PROJECTIVE HOMOTOPY CLASSES OF SPHERES IN THE
STABLE RANGE

By JosEPH STRUTT

Given an element a € 7, (X) we say that « is projective if and only if there
exists a map f:RP" — X such that the diagram

S—————)X

N

is homotopy commutative, where fis any map representing « and » is the standard
double covering,.

The study of projective homotopy classes is motivated by the question of
whether an r-field on 8" (i.e. a family of 7 vector fields which are orthonormal
at every point) is homotopic to a skew linear r field. Considering an r-field to be a
cross section, s, of the fibration

Vn—-l,r - n,r41
LY
is
s
a skew linear r-field is one which satisfies s(—z) = —s(z). The reader is referred
to [7] for a detailed discussion of this question and its connection with projective
homotopy classes.

In this paper we investigate projective homotopy classes of spheres in the
stable range. Denoting by #,.Fi(X) the set of projective homotopy classes of
s (X ), we will prove the following:

THEOREM 1.
i) maFri(§™) = 0
i) mansaPI (8™ = Z and the sequence

s 2n+1 2n+1
0 — g1 (") — 71 (8 — Z, — 0
18 exact, where © 1s the inclusion map.

THEOREM 2.
i) mProi (8™ = 0

.. .ol Zyif 2
i) manga®roi (™) = {02'1?2 lj; "

THEOREM 3.

. . O Zyif 2
i) manaroi (§77) = {02 if 2 l/'rnn

15
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. . Z,if2 4 n
Pro 2n — 2
) mana™03 (87) {0 if 2| n
THEOREM 4.
1) monga®i(8™) =< Zyif 2|nbut4 £ n

i) mongaProi (§77) = {? ﬂ g lf@ "

Since the stable 4- and 5-stems of 8" are zefo, Tt (S") is known for k < 5.
The results can be conveniently summarized in the following table:

n = (—) mod 8 0 1 2 3 4 5 6
mafroi  (Sn) 0 2-Z 0 2-Z 0 2-Z 0 2-Z
mapaFro (S7) 0 0 Zs 0 0 0 Zy 0
7r,.+zPr°i (S") 0 Z, Z, 0 0 Zs Zs 0
TagsProl (S7) Zs Z, Zsa 0 Zn Zy Z1s 0
Tyt (87) 0 0 0 0 0 0 0 0
st Tl (S7) 0 0 0 0 0 0 0 0

The proofs of Theorems 14 will make use of a mod 2 Postnikov resolution of
S" and obstruction theory. We recall certain facts about the homology and
cohomology of RP":

(0 for ¢ even
a) H;(RP") = {Z,foriodd and 7 > n
Z orioddand ¢ = n

’ (0 foriodd and ¢ = n
b) H*(RP*; Z) = {Z foriodd and ¢ = n
Z, for 7 even

¢) H*(RP"; Z,) = Zsul/ W) u € H'(RP"; Z,)
d) Let P:RP" — RP"/RP"' =~ §" be the quotient map and consider

H,(S") 51, (RP™) LN H,.(S"). For n odd, the groups are Z, vx is multi-
plication by 2, and Ps is the identity. In particular, P o » is a map of Brower
degree 2.

e) The map »*:H" (RP"; Zyn) — H"(S"; Za) is zero for all values of k&
when 7 is even and the map »*:H" (RP"; Z,) — H"(S"; Z.) is zero for all n.

Prorosition 2.1. Let X be an (n — 1) connecled space where n is even. Then
TP (X) = 0.
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Proof. Assume [f] € 7,7 (X ). Then the diagram

S—L x

N

is homotopy commutative, and since H, (RP") = 0, the map f:H,(S") — H,(X)
is zero. In particular, the image of [f] under the Hurewicz isomorphism is zero,
implying that [f] = 0 in m,(X).

This proves part i of Theorem 1. To prove part ii, we note that the class
[P o »] is projective and so is [f o P o »] where f:S8" — S" is a map of arbitrary
Brower degree. Therefore k[P o] € w,Fi(S") for all £ € Z, and since P oy
has degree 2 when n is odd, we see that 2-m,(8") C m.Fi(S"). Conversely,
every projective class must have even degree since v«:H,(S") — H,(RP") is
multiplication by 2.

The following corollary to the proof of Theorem 1 is immediate:

CoROLLARY 2.2. Let X be (n — 1) connected, n > 2. Then

0 2f n is even

ol (X) = {2-7r,, (X) if n s odd

The proofs of the remaining theorems will make use of the following mod 2
Postnikov system for S":

K(Zs,n + 3) > Xays
)

St i
K(Zo,n+ 2) = Xns —22 5 K (Zs, n + 4)

2
L(Zy,n + 1)——>X,,+1——‘Q—’K(Z2,n+ 3)

I
Sq? 7n
K(Z, n) ——"— K(Zs,n + 2)

For the construction, see [2], Chapter 12. The symbol ““z,” denotes the funda-
mental class of K (Z, n) as well as its image in H* (Xx; Z»). The symbol “a(2)”
denotes a cohomology class which pulls back to Sq* of the fundamental class of
the fibre K (Z;, n + 1) (usually denoted by Sq” n+1). We denote by r; the in-
clusion K (Zsm, j) — X;, by p; the fibre map X; — X; 1, and by p; the map
8" — X;. We recall that the map p;g:7:(S") — 7:(X;) is a @s-isomorphism for
4 < j and a @y-epimorphism for 2 = j 4- 1, where @, is the class of abelian torsion
groups of finite exponent such that the order of each element is prime to 2.

We note that if X is an H-space or if X is (m — 1) connected and n < 2m — 1,
then m,Fri (X) is a subgroup of m, (X ). In particular, the X,’s in the Postnikov
system are loop spaces since we are in the stable range (see [2], Corollary 2,
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p. 153), so [RP*, X;] is a group and m&™i(X;) is a subgroup of m(X;). Also
TapiF701 (8") is a subgroup of mayx (S") for & < n — L.
Levva 2.3. Consider a map f:RP'— X;,n < j < n + 3. Then
1) p; o f has a unique extension h:RP™ — X, 4
i) If h lifts to X;, then [fev] = 0 in x;(X;) provided that j < n + 3
orj =n -+ 3andn + 3 even.

Proof. Part i follows from the Puppe sequence since ; (X;—;) and
miy (Xjm1) = 0.

For part ii we consider the diagram

Sj v RP] f \Xj Pj ’-Xj—).
=
k K
| Jl
RPj+1
where h is the lifting of ~ and k& is the inclusion. It is not necessarily true that
f = hok, but we claim that foy ~ hokoyp (in which case it follows trivially

that fo » >~ 0). We consider the fibre mapping sequence of the fibration K (Zym, j)
- X;—> X,y (m = 1or3)

©+o = [RP’, K (Zm, j)] __ri#_ [RP,

L

_)[Sj,K(ZW";j)]_) [Sj,X.i]_')

X, pi#

[RPj, X,'_l] -

Since we are in the stable range, every set in the diagram is an abelian group.
Consider [f] — [hok] € [RP’, X,]. By assumption p;x([f] — [hok]) = 0, so
[f] — [A © k] is in the image of 7,4 . The map 7 ¥ is zero whenj < n + 3 or when
Jj =n -+ 3 and n + 3 is even by remark e above, so the commutativity of the
square implies that » % ([f] — [hok]) = 0.

Lemma 2.4. Consider a map f:RP’ — X; and denote by h:RP™ — X, the
unique extension of pjo f to RP™ (cf. 2.3). If the obstruction to lifting h is non-
zero, then the class [f o v] is non-zero in w;(X;). If j = n + 3 and the mod 2 reduc-
tion of the obstruction to lifting h is non-zero, then [f o v] is an odd muliiple of the
generator of mays (Xnys) = Zs.

Proof. By the Puppe sequence [f o »] is non-zero if and only if f is not extend-
able to RP™. Supposing, to the contrary, that f has an extension f to RP’,
then p; o fis an extension of p; o f. By the uniqueness of this extension, p; o f =~ h;
but this contradicts the fact that A doesn’t lift to X;.

For the case j = n -+ 3, we alter the Postnikov system by killing Sq* 4, in
H*(X,42) as a Z, class rather than as a Z; class. We get
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K(22an+3)'_>yn+3

\
K(Z,,n+2)—>X,» Sda*in  K(Z;,n+4)
i

By the naturality of pull backs, there is a map ¢:X,43 — Y, 5 which induces
IIlOd 2 reduction on 7l'n,+3(— ) (1r,,+3 (Xn+3) = Zs and T3 (Yn+3) = Z2 ) The
same argument then shows that [¢ o fo»] is non-zero in mu5(¥ais); in other
words, the mod 2 reduetion of [f o »] is non-zero, or [f o #] is an odd multiple of
the generator.

We can now prove Theorem 2. Since m,41(S8") = Z,, we ask whether there

is an essential composition S"+I—V>RP"+1—f—> S”. By Corollary 2.6.23 of [3],

[RP™™, 8"] = [RP™, X, so it suffices to find mupr" ™ (Xn41). Suppose n is
equal to 2k — 1, consider any map f: RP* — Xy, . Then the composition RP* 1,
Xu %5 K (Z, 2k — 1) is null-homotopic since H**(RP®; Z) = 0, and by
Lemma 2.3, [f o »] = 0. This proves part i.

For n = 2k and 2 I k, consider any map f:RP*™ — Xu,1. The extension of
Pokt1 0 f 1O RP™" lifts to X since the obstruction is either Sq’ w** or 8q°0
according as pas1 © f is essential or null homotopie. But Sq” «* = 0 since 2| &,
and by Lemma 2.3, [fes] = 0. For n = 2k and 2 / k, consider a map

RP™* SN K(Z, 2k) which is not homotopie to zero (note that [RP*", K(Z, 2k)]
~ H*(RP™";Z) = Z,). h lifts to X1 by a map g:RP* — Xy.14, say, how-
ever the extension of & to RP™** does not lift since the obstruction is Sq’ u™,
which is non-zero when 2 4 k. By Lemma 24, [g o »] is non-zero, so
TorgaP (§) = Z, when 2 [ k.

The same procedure is used in the proof of Theorem 3. It suffices to find
Tny2"70 (X pq2), and for n = 2k — 1 where 2 { k&, we consider the composition

RP*t e, K(Z,, 2k) T, Xoi . It lifts to Xopp1 , but the extension of ry o 4™
to RP™*2 which we also denote by 74 o %™, has an obstruction (rz o u™)* ((2))
= W*)*S¢® @) = Sq°w” which is non-zero since 2 4 k. This implies, by
Lemma 2.4, that mus 27 (S* ) 5 0, or myuy®i (8% ') = Z, when 2 / L.

Whenn = 2k — 1 and 2 | k, we consider any map f: RP*" — Xy, and look
at Pawy1 © f. The map pax © per+1 o f is null homotopic since H ®(RPHY Z) = 0,
50 powt1of factors through the fibre, K(Z,, 2k):

f

2%-+-1
RP —> X 2k+1

|
) J Dok1

l
K(Z2 ’ 2k) 2k X2k a(z) K(Zz, 2k + 2)

Ta1 © ¢ has an extension to RP™** (by the Puppe sequence ) and the obstruction to
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lifting it is either Sq” u™ or 8q” 0, in both cases zero since 2 | k. Therefore [fo»] = 0
by Lemma 2.3, and we have that mu1F7 (%) = 0 when 2 ] k.
2t

For n = 2k and 2 4 k, we consider the composition RP*"? ————

K(Zy,2k+ 1) R Xor1 and notice that it has a lifting to Xok,s . Its exten-
sion to RP™**, however, does not lift (the obstruction is Sq* ™™, which is non-
zero since 2 4 k). Hence, by Lemma 2.4, wa.s7i (8*) = Z, when 2 £ k.

Forn = 2k and 2 | k, we consider any map f:RP*** — Xy,,. By the Puppe
sequence, the map parys © f has an extension to RP**?, and we must show that the
obstruction to lifting this extension, namely the pull back of «(2), is zero.

LemMa 2.5. Let g: RP™™ — X1 be any map, where 2 [ k. Then g* (a(2)) = 0.

Proof. We need the following facts about the cohomology of Xsii1 (see [2],
Chapter 12):

1) j generator of H* (Xorr1, Z2)
0 ok
1 _
9 _
3 2(2)
4 Sq’ a1, B(3)
5 73, 1)

(8(3) is a class that pulls back to Sq 421 in the cohomology of the fibre; similarly,
v (3, 1) pulls back to Sq* Sq* taxt1)

2) dy 8q" %k = v(3, 1) where d, is the secondary Bockstein operator.

3) Sd’a(2) =vG31)

We first extend g to a map §:RP*" — Xy, and note that g*(«(2)) = 0 if
and only if §* («(2)) = 0. Assume that §* (a(2)) 5 0. In particular §* (a(2)) =
™ and Sq® §* (2(2)) = u™* since 2 | k. But Sq° §*(«(2)) = §*(v(3, 1)) =
7% (2 8q" tn) = doSq* § 9 and Sq* §*%x is an even dimensional class of H* (RP**%;
Z5), 80 it is the mod 2 reduction of an integral class. This means that all Bocksteins
vanish, in particular that d, Sq* §*9% = 0, contradicting the fact that Sq*§* (a @)
= 4™ Therefore §* (a(2)) must be 0.

By Lemma 2.5, then, the extension of paxse o f lifts to Xorss, and so [fo ] = 0
by Lemma 2.3. In particular, mos7 (S*) = 0 when 2 | k. This concludes the
proof of Theorem 3.

The stable 3-stem of S” is Za4 , the 3-primary part of which is lost in the mod 2
Postnikov system. In odd dimensions the 3-primary part, Z; , must be projective,
since, by Remark d above, twice any odd dimensional homotopy class is projective.
Therefore, remembering that we are in the stable range (so that projective classes
are additive), we need only analyze the 2-primary component of a3 (S™).

Since 2k + 3is 0dd, we have that 2 mokys (S) C ok a7 (8™), or Zs C mopys (S™)



HOMOTOPY CLASSES OF SPHERES 21

(considering only the 2-primary part). For 2 { k, we must show that [f o »] is
divisible by 2 for any map f: RP*** — Xy, . This is equivalent to showing that
[p o fov]is0in morrs (Yorrs) where ¢: Xopis — Yiorys is the map constructed in the
proof of Lemma 2.4. We consider foris © @ o f (Porss is the projection Yoz —
Xorio—see proof of Lemma 2.4) and we must show that its extension to RP*™,
which we denote by g, lifts to Y45 . This amounts to showing that g* (Sq* 2 ) = 0.
(We are in the altered Postnikov system, so Sq* 7 is considered as a Z,-class).
We claim that g* (4:) = 0. This is true if and only if the projected map peess ©
Dakt2 © § :RP*™™ 5 K (Z, 2k) pulls the fundamental class % back to 0. If it didn’t,
there would be a non-zero obstruction to lifting parr1 © Parss © ¢ 10 Xort1, namely
Sq’ u™ (this is a non-zero since 2 4 k), which is clearly a contradiction. Therefore,
the extension g lifts, and by Lemma 2.4, [¢ o fo »] = 0 or [f o »] is divisible by 2 in
Torss (Xowrs), implying that w1 (S*) = Z, when 2 £ k.

When 2 | k but 4 £ k, we consider the map h:RP*" — K (Z, 2k) where & is
not null homotopic. Since 2 ‘ k, all obstructions to lifting 4 are zero, so we get a
map f: RP™% 5 Xy.5 . Denote the extension of parss o f to RP* by g; the mod 2
reduction of the obstruction to lifting g is simply ¢* (Sq" 72+ ) with Sq* 42 considered
as a Z, class. The map ¢ pulls 4% back to »™ since 4 is not null homotopic, so
g% (8q" i) = Sq* u™ = w*** since 4 £ k. Therefore, by Lemma 2.4, [f o »] is an
odd multiple of the generator of 75 (Xoxss), which implies that s (8%) =
Zswhen 2| kbut4 { k.

When 4 | &, consider any map f: RP* — Xy.\5 . We will show that [¢ofor] = 0
in morrs (Yarys ). The extension of feris o ¢ o f to RP™" pulls Sq* 4z (as a Z,-class)
back to Sq* »** or Sq* 0, which is zero in both cases since 4 | k. Therefore the ex-
tension lifts and by the proof of Lemma 2.3 [¢p o f e »] = 0, or [f o »] is
divisible by 2. This implies that mss"i (S**) = Z, when 4 | k. This finishes the
proof of part ¢ of Theorem 4.

In the proof of part ii, it will be helpful to have the mod 2 Postnikov system
written out explicitly:

K(Zs, 2k 4+ 2) — Xoryo

!
Sqt 2
K(Zs, 2 + 1) — Xop — 22— K (Zs, 2k + 3)

l
K (Zs, 2%k) — ng—L(z)——*K(ZZ, % + 2)

!
89?2 Tk
K(Z, 2k —1)———— K(Z:,2k + 1)
Since Sq* %1 is considered as a Zs-class, it will be a delicate matter to decide
under what conditions it will give rise to a non-zero obstruction. We will need
certain information about the Zs cohomology of K (Z,, n).
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LEMMA. 2.6
Zs 1t =0
Hori(K(Za,n)) = %2 z:;
Zs 1 =3
where only the 2-primary component 1s considered.
Proof. The result for ¢ = 0 follows from the Hurewicz Theorem. Since

H*(K (Z,,n);Z,) isknown, we can apply the universal coefficient theorems. Set-
ting K = K(Z,, n), we have

H'Y(K; Z:) = Zy = Hom (Hn1(K), Z:) + Ext (Z2, Zs)
which implies that H,1 (K) = 0. Secondly
H"(K; Zy) = Zy = Hom (H,12(K), Z) + Ext (0, Z,)

which implies that H,,s (K) is equal to Z or Zsr, r > 1. But H"?*(K; Z,) is gen-
erated by Sq” 4, and d; 8q” 4, = Sq® 4, which is non-zero, so, in particular, Sq” 7,
is not the mod 2 reduction of a Z; class. This implies that H,,.(K) must equal
Z, . Finally, we have

H®(K; Z,) = Zy + Za = Hom (Hn3s(K); Zs) + Ext (Zs, Z,)

implying that H,.s(K) is equal to Z or Zyr, r > 1. H"**(K; Z,) has generators
Sq’ 4, and Sq” Sq' %, ; the first Bockstein d; vanishes on the first and is non-zero
on the second, implying that the first generator is the mod 2 reduction of a Z,
class and the second isn’t. Since Ext (Z,, Z:) — Ext (Z:, Z,) is an isomorphism
the Z, summand generated by Sq° 4, must be Ext (Z,, Z,). This leaves Sq* 8q' 4,
as the generator of Hom (H,1s(K);Z,), and since 8¢’ Sq' 7, is not the reduction of
a Zy-class, Hy,3(K) must equal Zs .

Lemma 2.7. The composition

Tok41 Sq* takt

ay2kt1
RP* X s K(Z,, % + 1) K (Zs, 2% + 3)

represents zero in H* T (RP™; Zs) = Zg when 2 [ k and 4 times the generator when

2 4 k.

Proof. Recall that da(Sq* t2—1) = ¥ (3, 1) in H* (Xus ; Z3), so the Sq* 7e1 in
H*(Xu ; Z5) is not the reduction of a Zs class. Therefore the Sq* ¢y in H* (Xots ;
7Zs) is not in the image of pays™, and 50 741™ (Sq* 41 ) is non-zero in H** (K (Z,,
2k + 1); Zs), which, by Lemma 2.6, is equal to Z, . It remains only to find the
conditions under which the map (u™*)* is non trivial on H***(—; Z;). We have

H¥?(RP*; Z,) — H* (K (22, 2k + 1); Zs)
1 I

Xowsr

Zs ’ Z,
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and by the universal coefficient theorem this is non trivial if and only if (uers1) =
is non-zero on Hypys(— ), which is true if and only if (usiy) ™ is non trivial on
H™**(—; Z,). But this is equivalent to Sq® ™ being non-zero, which is equiva-
lent to the condition 2 1 k.

Lemma 2.8. Given any map f:RP™?® — Xy, then f*(Sq" tm_) = 0, where
Sq* i1 s considered as a class in H* (X ; Z4).

Proof. f factors through K (Z,, 2k) since pzkio f is null homotopie. Therefore it
will suffice to check that any map g: RP*"* — K (Z, , 2k) is trivial on H*(—; Z,).
By the universal coefficient theorems, this amounts to showing that the induced
maps

Hom (Howys (RP™), Z,) < Hom (Hanys (K (Zs, 2k)), Zy)

and
Ext (Ho2 (RP™), Z4) — BExt (Hour2 (K (Z2, 2k)), Z4)

are zero. The second map is zero since Hopie (RP™%®) = 0. That the first map is
zero will follow if Hoxys (RP*1®) — Haypys (K (Za, 2k)) is zero, which in turn will
follow (by the universal coefficient theorem and Lemma 2. 6) 1f H™t (RP%+3
Z,) « H** (K (Z, 2k); Zs) is zero. But g is homotopie to 0 or +*, and Sq” Sq* ™
and Sq’ ™ are both zero for all values of k.

We first prove part ii of Theorem 4 for the 2-primary component only. When

25+1
2 [ k, we consider the composition RP*** e, K(Z, 2k + 1) Tk

Xois1, which lifts to a map f: RP™* — X5 . By Lemma 2.7, the extension of
Tok1 © w™ ™ to RP™* does not lift, and 80, by Lemma 2.4, [fo »] # 0.
The following Proposition completes the proof for the case 2 4 k.

ProPOSITION 2.9. Given any map f:RP* ™ — Xuys, then the reduction mod 4 of
[f o #] is zero.

Proof. We alter the Postnikov system for $** by killing Sq* a1 in H™ (Xon 41 ;
Zy) as a Z, class rather than as a Zs class. We get

K(Z4, 2]0 + 2) —->ng+2

l
S
KZ, % + 1) — Xu —2 22 g7, % + 3)

:

By naturality of pull backs, there is a map ¢: Xopto — Zogy 2 which ismod 4 redue-
tion on mwopte (— ). It will suffice to show that for any map f: RP™* Z2k+2,
[f ° v] = 0. Consider psr+2 © f and denote 1ts extension to RP**® by g. The 8q* tx
An H* (Xagy1 3 Zs) is the image under pay1™ of the Sq* a1 in H* (Xa ; Z4), so by
Lemma 2.8, ¢*(Sq* 4x_1) = 0. Therefore g lifts, and it follows from Lemma 2.3
that [f e »] = 0.
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The next Proposition completes the proof of part ii for the 2-primary com-
ponent.

ProrosrTioN 2.10. If2 l k, then for any map f : RP™* — Xyys , we have [for] =
0.

Proof. If we can show that psrie © f factors through the fibre K (Z, , 2k + 1), we
are done by Lemmas 2.7 and 2.3. The composition pa © Papt © Parys © f: RP*? —
K(Z, 2k — 1) is null homotopic, s0 Part1 © Pars2 © f factors through the fibre
K (Z,, 2k) by a map g, say:

!
K(Zy, 2k +1) = X1

P2r+1
Dou+20 f

RP*" L5 K(Z,, 2k) =2 X,

K(Z, 2k —1) 22, (7, 9k + 1)

It remains only to show that s o g is null homotopic. We consider the fibre map-
ping sequence of the fibration K (Z,, 2k) — Xou — K(Z, 2k — 1):

S 2
oo = [RP™? K (Z, 2k — 2)] ——— [RP*", K (Zs, 2%)]

(rar) # [RP2k+2, Xo] = - -
Since 2 | k, the map “Sq™’ is an isomorphism, so (%) % = 0. It follows that 7 o ¢
is null homotopic.

In order to study the 3-primary part of mouys7i (S* ), we must construct a
mod 3 Postnikov system. It is known that H* (K (Z, 2k — 1); Z;) has a funda-
mental class 41, and the next group is a Z; in dimension 2k + 3 generated by
P'%y_1 where P" is the first reduced power operation of Steenrod. We construct a
space Yoo by killing this class:

K(Zs, 2k 4+ 2) — Yorpo

I
L
K(Z, 2% — 1) ——2= s K(Z,, % + 3).

It can be verified that the Z;-cohomology of Yaryis Zsin dimension 2k — 1 and 0
in dimensions 2k + 1 through 2k + 3. The map ™ — K (Z, 2k — 1) represent-
ing the fundamental class of 8™ lifts to Y42 and the lifting induces an iso-
morphism on H*(—; Zs) for ¢ < 2k + 2 and a monomorphism for ¢ = 2k + 3.
By the €, approximation theorem (see [2] Chapter 10), it induces an isomorphism
on homotopy groups through dimension 2k 4 2. Therefore the above is a mod 3
Postnikov resolution of ™",

By the fibre mapping sequence, [RP™* Yu,] = 0, so, in particular,
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Toes2" (Yorga) = 0, implying that the 3-primary part of my 277 (%) is zero.
This concludes the proof of Theorem 4.
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