PROJECTIVE HOMOTOPY CLASSES OF SPHERES IN THE STABLE RANGE

BY JOSEPH STRUTT

Given an element $\alpha \in \pi_n(X)$ we say that α is projective if and only if there exists a map $\bar{f}:RP^n \to X$ such that the diagram

is homotopy commutative, where f is any map representing α and ν is the standard double covering.

The study of projective homotopy classes is motivated by the question of whether an r-field on S^{n-1} (i.e. a family of r vector fields which are orthonormal at every point) is homotopic to a skew linear r field. Considering an r-field to be a cross section, s, of the fibration

a skew linear *r*-field is one which satisfies s(-x) = -s(x). The reader is referred to [7] for a detailed discussion of this question and its connection with projective homotopy classes.

In this paper we investigate projective homotopy classes of spheres in the stable range. Denoting by $\pi_n^{\operatorname{Proj}}(X)$ the set of projective homotopy classes of $\pi_n(X)$, we will prove the following:

i)
$$\pi_{2n}^{\operatorname{Proj}}(S^{2n}) = 0$$

ii) $\pi_{2n+1}^{\operatorname{Proj}}(S^{2n+1}) = Z$ and the sequence
 $0 \to \pi_{2n+1}^{\operatorname{Proj}}(S^{2n+1}) \to \pi_{2n+1}(S^{2n+1}) \to Z_2 \to 0$

is exact, where i is the inclusion map.

THEOREM 2.

i)
$$\pi_{2n}^{\operatorname{Proj}}(S^{2n-1}) = 0$$

ii) $\pi_{2n+1}^{\operatorname{Proj}}(S^{2n}) = \begin{cases} Z_2 \text{ if } 2 \not \mid n \\ 0 \text{ if } 2 \mid n \end{cases}$

THEOREM 3.

i)
$$\pi_{2n+1}^{\operatorname{Proj}}(S^{2n-1}) = \begin{cases} Z_2 & \text{if } 2 \not\mid n \\ 0 & \text{if } 2 \mid n \end{cases}$$

ii)
$$\pi_{2n+2}^{\operatorname{Proj}}(S^{2n}) = \begin{cases} Z_2 \text{ if } 2 \not\mid n \\ 0 \text{ if } 2 \mid n \end{cases}$$

THEOREM 4.

i)
$$\pi_{2n+3}^{\operatorname{Proj}}(S^{2n}) = \begin{cases} Z_{12} \text{ if } 2 \not\mid n \\ Z_{24} \text{ if } 2 \\ Z_{12} \text{ if } 4 \\ n \end{cases} \operatorname{hut} 4 \not\mid n$$

ii) $\pi_{2n+2}^{\operatorname{Proj}}(S^{2n-1}) = \begin{cases} Z_{2} \text{ if } 2 \not\mid n \\ 0 \text{ if } 2 \\ n \end{cases}$

Since the stable 4- and 5-stems of S^n are zero, $\pi_{n+k}^{\operatorname{Proj}}(S^n)$ is known for $k \leq 5$. The results can be conveniently summarized in the following table:

$n \equiv (-) \mod 8$	0	1	2	3	4	5	6	
π_n^{Proj} (S^n)	0	$2 \cdot Z$						
$\tau_{n+1}^{\operatorname{Proj}}(S^n)$	0	0	Z_2	0	0	0	Z_2	0
$r_{n+2}^{\operatorname{Proj}}(S^n)$	0	Z_2	Z_2	0	0	Z_2	Z_2	0
$_{n+3}^{\operatorname{Proj}}(S^n)$	Z_{12}	Z_2	Z_{12}	0	Z_{24}	Z_2	Z_{12}	0
$r_{n+4}^{\operatorname{Proj}}(S^n)$	0	0	0	0	0	0	0	0
$r_{n+5}^{\operatorname{Proj}}(S^n)$	0	0	0	0	0	0	0	0

The proofs of Theorems 1–4 will make use of a mod 2 Postnikov resolution of S^n and obstruction theory. We recall certain facts about the homology and cohomology of RP^n :

a)
$$\widetilde{H}_{i}(RP^{n}) = \begin{cases} 0 & \text{for } i \text{ even} \\ Z_{2} & \text{for } i \text{ odd and } i \neq n \\ Z & \text{or } i \text{ odd and } i = n \end{cases}$$

b) $\widetilde{H}^{i}(RP^{n}; Z) = \begin{cases} 0 & \text{for } i \text{ odd and } i \neq n \\ Z & \text{for } i \text{ odd and } i = n \\ Z_{2} & \text{for } i \text{ odd and } i = n \\ Z_{2} & \text{for } i \text{ even} \end{cases}$
c) $H^{*}(RP^{n}; Z_{2}) = Z_{2}[u]/(u^{n+1}) \ u \in H^{1}(RP^{n}; Z_{2})$
d) Let $P:RP^{n} \to RP^{n}/RP^{n-1} \cong S^{n}$ be the quotient map and consider

 $H_n(S^n) \xrightarrow{\nu_*} H_n(RP^n) \xrightarrow{P_*} H_n(S^n)$. For *n* odd, the groups are *Z*, ν_* is multiplication by 2, and P_* is the identity. In particular, $P \circ \nu$ is a map of Brower degree 2.

e) The map $\nu^*: H^n(RP^n; Z_{2k}) \to H^n(S^n; Z_{2k})$ is zero for all values of k when n is even and the map $\nu^*: H^n(RP^n; Z_2) \to H^n(S^n; Z_2)$ is zero for all n.

PROPOSITION 2.1. Let X be an (n-1) connected space where n is even. Then $\pi_n^{\mathbf{P}_{roj}}(X) = 0.$

16

Proof. Assume $[f] \in \pi_n^{\operatorname{Proj}}(X)$. Then the diagram

is homotopy commutative, and since $H_n(\mathbb{RP}^n) = 0$, the map $f: H_n(\mathbb{S}^n) \to H_n(X)$ is zero. In particular, the image of [f] under the Hurewicz isomorphism is zero, implying that [f] = 0 in $\pi_n(X)$.

This proves part i of Theorem 1. To prove part ii, we note that the class $[P \circ \nu]$ is projective and so is $[f \circ P \circ \nu]$ where $f:S^n \to S^n$ is a map of arbitrary Brower degree. Therefore $k[P \circ \nu] \in \pi_n^{\operatorname{Proj}}(S^n)$ for all $k \in \mathbb{Z}$, and since $P \circ \nu$ has degree 2 when n is odd, we see that $2 \cdot \pi_n(S^n) \subset \pi_n^{\operatorname{Proj}}(S^n)$. Conversely, every projective class must have even degree since $\nu_*: H_n(S^n) \to H_n(\mathbb{R}P^n)$ is multiplication by 2.

The following corollary to the proof of Theorem 1 is immediate:

COROLLARY 2.2. Let X be (n-1) connected, $n \ge 2$. Then

$$\pi_n^{\operatorname{Proj}}(X) = \begin{cases} 0 \text{ if } n \text{ is even} \\ 2 \cdot \pi_n(X) \text{ if } n \text{ is odd} \end{cases}$$

The proofs of the remaining theorems will make use of the following mod 2 Postnikov system for S^{n} :

$$K(Z_{8}, n + 3) \rightarrow X_{n+3}$$

$$\downarrow$$

$$K(Z_{2}, n + 2) \rightarrow X_{n+2} \xrightarrow{\operatorname{Sq}^{4} i_{n}} K(Z_{8}, n + 4)$$

$$\downarrow$$

$$L(Z_{2}, n + 1) \rightarrow X_{n+1} \xrightarrow{\alpha(2)} K(Z_{2}, n + 3)$$

$$\downarrow$$

$$K(Z, n) \xrightarrow{\operatorname{Sq}^{2} i_{n}} K(Z_{2}, n + 2)$$

For the construction, see [2], Chapter 12. The symbol " i_n " denotes the fundamental class of K(Z, n) as well as its image in $H^*(X_k; Z_2)$. The symbol " $\alpha(2)$ " denotes a cohomology class which pulls back to Sq² of the fundamental class of the fibre $K(Z_2, n + 1)$ (usually denoted by Sq² i_{n+1}). We denote by r_j the inclusion $K(Z_{2^m}, j) \to X_j$, by p_j the fibre map $X_j \to X_{j-1}$, and by ρ_j the map $S^n \to X_j$. We recall that the map $\rho_{j\notin}:\pi_i(S^n) \to \pi_i(X_j)$ is a C₂-isomorphism for $i \leq j$ and a C₂-epimorphism for i = j + 1, where C₂ is the class of abelian torsion groups of finite exponent such that the order of each element is prime to 2.

We note that if X is an *H*-space or if X is (m-1) connected and n < 2m-1, then $\pi_n^{\operatorname{Proj}}(X)$ is a subgroup of $\pi_n(X)$. In particular, the X_j 's in the Postnikov system are loop spaces since we are in the stable range (see [2], Corollary 2, p. 153), so $[RP^k, X_j]$ is a group and $\pi_k^{\operatorname{Proj}}(X_j)$ is a subgroup of $\pi_k(X_j)$. Also $\pi_{n+k}^{\operatorname{Proj}}(S^n)$ is a subgroup of $\pi_{n+k}(S^n)$ for k < n-1.

LEMMA 2.3. Consider a map $f: \mathbb{R}P^{j} \to X_{j}$, $n \leq j \leq n+3$. Then i) $p_{j} \circ f$ has a unique extension $h: \mathbb{R}P^{j+1} \to X_{j-1}$

ii) If h lifts to X_j , then $[f \circ \nu] = 0$ in $\pi_j(X_j)$ provided that j < n + 3or j = n + 3 and n + 3 even.

Proof. Part i follows from the Puppe sequence since $\pi_i(X_{j-1})$ and

$$\pi_{j+1}(X_{j-1}) = 0.$$

For part ii we consider the diagram

where \bar{h} is the lifting of h and k is the inclusion. It is not necessarily true that $f \simeq \bar{h} \circ k$, but we claim that $f \circ \nu \simeq \bar{h} \circ k \circ \nu$ (in which case it follows trivially that $f \circ \nu \simeq 0$). We consider the fibre mapping sequence of the fibration $K(Z_{2^m}, j) \rightarrow X_j \rightarrow X_{j-1}$ (m = 1 or 3)

Since we are in the stable range, every set in the diagram is an abelian group. Consider $[f] - [\bar{h} \circ k] \in [RP^j, X_j]$. By assumption $p_{j\#}([f] - [\bar{h} \circ k]) = 0$, so $[f] - [\bar{h} \circ k]$ is in the image of $r_{j\#}$. The map $\bar{v} \not *$ is zero when j < n + 3 or when j = n + 3 and n + 3 is even by remark *e* above, so the commutativity of the square implies that $v \not * ([f] - [\bar{h} \circ k]) = 0$.

LEMMA 2.4. Consider a map $f:\mathbb{R}P^{j} \to X_{j}$ and denote by $h:\mathbb{R}P^{j+1} \to X_{j-1}$ the unique extension of $p_{j} \circ f$ to $\mathbb{R}P^{j+1}$ (cf. 2.3). If the obstruction to lifting h is non-zero, then the class $[f \circ \nu]$ is non-zero in $\pi_{j}(X_{j})$. If j = n + 3 and the mod 2 reduction of the obstruction to lifting h is non-zero, then $[f \circ \nu]$ is an odd multiple of the generator of $\pi_{n+3}(X_{n+3}) = Z_{8}$.

Proof. By the Puppe sequence $[f \circ v]$ is non-zero if and only if f is not extendable to RP^{j+1} . Supposing, to the contrary, that f has an extension \overline{f} to RP^{j+1} , then $p_j \circ \overline{f}$ is an extension of $p_j \circ f$. By the uniqueness of this extension, $p_j \circ f \simeq h$; but this contradicts the fact that h doesn't lift to X_j .

For the case j = n + 3, we alter the Postnikov system by killing Sq⁴ i_n in $H^*(X_{n+2})$ as a Z_2 class rather than as a Z_8 class. We get

$$\begin{array}{c} K(Z_2, n+3) \to Y_{n+3} \\ \downarrow \\ K(Z_2, n+2) \to X_{n+2} \underbrace{\qquad Sq^4 i_n }_{\downarrow} K(Z_2, n+4) \\ \downarrow \\ \vdots \end{array}$$

By the naturality of pull backs, there is a map $\phi: X_{n+3} \to Y_{n+3}$ which induces mod 2 reduction on $\pi_{n+3}(-)$. $(\pi_{n+3}(X_{n+3}) = Z_8 \text{ and } \pi_{n+3}(Y_{n+3}) = Z_2$.) The same argument then shows that $[\phi \circ f \circ \nu]$ is non-zero in $\pi_{n+3}(Y_{n+3})$; in other words, the mod 2 reduction of $[f \circ \nu]$ is non-zero, or $[f \circ \nu]$ is an odd multiple of the generator.

We can now prove Theorem 2. Since $\pi_{n+1}(S^n) = Z_2$, we ask whether there is an essential composition $S^{n+1} \xrightarrow{\nu} RP^{n+1} \xrightarrow{f} S^n$. By Corollary 2.6.23 of [3], $[RP^{n+1}, S^n] \cong [RP^{n+1}, X_{n+1}]$, so it suffices to find $\pi_{n+1}^{\operatorname{Proj}}(X_{n+1})$. Suppose *n* is equal to 2k - 1, consider any map $f: RP^{2k} \to X_{2k}$. Then the composition $RP^{2k} \xrightarrow{f} X_{2k} \xrightarrow{p_{2k}} K(Z, 2k - 1)$ is null-homotopic since $H^{2k-1}(RP^{2k}; Z) = 0$, and by Lemma 2.3, $[f \circ \nu] = 0$. This proves part i.

For n = 2k and $2 \mid k$, consider any map $f:RP^{2k+1} \to X_{2k+1}$. The extension of $p_{2k+1} \circ f$ to RP^{2k+2} lifts to X_{2k+1} since the obstruction is either $\operatorname{Sq}^2 u^{2k}$ or $\operatorname{Sq}^2 0$ according as $p_{2k+1} \circ f$ is essential or null homotopic. But $\operatorname{Sq}^2 u^{2k} = 0$ since $2 \mid k$, and by Lemma 2.3, $[f \circ \nu] = 0$. For n = 2k and $2 \not\prec k$, consider a map $RP^{2k+1} \xrightarrow{h} K(Z, 2k)$ which is not homotopic to zero (note that $[RP^{2k+1}, K(Z, 2k)] \cong H^{2k}(RP^{2k+1}; Z) = Z_2$). h lifts to X_{2k+1} by a map $g:RP^{2k+1} \to X_{2k+1}$, say, however the extension of h to RP^{2k+2} does not lift since the obstruction is $\operatorname{Sq}^2 u^{2k}$, which is non-zero when $2 \not\prec k$. By Lemma 2.4, $[g \circ \nu]$ is non-zero, so $\pi_{2k+1}^{\operatorname{Proj}}(S^{2k}) \cong Z_2$ when $2 \not\prec k$.

The same procedure is used in the proof of Theorem 3. It suffices to find $\pi_{n+2}^{\operatorname{Proj}}(X_{n+2})$, and for n = 2k - 1 where $2 \not\downarrow k$, we consider the composition $RP^{2k+1} \xrightarrow{u^{2k}} K(Z_2, 2k) \xrightarrow{r_{2k}} X_{2k}$. It lifts to X_{2k+1} , but the extension of $r_{2k} \circ u^{2k}$ to RP^{2k+2} , which we also denote by $r_{2k} \circ u^{2k}$, has an obstruction $(r_{2k} \circ u^{2k})^* (\alpha(2)) = (u^{2k})^* (\operatorname{Sq}^2 i_{2k}) = \operatorname{Sq}^2 u^{2k}$ which is non-zero since $2 \not\downarrow k$. This implies, by Lemma 2.4, that $\pi_{2k+1}^{\operatorname{Proj}}(S^{2k-1}) \neq 0$, or $\pi_{2k+1}^{\operatorname{Proj}}(S^{2k-1}) = Z_2$ when $2 \not\downarrow k$.

When n = 2k - 1 and $2 \mid k$, we consider any map $f: \mathbb{R}P^{2k+1} \to X_{2k+1}$ and look at $p_{2k+1} \circ f$. The map $p_{2k} \circ p_{2k+1} \circ f$ is null homotopic since $H^{2k-1}(\mathbb{R}P^{2k+2}; Z) = 0$, so $p_{2k+1} \circ f$ factors through the fibre, $K(Z_2, 2k)$:

$$RP^{2k+1} \xrightarrow{f} X_{2k+1}$$

$$\downarrow \phi \qquad \qquad \downarrow p_{2k+1}$$

$$K(Z_2, 2k) \xrightarrow{r_{2k}} X_{2k} \xrightarrow{\alpha(2)} K(Z_2, 2k+2).$$

 $r_{2k} \circ \phi$ has an extension to RP^{2k+2} (by the Puppe sequence) and the obstruction to

JOSEPH STRUTT

lifting it is either $\operatorname{Sq}^2 u^{2k}$ or $\operatorname{Sq}^2 0$, in both cases zero since $2 \mid k$. Therefore $[f \circ \nu] = 0$ by Lemma 2.3, and we have that $\pi_{2k+1}^{\operatorname{Proj}}(S^{2k-1}) = 0$ when $2 \mid k$.

For n = 2k and $2 \not\prec k$, we consider the composition $\mathbb{RP}^{2k+2} \xrightarrow{u^{2k+1}} K(Z_2, 2k+1) \xrightarrow{r_{2k+1}} X_{2k+1}$ and notice that it has a lifting to X_{2k+2} . Its extension to \mathbb{RP}^{2k+3} , however, does not lift (the obstruction is $\operatorname{Sq}^2 u^{2k+1}$, which is non-zero since $2 \not\prec k$). Hence, by Lemma 2.4, $\pi_{2k+2}^{\operatorname{Proj}}(S^{2k}) = Z_2$ when $2 \not\prec k$. For n = 2k and $2 \mid k$, we consider any map $f:\mathbb{RP}^{2k+2} \to X_{2k+2}$. By the Puppe

For n = 2k and $2 \mid k$, we consider any map $f: \mathbb{R}P^{2k+2} \to X_{2k+2}$. By the Puppe sequence, the map $p_{2k+2} \circ f$ has an extension to $\mathbb{R}P^{2k+3}$, and we must show that the obstruction to lifting this extension, namely the pull back of $\alpha(2)$, is zero.

LEMMA 2.5. Let $g: \mathbb{R}P^{2k+3} \to X_{2k+1}$ be any map, where $2 \mid k$. Then $g^*(\alpha(2)) = 0$.

Proof. We need the following facts about the cohomology of X_{2k+1} (see [2], Chapter 12):

1) <i>j</i>	generator of $H^{2k+j}(X_{2k+1}, Z_2)$
0	$\dot{\imath_{2k}}$
1	—
2	
3	$\alpha(2)$
4	$\mathrm{Sq}^{4}~i_{2k}$, $eta\left(3 ight)$
5	$\gamma(3,1)$

 $(\beta(3) \text{ is a class that pulls back to } \operatorname{Sq}^{3} i_{2k+1} \text{ in the cohomology of the fibre; similarly,} \gamma(3, 1) \text{ pulls back to } \operatorname{Sq}^{3} \operatorname{Sq}^{1} i_{2k+1})$

- 2) $d_2 \operatorname{Sq}^4 i_{2k} = \gamma(3, 1)$ where d_2 is the secondary Bockstein operator.
- 3) $\operatorname{Sq}^{2} \alpha(2) = \gamma(3, 1)$

We first extend g to a map $\bar{g}: RP^{2k+5} \to X_{2k+1}$ and note that $g^*(\alpha(2)) = 0$ if and only if $\bar{g}^*(\alpha(2)) = 0$. Assume that $\bar{g}^*(\alpha(2)) \neq 0$. In particular $\bar{g}^*(\alpha(2)) = u^{2k+3}$ and $\operatorname{Sq}^2 \bar{g}^*(\alpha(2)) = u^{2k+5}$ since $2 \mid k$. But $\operatorname{Sq}^2 \bar{g}^*(\alpha(2)) = \bar{g}^*(\gamma(3, 1)) = \bar{g}^*(d_2 \operatorname{Sq}^4 i_{2k}) = d_2 \operatorname{Sq}^4 \bar{g}^* i_{2k}$ and $\operatorname{Sq}^4 \bar{g}^* i_{2k}$ is an even dimensional class of $H^*(RP^{2k+5}; Z_2)$, so it is the mod 2 reduction of an integral class. This means that all Bocksteins vanish, in particular that $d_2 \operatorname{Sq}^4 \bar{g}^* i_{2k} = 0$, contradicting the fact that $\operatorname{Sq}^2 \bar{g}^*(\alpha(2)) = u^{2k+5}$. Therefore $\bar{g}^*(\alpha(2))$ must be 0.

By Lemma 2.5, then, the extension of $p_{2k+2} \circ f$ lifts to X_{2k+2} , and so $[f \circ \nu] = 0$ by Lemma 2.3. In particular, $\pi_{2k+2}^{\operatorname{Proj}}(S^{2k}) = 0$ when $2 \mid k$. This concludes the proof of Theorem 3.

The stable 3-stem of S^n is Z_{24} , the 3-primary part of which is lost in the mod 2 Postnikov system. In odd dimensions the 3-primary part, Z_3 , must be projective, since, by Remark *d* above, twice any odd dimensional homotopy class is projective. Therefore, remembering that we are in the stable range (so that projective classes are additive), we need only analyze the 2-primary component of $\pi_{2k+3}(S^{2k})$.

Since 2k + 3 is odd, we have that $2 \cdot \pi_{2k+3}(S^{2k}) \subset \pi_{2k+3}^{\Pr_{oj}}(S^{2k})$, or $Z_4 \subset \pi_{2k+3}(S^{2k})$

(considering only the 2-primary part). For $2 \not\prec k$, we must show that $[f \circ \nu]$ is divisible by 2 for any map $f:RP^{2k+3} \to X_{2k+3}$. This is equivalent to showing that $[\phi \circ f \circ \nu]$ is 0 in $\pi_{2k+3}(Y_{2k+3})$ where $\phi:X_{2k+3} \to Y_{2k+3}$ is the map constructed in the proof of Lemma 2.4. We consider $\bar{p}_{2k+3} \circ \phi \circ f$ (\bar{p}_{2k+3} is the projection $Y_{2k+3} \to X_{2k+2}$ —see proof of Lemma 2.4) and we must show that its extension to RP^{2k+4} , which we denote by g, lifts to Y_{2k+3} . This amounts to showing that $g^*(\operatorname{Sq}^4 i_{2k}) = 0$. (We are in the altered Postnikov system, so $\operatorname{Sq}^4 i_{2k}$ is considered as a Z_2 -class). We claim that $g^*(i_2) = 0$. This is true if and only if the projected map $p_{2k+1} \circ p_{2k+2} \circ g: RP^{2k+4} \to K(Z, 2k)$ pulls the fundamental class i_{2k} back to 0. If it didn't, there would be a non-zero obstruction to lifting $p_{2k+1} \circ p_{2k+2} \circ g$ to X_{2k+1} , namely $\operatorname{Sq}^2 u^{2k}$ (this is a non-zero since $2 \not\prec k$), which is clearly a contradiction. Therefore, the extension g lifts, and by Lemma 2.4, $[\phi \circ f \circ \nu] = 0$ or $[f \circ \nu]$ is divisible by 2 in $\pi_{2k+3}(X_{2k+3})$, implying that $\pi_{2k+3}^{\operatorname{Proj}}(S^{2k}) = Z_4$ when $2 \not\prec k$.

When $2 \mid k$ but $4 \not \mid k$, we consider the map $h: RP^{2k+3} \to K(Z, 2k)$ where h is not null homotopic. Since $2 \mid k$, all obstructions to lifting h are zero, so we get a map $f: RP^{2k+3} \to X_{2k+3}$. Denote the extension of $p_{2k+3} \circ f$ to RP^{2k+4} by g; the mod 2 reduction of the obstruction to lifting g is simply $g^*(\operatorname{Sq}^4 i_{2k})$ with $\operatorname{Sq}^4 i_{2k}$ considered as a Z_2 class. The map g pulls i_{2k} back to u^{2k} since h is not null homotopic, so $g^*(\operatorname{Sq}^4 i_{2k}) = \operatorname{Sq}^4 u^{2k} = u^{2k+4}$ since $4 \not \mid k$. Therefore, by Lemma 2.4, $[f \circ \nu]$ is an odd multiple of the generator of $\pi_{2k+3}(X_{2k+3})$, which implies that $\pi_{2k+3}^{\operatorname{Proj}}(S^{2k}) = Z_8$ when $2 \mid k$ but $4 \not \mid k$.

When 4 | k, consider any map $f: \mathbb{R}P^{2k+3} \to X_{2k+3}$. We will show that $[\phi \circ f \circ \nu] = 0$ in $\pi_{2k+3}(Y_{2k+3})$. The extension of $\bar{p}_{2k+3} \circ \phi \circ f$ to $\mathbb{R}P^{2k+3}$ pulls Sq⁴ i_{2k} (as a Z_2 -class) back to Sq⁴ u^{2k} or Sq⁴ 0, which is zero in both cases since 4 | k. Therefore the extension lifts and by the proof of Lemma 2.3 $[\phi \circ f \circ \nu] = 0$, or $[f \circ \nu]$ is divisible by 2. This implies that $\pi_{2k+3}^{\operatorname{Proj}}(S^{2k}) = Z_4$ when 4 | k. This finishes the proof of part *i* of Theorem 4.

In the proof of part ii, it will be helpful to have the mod 2 Postnikov system written out explicitly:

$$\begin{array}{c} K(Z_{8}, 2k+2) \rightarrow X_{2k+2} \\ \downarrow \\ K(Z_{2}, 2k+1) \rightarrow X_{2k+1} \xrightarrow{\qquad \mathbf{Sq}^{4} i_{2k-1}} K(Z_{8}, 2k+3) \\ \downarrow \\ K(Z_{2}, 2k) \rightarrow X_{2k} \xrightarrow{\qquad \alpha(2)} K(Z_{2}, 2k+2) \\ \downarrow \\ K(Z, 2k-1) \xrightarrow{\qquad \mathbf{Sq}^{2} i_{2k-1}} K(Z_{2}, 2k+1) \end{array}$$

Since $\operatorname{Sq}^4 i_{2k-1}$ is considered as a Z_8 -class, it will be a delicate matter to decide under what conditions it will give rise to a non-zero obstruction. We will need certain information about the Z_8 cohomology of $K(Z_2, n)$. Lemma. 2.6

$$H_{n+i}(K(Z_2, n)) = \begin{cases} Z_2 & i = 0\\ 0 & i = 1\\ Z_2 & i = 2\\ Z_2 & i = 3 \end{cases}$$

where only the 2-primary component is considered.

Proof. The result for i = 0 follows from the Hurewicz Theorem. Since $H^*(K(Z_2, n); Z_2)$ is known, we can apply the universal coefficient theorems. Setting $K = K(Z_2, n)$, we have

$$H^{n+1}(K; Z_2) = Z_2 = \text{Hom } (H_{n+1}(K), Z_2) + \text{Ext } (Z_2, Z_2)$$

which implies that $H_{n+1}(K) = 0$. Secondly

 $H^{n+2}(K; Z_2) = Z_2 = \text{Hom } (H_{n+2}(K), Z_2) + \text{Ext } (0, Z_2)$

which implies that $H_{n+2}(K)$ is equal to Z or Z_{2^r} , $r \ge 1$. But $H^{n+2}(K; Z_2)$ is generated by Sq² i_n and d_1 Sq² $i_n =$ Sq³ i_n which is non-zero, so, in particular, Sq² i_n is not the mod 2 reduction of a Z_4 class. This implies that $H_{n+2}(K)$ must equal Z_2 . Finally, we have

$$H^{n+3}(K; Z_2) = Z_2 + Z_2 = \text{Hom } (H_{n+3}(K); Z_2) + \text{Ext } (Z_2, Z_2)$$

implying that $H_{n+3}(K)$ is equal to Z or Z_{2^r} , $r \ge 1$. $H^{n+3}(K; Z_2)$ has generators $\operatorname{Sq}^3 i_n$ and $\operatorname{Sq}^2 \operatorname{Sq}^1 i_n$; the first Bockstein d_1 vanishes on the first and is non-zero on the second, implying that the first generator is the mod 2 reduction of a Z_4 class and the second isn't. Since Ext $(Z_2, Z_4) \to \operatorname{Ext} (Z_2, Z_2)$ is an isomorphism the Z_2 summand generated by $\operatorname{Sq}^3 i_n$ must be Ext (Z_2, Z_2) . This leaves $\operatorname{Sq}^2 \operatorname{Sq}^1 i_n$ as the generator of Hom $(H_{n+3}(K); Z_2)$, and since $\operatorname{Sq}^2 \operatorname{Sq}^1 i_n$ is not the reduction of a Z_4 -class, $H_{n+3}(K)$ must equal Z_2 .

LEMMA 2.7. The composition

 $RP^{2k+3} \xrightarrow{u^{2k+1}} K(Z_2, 2k+1) \xrightarrow{r_{2k+1}} X_{2k+1} \xrightarrow{\operatorname{Sq}^4 i_{2k-1}} K(Z_3, 2k+3)$

represents zero in $H^{2k+3}(\mathbb{R}P^{2k+3}; \mathbb{Z}_8) = \mathbb{Z}_8$ when $2 \mid k$ and 4 times the generator when $2 \nmid k$.

Proof. Recall that $d_2(\operatorname{Sq}^4 i_{2k-1}) = \gamma(3, 1)$ in $H^*(X_{2k}; Z_2)$, so the $\operatorname{Sq}^4 i_{2k-1}$ in $H^*(X_{2k}; Z_2)$ is not the reduction of a Z_8 class. Therefore the $\operatorname{Sq}^4 i_{2k-1}$ in $H^*(X_{2k+1}; Z_8)$ is not in the image of p_{2k+1}^* , and so $r_{2k+1}^*(\operatorname{Sq}^4 i_{2k-1})$ is non-zero in $H^{2k+3}(K(Z_2, 2k+1); Z_8)$, which, by Lemma 2.6, is equal to Z_2 . It remains only to find the conditions under which the map $(u^{2k+1})^*$ is non trivial on $H^{2k+3}(-; Z_8)$. We have

$$H^{2k+3}(RP^{2k+3}; Z_8) \leftarrow H^{2k+3}(K(Z_2, 2k+1); Z_8)$$

$$I$$

$$Z_8$$

$$Z_2$$

22

and by the universal coefficient theorem this is non trivial if and only if $(u_{2k+1})_*$ is non-zero on $H_{2k+3}(-)$, which is true if and only if $(u_{2k+1})^*$ is non trivial on $H^{2k+3}(-; \mathbb{Z}_2)$. But this is equivalent to $\operatorname{Sq}^2 u^{2k+1}$ being non-zero, which is equivalent to the condition $2 \not \leq k$.

LEMMA 2.8. Given any map $f:\mathbb{RP}^{2k+3} \to X_{2k}$, then $f^*(\operatorname{Sq}^4 i_{2k-1}) = 0$, where $\operatorname{Sq}^4 i_{2k-1}$ is considered as a class in $H^*(X_{2k}; Z_4)$.

Proof. f factors through $K(Z_2, 2k)$ since $p_{2k} \circ f$ is null homotopic. Therefore it will suffice to check that any map $g:RP^{2k+3} \to K(Z_2, 2k)$ is trivial on $H^{2k+3}(-;Z_4)$. By the universal coefficient theorems, this amounts to showing that the induced maps

Hom
$$(H_{2k+3}(RP^{2k+3}), Z_4) \leftarrow$$
 Hom $(H_{2k+3}(K(Z_2, 2k)), Z_4)$

and

Ext
$$(H_{2k+2}(RP^{2k+3}), Z_4) \leftarrow \text{Ext} (H_{2k+2}(K(Z_2, 2k)), Z_4)$$

are zero. The second map is zero since $H_{2k+2}(RP^{2k+3}) = 0$. That the first map is zero will follow if $H_{2k+3}(RP^{2k+3}) \rightarrow H_{2k+3}(K(Z_2, 2k))$ is zero, which in turn will follow (by the universal coefficient theorem and Lemma 2.6) if $H^{2k+3}(RP^{2k+3}; Z_2) \leftarrow H^{2k+3}(K(Z_2, 2k); Z_2)$ is zero. But g is homotopic to 0 or u^{2k} , and Sq² Sq¹ u^{2k} and Sq³ u^{2k} are both zero for all values of k.

We first prove part ii of Theorem 4 for the 2-primary component only. When $2 \not\prec k$, we consider the composition $RP^{2k+2} \xrightarrow{u^{2k+1}} K(Z, 2k + 1) \xrightarrow{r_{2k+1}} X_{2k+1}$, which lifts to a map $f:RP^{2k+2} \to X_{2k+2}$. By Lemma 2.7, the extension of $r_{2k+1} \circ u^{2k+1}$ to RP^{2k+3} does not lift, and so, by Lemma 2.4, $[f \circ v] \neq 0$.

The following Proposition completes the proof for the case $2 \not\mid k$.

PROPOSITION 2.9. Given any map $f: \mathbb{R}P^{2k+2} \to X_{2k+2}$, then the reduction mod 4 of $[f \circ \nu]$ is zero.

Proof. We alter the Postnikov system for S^{2k-1} by killing Sq⁴ i_{2k-1} in $H^*(X_{2k+1}; Z_2)$ as a Z_4 class rather than as a Z_8 class. We get

$$K(Z_4, 2k+2) \rightarrow Z_{2k+2}$$

$$\downarrow$$

$$K(Z_2, 2k+1) \rightarrow X_{2k+1} \xrightarrow{\operatorname{Sq}^4 i_{2k-1}} K(Z_4, 2k+3)$$

$$\downarrow$$

$$\vdots$$

By naturality of pull backs, there is a map $\phi: X_{2k+2} \to Z_{2k+2}$ which is mod 4 reduction on $\pi_{2k+2}(-)$. It will suffice to show that for any map $f: RP^{2k+2} \to Z_{2k+2}$, $[f \circ \nu] = 0$. Consider $p_{2k+2} \circ f$ and denote its extension to RP^{2k+3} by g. The Sq⁴ i_{2k-1} in $H^*(X_{2k+1}; Z_4)$ is the image under p_{2k+1}^* of the Sq⁴ i_{2k-1} in $H^*(X_{2k}; Z_4)$, so by Lemma 2.8, $g^*(\text{Sq}^4 i_{2k-1}) = 0$. Therefore g lifts, and it follows from Lemma 2.3 that $[f \circ \nu] = 0$.

JOSEPH STRUTT

The next Proposition completes the proof of part ii for the 2-primary component.

PROPOSITION 2.10. If $2 \mid k$, then for any map $f : \mathbb{R}P^{2k+2} \to X_{2k+2}$, we have $[f \circ \nu] = 0$.

Proof. If we can show that $p_{2k+2} \circ f$ factors through the fibre $K(Z_2, 2k + 1)$, we are done by Lemmas 2.7 and 2.3. The composition $p_{2k} \circ p_{2k+1} \circ p_{2k+2} \circ f: \mathbb{R}P^{2k+2} \to K(Z, 2k - 1)$ is null homotopic, so $p_{2k+1} \circ p_{2k+2} \circ f$ factors through the fibre $K(Z_2, 2k)$ by a map g, say:

It remains only to show that $r_{2k} \circ g$ is null homotopic. We consider the fibre mapping sequence of the fibration $K(Z_2, 2k) \to X_{2k} \to K(Z, 2k - 1)$:

$$\cdots \rightarrow [RP^{2k+2}, K(Z, 2k-2)] \xrightarrow{\operatorname{Sq}^2} [RP^{2k+2}, K(Z_2, 2k)]$$
$$\xrightarrow{(r_{2k}) \not \circledast} [RP^{2k+2}, X_{2k}] \rightarrow \cdots$$

Since 2 | k, the map "Sq²" is an isomorphism, so $(r_{2k}) \neq 0$. It follows that $r_{2k} \circ g$ is null homotopic.

In order to study the 3-primary part of $\pi_{2k+2}^{\operatorname{Proi}}(S^{2k-1})$, we must construct a mod 3 Postnikov system. It is known that $H^*(K(Z, 2k - 1); Z_3)$ has a fundamental class i_{2k-1} , and the next group is a Z_3 in dimension 2k + 3 generated by P^1i_{2k-1} where P^1 is the first reduced power operation of Steenrod. We construct a space Y_{2k+2} by killing this class:

$$\begin{array}{c} K(Z_3, 2k+2) \rightarrow Y_{2k+2} \\ \downarrow \\ K(Z, 2k-1) \xrightarrow{P^1 i_{2k-1}} K(Z_3, 2k+3). \end{array}$$

It can be verified that the Z_3 -cohomology of Y_{2k+2} is Z_3 in dimension 2k - 1 and 0 in dimensions 2k + 1 through 2k + 3. The map $S^{2k-1} \to K(Z, 2k - 1)$ representing the fundamental class of S^{2k-1} lifts to Y_{2k+2} and the lifting induces an isomorphism on $H^i(-; Z_3)$ for $i \leq 2k + 2$ and a monomorphism for i = 2k + 3. By the \mathbb{C}_p approximation theorem (see [2] Chapter 10), it induces an isomorphism on homotopy groups through dimension 2k + 2. Therefore the above is a mod 3 Postnikov resolution of S^{2k-1} .

By the fibre mapping sequence, $[RP^{2k+2}, Y_{2k+2}] = 0$, so, in particular,

 $\mathbf{24}$

 $\pi_{2k+2}^{\operatorname{Proj}}(Y_{2k+2}) = 0$, implying that the 3-primary part of $\pi_{2k+2}^{\operatorname{Proj}}(S^{2k-1})$ is zero. This concludes the proof of Theorem 4.

TULANE UNIVERSITY OF LOUISIANA

References

[1] H. CARTAN, Seminaire H. Cartan 1954-1955, Paris.

- [2] R. E. MOSHER AND M. C. TANGORA, Cohomology Operations and Applications in Homotopy Theory, Harper and Row, New York, 1966.
- [3] E. H. SPANIER, Algebraic Topology, McGraw-Hill, New York, 1966.
- [4] N. E. STEENROD AND D. B. A. EPSTEIN, Cohomology Operations, Annals of Mathematical Studies, 50, Princeton University Press, Princeton, 1962.
- [5] J. STRUTT, Projective Homotopy Classes, Thesis, University of Illinois, 1970.
- [6] -----, "Projective homotopy classes of Stiefel manifolds" (submitted)
- [7] P. ZVENGROWSKI, "Skew linear vector fields on spheres" (to appear, J. London Math. Soc.)