inductively that the mapping
X — 2(N — 1) — 2% + 1) —2— Do(n, r)

lifts to fo: X (2r — 2(N — 1) — 2k + 1) — Dy (n, ). Then {fi*w(n, k + 1, 5)}
fors =0,1, ---; N — k — 1 are cohomology operations on vyar—av_1y_axi1 .
Hence if we consider

X©@r —2(N — 1) — 2%) — 2> X(@2r — 2N — 1) — 2k + 1)
then ¢*fi*v(, & + 1, 8) = @ar—s (Yor—av—n—2%) are then k-invariants, where
G2r—9s € Aor—sgs . The family {as—0.} s = 0,1, -+, N — k — 1 satisfy the relations
(a) of (6.9), furthermore,2r —2(N —k — 1)+ 2r — 2(N — 1) — 2k = Omod 4,
hence (b) of (6.9) holds. If we further consider

X@r — 2N —1) — 2 — 1) —2> X (@ — 2(V — 1) — 2k),

we obtain {g:*g*fi v (n, & + 1, s)} lies as a set in the diagonal indeterminacy,
hence the mapping

X@r —2(N — 1) — 2k — 1) = Dy(n, r)
may be lifted to
X@r —2(N —1) — 2k — 1) = Dyya(n, r).
Continuing with this argument, we obtain
X@ — 2N —1) —2(N —2) — 1) = Do(n, 1)
admits a lifting to
X@r—20W — 1) — 2N — 2) — 1) > Dya(n, r)
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7. Proof of (1.4) and (1.5)

Let X be a finite CW-complex, whose integral cohomology has no torsion.
Suppose X embedds in S¥. Let ¥ be an M-dual of X. Then for any class
y € HY 772 (), ¢u,"(y) is universally defined for & < N and is a primary
stable cohomology operation if M — 1 — 2¢q — 2r < 2r — 4N + 4. In particular,
the above holds for ¢s,", the dual of the Maunder operations of §5. If we assume
that

0:H" 7 (Y) — HY (Y
is trivial for all § € A,,, then
¢ tHY M (V) — HY (Y ) /Ind
is also trivial for & < N. Therefore
(7.1) X (¢ )N (X, ") = H*™ (X)

is the trivial homomorphism for k¥ < N.
Let p € Kyq(X), then chy(u) € H?(X) satisfies

C(SqZT)P* (chq(u)) = px(2'cheir(u) = 0 '
hence 2" 'chgsr(u) is integral mod 2. Hence by Maunder’s theorem, (4.9),
x (¢2r) (pscho(u)) is defined and with zero indeterminacy,

X (¢ ) (pachon) = px (2 "Chore () = 0
by (7.1) Since any class z € H*(X) is ch,(u) for some g, it follows that
N (X, ¢”) = H®(X), and we proceed in this way, until we obtain,

X (2" (pache () = ps (2" chgrr (u)) = 0

and hence 2 Vchgyr (u) is still integral mod 2. Now from M — 1 — 29 — 2r <
2r — 4N + 4, we obtain, 4N < 4r + 29 — M + 5, and (1.4) follows.

Proof of (1.5). Suppose chm(p) = su(u)/m !, with px(sm(e)) # 0. Now the
highest power of 2 present in m !is 2™ %, Therefore, ps (2™ ™ chm (1)) 5 0, and
by Maunder’s theorem (4.9),

s (2" e (1)) € X (Pmzd") (chy (),

where m — a(m) =m — ¢ — N + 1,ie. N = a(m) — q + 1. However if
Xc8andM —1—2m<20m —q) — 4N + 4, x(bsmo” ) (che(n)) = 0
with zero indeterminacy. This is a contradiction. Hence X does not embedd in
SY, where M = 4m — 2¢ — 4(a(m) —q+ 1) + 5 = 4m + 2¢ — 4a(m) + 1.

CENTRO DE INVESTIGACION DEL IPN
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