PROJECTIVE HOMOTOPY CLASSES OF SPHERES IN THE STABLE RANGE

BY JOSEPH STRUTT

Given an element $\alpha \in \pi_n(X)$ we say that α is projective if and only if there exists a map $\bar{f}:RP^n \to X$ such that the diagram

is homotopy commutative, where f is any map representing α and ν is the standard double covering.

The study of projective homotopy classes is motivated by the question of whether an r-field on S^{n-1} (i.e. a family of r vector fields which are orthonormal at every point) is homotopic to a skew linear *r* field. Considering an r-field to be a cross section, *s,* of the fibration

$$
V_{n-1,r} \to V_{n,r+1} \atop \downarrow \qquad \searrow s
$$

$$
S^{n-1} \times
$$

a skew linear *r*-field is one which satisfies $s(-x) = -s(x)$. The reader is referred to [7] for a detailed discussion of this question and its connection with projective homotopy classes.

In this paper we investigate projective homotopy classes of spheres in the stable range. Denoting by $\pi_n^{\text{Proj}}(X)$ the set of projective homotopy classes of $\pi_n(X)$, we will prove the following:

THEOREM 1.

i)
$$
\pi_{2n}^{\text{Proj}}(S^{2n}) = 0
$$

ii) $\pi_{2n+1}^{\text{Proj}}(S^{2n+1}) = Z$ and the sequence
 $0 \rightarrow \pi_{2n+1}^{\text{Proj}}(S^{2n+1}) \rightarrow \pi_{2n+1}(S^{2n+1}) \rightarrow Z_2 \rightarrow 0$

is exact, where i is the inclusion map.

THEOREM 2.

i)
$$
\pi_{2n}^{\text{Proj}}(S^{2n-1}) = 0
$$

ii) $\pi_{2n+1}^{\text{Proj}}(S^{2n}) = \begin{cases} Z_2 \text{ if } 2 \nmid n \\ 0 \text{ if } 2 \mid n \end{cases}$

THEOREM 3.

i)
$$
\pi_{2n+1}^{\text{Proj}}(S^{2n-1}) = \begin{cases} Z_2 & \text{if } 2 \nmid n \\ 0 & \text{if } 2 \mid n \end{cases}
$$

$$
\mathrm{ii})\enspace\pi_{2n+2}\text{Proj}\left(S^{2n}\right)\enspace=\enspace\begin{cases}\emskip20pt Z_2\text{ if }2\not\mid n\\\emph{0}\enspace\text{if }2\mid n\n\end{cases}
$$

THEOREM 4.

i)
$$
\pi_{2n+3}^{\text{Proj}}(S^{2n}) = \begin{cases} Z_{12} & \text{if } 2 \nmid n \\ Z_{24} & \text{if } 2 \mid n \text{ but } 4 \nmid n \\ Z_{12} & \text{if } 4 \mid n \end{cases}
$$

ii) $\pi_{2n+2}^{\text{Proj}}(S^{2n-1}) = \begin{cases} Z_2 & \text{if } 2 \nmid n \\ 0 & \text{if } 2 \mid n \end{cases}$

Since the stable 4- and 5-stems of $Sⁿ$ are zero, $\pi_{n+k}^{\text{Proj}}(S^n)$ is known for $k \leq 5$. The results can be conveniently summarized in the following table:

The proofs of Theorems 1-4 will make use of a mod 2 Postnikov resolution of $Sⁿ$ and obstruction theory. We recall certain facts about the homology and cohomology of *RP":*

a)
$$
\tilde{H}_i(RP^n) = \begin{cases} 0 & \text{for } i \text{ even} \\ Z_2 \text{ for } i \text{ odd and } i \neq n \\ Z & \text{or } i \text{ odd and } i = n \end{cases}
$$

b)
$$
\tilde{H}^i(RP^n; Z) = \begin{cases} 0 & \text{for } i \text{ odd and } i \neq n \\ Z & \text{for } i \text{ odd and } i = n \\ Z_2 \text{ for } i \text{ even} \end{cases}
$$

c)
$$
H^*(RP^n; Z_2) = Z_2[u]/(u^{n+1}) u \in H^1(RP^n; Z_2)
$$

d) Let $P:RP^n \to RP^n/RP^{n-1} \cong S^n$ be the quotient map and consider

 $H_n(S^n) \xrightarrow{\nu_*} H_n(RP^n) \xrightarrow{P_{*}} H_n(S^n)$. For *n* odd, the groups are *Z*, ν_* is multiplication by 2, and P_* is the identity. In particular, $P \circ \nu$ is a map of Brower degree 2.

e) The map $\nu^* : H^n(RP^n; Z_{2k}) \longrightarrow H^n(S^n; Z_{2k})$ is zero for all values of *k* when *n* is even and the map $v^*: H^n(RP^n; Z_2) \to H^n(S^n; Z_2)$ is zero for all *n*.

PROPOSITION 2.1. Let X be an $(n - 1)$ connected space where n is even. Then $\pi_n^{\operatorname{Proj}}(X) = 0.$

Proof. Assume $[f] \in \pi_n^{\text{Proj}}(X)$. Then the diagram

is homotopy commutative, and since $H_n(RP^n) = 0$, the map $f: H_n(S^n) \to H_n(X)$ is zero. In particular, the image of [f] under the Hurewicz isomorphism is zero, implying that $[f] = 0$ in $\pi_n(X)$.

This proves part i of Theorem 1. To prove part ii, we note that the class $[P \circ \nu]$ is projective and so is $[f \circ P \circ \nu]$ where $f : S^n \to S^n$ is a map of arbitrary Brower degree. Therefore $k[P \circ \nu] \in \pi_n^{\text{Proj}}(S^n)$ for all $k \in Z$, and since P $\circ \nu$ has degree 2 when *n* is odd, we see that $2 \cdot \pi_n(S^n) \subset \pi_n^{\text{Proj}}(S^n)$. Conversely, every projective class must have even degree since $\nu_*: H_n(S^n) \to H_n(RP^n)$ is multiplication by 2.

The following corollary to the proof of Theorem **1** is immediate:

COROLLARY 2.2. Let X be $(n - 1)$ connected, $n \geq 2$. Then

$$
\pi_n^{\operatorname{Proj}}(X) = \begin{cases} 0 \text{ if } n \text{ is even} \\ 2 \cdot \pi_n(X) \text{ if } n \text{ is odd} \end{cases}
$$

The proofs of the remaining theorems will make use of the following mod 2 Postnikov system for $Sⁿ$:

$$
K(Z_8, n+3) \rightarrow X_{n+3}
$$
\n
$$
\downarrow
$$
\n
$$
K(Z_2, n+2) \rightarrow X_{n+2} \xrightarrow{Sq^4 i_n} K(Z_8, n+4)
$$
\n
$$
\downarrow
$$
\n
$$
L(Z_2, n+1) \rightarrow X_{n+1} \xrightarrow{\alpha(2)} K(Z_2, n+3)
$$
\n
$$
\downarrow
$$
\n
$$
K(Z, n) \xrightarrow{Sq^2 i_n} K(Z_2, n+2)
$$

For the construction, see [2], Chapter 12. The symbol *"in"* denotes the fundamental class of $K(Z, n)$ as well as its image in $H^*(X_k; Z_2)$. The symbol " $\alpha(2)$ " denotes a cohomology class which pulls back to Sq^{2} of the fundamental class of the fibre $K(Z_2, n+1)$ (usually denoted by $Sq^2 i_{n+1}$). We denote by r_i the inclusion $K(Z_{2m}, j) \to X_i$, by p_i the fibre map $X_i \to X_{i-1}$, and by ρ_i the map $S^n \to X_j$. We recall that the map $\rho_{j\#} : \pi_i(S^n) \to \pi_i(X_j)$ is a \mathfrak{C}_2 -isomorphism for $i \leq j$ and a e_2 -epimorphism for $i = j + 1$, where e_2 is the class of abelian torsion groups of finite exponent such that the order of each element is prime to 2.

We note that if X is an H-space or if X is $(m - 1)$ connected and $n < 2m - 1$, then $\pi_n^{\text{Proj}}(X)$ is a subgroup of $\pi_n(X)$. In particular, the X_j's in the Postnikov system are loop spaces since we are in the stable range (see [2], Corollary 2,

p. 153), so $[RP^k, X_i]$ is a group and $\pi_k^{\text{Proj}}(X_i)$ is a subgroup of $\pi_k(X_i)$. Also $\pi_{n+k}^{\text{Proj}}(S^n)$ is a subgroup of $\pi_{n+k}(S^n)$ for $k < n-1$.

LEMMA 2.3. *Consider a map* $f:RP^j \to X_j$, $n \leq j \leq n+3$. Then i) $p_j \circ f$ has a unique extension $h:RP^{j+1} \to X_{j-1}$

ii) *If h lifts to* X_i , then $[f \circ \nu] = 0$ *in* $\pi_i(X_i)$ provided that $j < n + 3$ $or j = n + 3$ *and* $n + 3$ *even.*

Proof. Part i follows from the Puppe sequence since $\pi_j(X_{j-1})$ and

$$
\pi_{j+1}(X_{j-1})\,=\,0.
$$

For part ii we consider the diagram

where \bar{h} is the lifting of h and k is the inclusion. It is not necessarily true that $f \simeq \bar{h} \circ k$, but we claim that $f \circ \nu \simeq \bar{h} \circ k \circ \nu$ (in which case it follows trivially that $f \circ \nu \simeq 0$). We consider the fibre mapping sequence of the fibration $K(\mathbb{Z}_{2^m}, j)$ $\rightarrow X_i \rightarrow X_{i-1}$ (*m* = 1 or 3)

$$
\cdots \longrightarrow [RP^j, K(Z_{2^m}, j)] \longrightarrow r_{j*} \longrightarrow [RP^j, X_j] \longrightarrow [RP^j, X_{j-1}] \longrightarrow \cdots
$$

\n
$$
\downarrow_{\mathcal{F}} \downarrow \qquad \qquad \downarrow_{\mathcal{F}} \downarrow \qquad \qquad \downarrow_{\mathcal{F}} \downarrow \qquad \qquad \downarrow_{\mathcal{F}} \downarrow \qquad \qquad \cdots \longrightarrow [S^j, K(Z_{2^m}, j)] \longrightarrow [S^j, X_j] \longrightarrow \cdots
$$

Since we are in the stable range, every set in the diagram is an abelian group. Consider $[f] - [\bar{h} \circ k] \in [RP^j, X_j]$. By assumption $p_{jk}([f] - [\bar{h} \circ k]) = 0$, so $[f] - [\bar{h} \circ k]$ is in the image of r_{jk} . The map $\bar{v} \times \bar{s}$ is zero when $j \leq n+3$ or when $\overline{j} = n + 3$ and $n + 3$ is even by remark *e* above, so the commutativity of the square implies that $\nu \ast ([f] - [\bar{h} \circ k]) = 0$.

LEMMA 2.4. *Consider a map* $f:RP^3 \to X_j$ and denote by $h:RP^{3+1} \to X_{j-1}$ the *unique extension of* $p_j \circ f$ *to* RP^{j+1} (cf. 2.3). If the obstruction to lifting h is non*zero, then the class* $[f \circ v]$ *is non-zero in* $\pi_i(X_i)$. If $j = n + 3$ and the mod 2 reduc*tion of the obstruction to lifting h is non-zero, then* $[f \circ \nu]$ *is an odd multiple of the generator of* $\pi_{n+3}(X_{n+3}) = Z_8$.

Proof. By the Puppe sequence $[f \circ v]$ is non-zero if and only if f is not extendable to RP^{j+1} . Supposing, to the contrary, that *f* has an extension \bar{f} to RP^{j+1} , then $p_j \circ \bar{f}$ is an extension of $p_j \circ f$. By the uniqueness of this extension, $p_j \circ f \simeq h$; but this contradicts the fact that h doesn't lift to X_i .

For the case $j = n + 3$, we alter the Postnikov system by killing $Sq^4 i_n$ in $H^*(X_{n+2})$ as a Z_2 class rather than as a Z_8 class. We get

$$
K(Z_2, n+3) \rightarrow Y_{n+3}
$$

\n
$$
\downarrow
$$

\n
$$
K(Z_2, n+2) \rightarrow X_{n+2}
$$

\n
$$
\downarrow
$$

\n
$$
\downarrow
$$

\n
$$
\downarrow
$$

\n
$$
K(Z_2, n+4)
$$

\n
$$
\downarrow
$$

By the naturality of pull backs, there is a map $\phi: X_{n+3} \to Y_{n+3}$ which induces mod 2 reduction on $\pi_{n+3}(-)$. $(\pi_{n+3}(X_{n+3}) = Z_8$ and $\pi_{n+3}(Y_{n+3}) = Z_2$.) The same argument then shows that $[\phi \circ f \circ \nu]$ is non-zero in $\pi_{n+3}(Y_{n+3})$; in other words, the mod 2 reduction of $[f \circ \nu]$ is non-zero, or $[f \circ \nu]$ is an odd multiple of the generator.

We can now prove Theorem 2. Since $\pi_{n+1}(S^n) = Z_2$, we ask whether there is an essential composition $S^{n+1} \xrightarrow{p} RP^{n+1} \xrightarrow{f} S^n$. By Corollary 2.6.23 of [3], $[RP^{n+1}, S^n] \cong [RP^{\tilde{n}+1}, X_{n+1}]$, so it suffices to find $\pi_{n+1}^{\text{Proj}} (X_{n+1})$. Suppose *n* is equal to $2k-1$, consider any map $f:RP^{2k}\to X_{2k}$. Then the composition $RP^{2k}\stackrel{f}{\longrightarrow}$ $X_{2k} \longrightarrow K(Z, 2k-1)$ is null-homotopic since $H^{2k-1}(RP^{2k}; Z) = 0$, and by Lemma 2.3, $[f \circ \nu] = 0$. This proves part i.

For $n = 2k$ and $2 | k$, consider any map $f:RP^{2k+1} \to X_{2k+1}$. The extension of $p_{2k+1} \circ f$ to RP^{2k+2} lifts to X_{2k+1} since the obstruction is either $Sq^2 u^{2k}$ or $Sq^2 0$ according as $p_{2k+1} \circ f$ is essential or null homotopic. But $Sq^2 u^{2k} = 0$ since $2 \dot{k}$, and by Lemma 2.3, $[f \circ v] = 0$. For $n = 2k$ and $2 \nmid k$, consider a map $RP^{2k+1} \xrightarrow{h} K(Z, 2k)$ which is not homotopic to zero (note that $[RP^{2k+1}, K(Z, 2k)]$) $\cong H^{2k} (RP^{2k+1}; Z) = Z_2$). *h* lifts to X_{2k+1} by a map $g:RP^{2k+1} \to X_{2k+1}$, say, however the extension of *h* to RP^{2k+2} does not lift since the obstruction is Sq² u^{2k} , which is non-zero when $2 \nmid k$. By Lemma 2.4, $[g \circ \nu]$ is non-zero, so $\pi_{2k+1}^{\text{Proj}}(S^{2k}) \cong Z_2 \text{ when } 2 \nmid k.$

The same procedure is used in the proof of Theorem 3. It suffices to find $\pi_{n+2}^{\text{Proj}}(X_{n+2})$, and for $n = 2k - 1$ where $2 \nmid k$, we consider the composition $\mathbb{R}P^{2k+1} \xrightarrow{u^{2k}} \mathbb{K}(Z_2, 2k) \xrightarrow{r_{2k}} X_{2k}$. It lifts to X_{2k+1} , but the extension of $r_{2k} \circ u^{2k}$ to *RP 2k+2,* which we also denote by *r21c* o *u2* has an obstruction *(r21c* o *u2k)* (a* (2)) $= (u^{2k})^* (\text{Sq}^2 i_{2k}) = \text{Sq}^2 u^{2k}$ which is non-zero since $2 \nmid k$. This implies, by Lemma 2.4, that π_{2k+1} ^{Proj} $(S^{2k-1}) \neq 0$, or π_{2k+1} ^{Proj} $(S^{2k-1}) = Z_2$ when $2 \nmid k$.

When $n = 2k - 1$ and $2 | k$, we consider any map $f:RP^{2k+1} \to X_{2k+1}$ and look at $p_{2k+1} \circ f$. The map $p_{2k} \circ p_{2k+1} \circ f$ is null homotopic since $H^{2k-1}(RP^{2k+2}; Z) = 0$, so $p_{2k+1} \circ f$ factors through the fibre, $K(Z_2, 2k)$:

$$
RP^{2k+1} \xrightarrow{f} X_{2k+1}
$$

\n
$$
\downarrow \phi \qquad \qquad \downarrow p_{2k+1}
$$

\n
$$
K(Z_2, 2k) \xrightarrow{r_{2k}} X_{2k} \xrightarrow{\alpha(2)} K(Z_2, 2k+2).
$$

 $r_{2k} \circ \phi$ has an extension to RP^{2k+2} (by the Puppe sequence) and the obstruction to

20 JOSEPH STRUTT

lifting it is either Sq² u^{2k} or Sq² 0, in both cases zero since 2 | k. Therefore $[f \circ \nu] = 0$ by Lemma 2.3, and we have that $\pi_{2k+1}^{\text{Proj}}(S^{2k-1}) = 0$ when $2 \mid k$.

For $n = 2k$ and $2 \nmid k$, we consider the composition RP^{2k+2} $\frac{u^{2k+1}}{k+1}$ $r_{1K}(Z_2, 2k + 1) \xrightarrow{r_{2k+1}} X_{2k+1}$ and notice that it has a lifting to X_{2k+2} . Its extension to RP^{2k+3} , however, does not lift (the obstruction is $Sq^{\frac{1}{2}}u^{2k+1}$, which is nonzero since $2 \nmid k$). Hence, by Lemma 2.4, $\pi_{2k+2}^{\text{Proj}}(S^{2k}) = Z_2$ when $2 \nmid k$.

For $n = 2k$ and $2 \mid k$, we consider any map $f:RP^{2k+2} \to X_{2k+2}$. By the Puppe sequence, the map $p_{2k+2} \circ f$ has an extension to RP^{2k+3} , and we must show that the obstruction to lifting this extension, namely the pull back of $\alpha(2)$, is zero.

LEMMA 2.5. Let $g:RP^{2k+3} \to X_{2k+1}$ be any map, where $2 \mid k$. Then $g^*(\alpha(2)) = 0$.

Proof. We need the following facts about the cohomology of X_{2k+1} (see [2], Chapter 12):

 $(\beta(3)$ is a class that pulls back to Sq³ i_{2k+1} in the cohomology of the fibre; similarly, γ (3, 1) pulls back to Sq³ Sq¹ i_{2k+1})

- 2) d_2 Sq⁴ $i_{2k} = \gamma(3, 1)$ where d_2 is the secondary Bockstein operator.
- 3) $\text{Sq}^2 \alpha(2) = \gamma(3, 1)$

We first extend *g* to a map $\bar{g}:RP^{2k+5} \to X_{2k+1}$ and note that $g^*(\alpha(2)) = 0$ if and only if $\bar{g}^*(\alpha(2)) = 0$. Assume that $\bar{g}^*(\alpha(2)) \neq 0$. In particular $\bar{g}^*(\alpha(2)) =$ u^{2k+3} and $Sq^{2} \bar{g}^{*}(\alpha(2)) = u^{2k+5}$ since $2 \bar{k}$. But $Sq^{2} \bar{g}^{*}(\alpha(2)) = \bar{g}^{*}(\gamma(3, 1)) =$ $g^*(d_2\,\mathrm{Sq}^4\,i_{2k})=d_2\,\mathrm{Sq}^4\,\bar{g}^*\,i_{2k}$ and $\mathrm{Sq}^4\,\bar{g}^*\,i_{2k}$ is an even dimensional class of $H^*(RP^{2k+5})$ *Z2),* so it is the mod 2 reduction of an integral class. This means that all Bocksteins vanish, in particular that $d_2 S q^4 \bar{g}^* i_{2k} = 0$, contradicting the fact that $S q^2 \bar{g}^* (\alpha(2))$ $= u^{2k+5}$. Therefore $\bar{g}^*(\alpha(2))$ must be 0.

By Lemma 2.5, then, the extension of $p_{2k+2} \circ f$ lifts to X_{2k+2} , and so $[f \circ \nu] = 0$ by Lemma 2.3. In particular, $\pi_{2k+2}^{\text{Proj}}(S^{2k}) = 0$ when $2 \mid k$. This concludes the proof of Theorem 3.

The stable 3-stem of $Sⁿ$ is Z_{24} , the 3-primary part of which is lost in the mod 2 Postnikov system. In odd dimensions the 3-primary part, Z_3 , must be projective, since, by Remark *d* above, twice any odd dimensional homotopy class is projective. Therefore, remembering that we are in the stable range (so that projective classes are additive), we need only analyze the 2-primary component of $\pi_{2k+3} (S^{2k})$.

 $Sinee 2k + 3$ is odd, we have that $2 \cdot \pi_{2k+3} (S^{2k}) \subset \pi_{2k+3} \text{Proj } (S^{2k}), \text{ or } Z_4 \subset \pi_{2k+3} (S^{2k})$

(considering only the 2-primary part). For $2 \nmid k$, we must show that $[f \circ \nu]$ is divisible by 2 for any map $f:RP^{2k+3} \to X_{2k+3}$. This is equivalent to showing that $[\phi \circ f \circ \nu]$ is 0 in π_{2k+3} (Y_{2k+3}) where $\phi: X_{2k+3} \to Y_{2k+3}$ is the map constructed in the proof of Lemma 2.4. We consider $\bar{p}_{2k+3} \circ \phi \circ f$ (\bar{p}_{2k+3} is the projection $Y_{2k+3} \to$ X_{2k+2} see proof of Lemma 2.4) and we must show that its extension to RP^{2k+4} . which we denote by g, lifts to Y_{2k+3} . This amounts to showing that $g^*(Sq^4 i_{2k}) = 0$. (We are in the altered Postnikov system, so Sq^4 i_{2k} is considered as a Z_2 -class). We claim that $g^*(i_{2k}) = 0$. This is true if and only if the projected map p_{2k+1} \circ $p_{2k+2}\circ g\!:\!RP^{2k+4}\!\to K(Z,2k) \text{ pulls the fundamental class }i_{2k}\text{ back to }0\text{. If it didn't,}$ there would be a non-zero obstruction to lifting $p_{2k+1} \circ p_{2k+2} \circ q$ to X_{2k+1} , namely $\operatorname{Sq}^2 u^{2k}$ (this is a non-zero since $2 \nmid k$), which is clearly a contradiction. Therefore, the extension *g* lifts, and by Lemma 2.4, $[\phi \circ f \circ \nu] = 0$ or $[f \circ \nu]$ is divisible by 2 in $\pi_{2k+3}(X_{2k+3}),$ implying that $\pi_{2k+3}^{\text{Proj}}(S^{2k}) = Z_4$ when $2 \nmid K$.

When 2 | k but 4 \bar{f} k, we consider the map $h:RP^{2k+3} \to K(Z, 2k)$ where h is not null homotopic. Since $2 \nvert k$, all obstructions to lifting h are zero, so we get a $\text{map } f:RP^{2k+3} \to X_{2k+3}$. Denote the extension of $p_{2k+3} \circ f$ to RP^{2k+4} by g ; the mod 2. $\text{reduction of the obstruction to lifting g is simply $g^* (\mathrm{Sq}^4\ i_{2k})$ with $\mathrm{Sq}^4\ i_{2k}$ considered}.$ as a Z_2 class. The map *g* pulls i_{2k} back to u^{2k} since h is not null homotopic, so $g^*(Sq^4 i_{2k}) = Sq^4 u^{2k} = u^{2k+4}$ since $4 \nmid k$. Therefore, by Lemma 2.4, $[f \circ \nu]$ is an odd multiple of the generator of $\pi_{2k+3}(X_{2k+3})$, which implies that $\pi_{2k+3}^{\text{Proj}}(S^{2k}) =$ Z_8 when 2 k but 4 $\neq k$.

 $\text{When }4 \ \big| \ k,\, \text{consider any map } f\!:\!RP^{2k+3}\!\rightarrow\! X_{2k+3}$. We will show that $[\phi\circ f\circ\nu]=0$ in $\pi_{2k+3}(Y_{2k+3})$. The extension of $\bar{p}_{2k+3} \circ \phi \circ f$ to RP^{2k+3} pulls Sq^4 i_{2k} (as a Z_2 -class) back to $Sq^4 u^{2k}$ or $Sq^4 0$, which is zero in both cases since $4 | k$. Therefore the extension lifts and by the proof of Lemma 2.3 $\phi \circ f \circ \nu = 0$, or $\phi \circ f \circ \nu$ is divisible by 2. This implies that $\pi_{2k+3}^{\text{Proj}}(S^{2k}) = Z_4$ when $4 \mid k$. This finishes the proof of part i of Theorem 4.

In the proof of part ii, it will be helpful to have the mod 2 Postnikov system written out explicitly:

$$
K(Z_8, 2k + 2) \to X_{2k+2}
$$

\n
$$
\downarrow
$$

\n
$$
K(Z_2, 2k + 1) \to X_{2k+1} \xrightarrow{\text{Sq}^4 i_{2k-1}} K(Z_8, 2k + 3)
$$

\n
$$
\downarrow
$$

\n
$$
K(Z_2, 2k) \to X_{2k} \xrightarrow{\alpha(2)} K(Z_2, 2k + 2)
$$

\n
$$
\downarrow
$$

\n
$$
K(Z, 2k - 1) \xrightarrow{\text{Sq}^2 i_{2k-1}} K(Z_2, 2k + 1)
$$

Since $Sq^* i_{2k-1}$ is considered as a Z_8 -class, it will be a delicate matter to decide under what conditions it will give rise to a non-zero obstruction. We will need certain information about the Z_8 cohomology of $K(Z_2, n)$.

LEMMA. 2.6

$$
H_{n+i}(K(Z_2, n)) = \begin{cases} Z_2 & i = 0 \\ 0 & i = 1 \\ Z_2 & i = 2 \\ Z_2 & i = 3 \end{cases}
$$

where only the 2-primary component is considered.

Proof. The result for $i = 0$ follows from the Hurewicz Theorem. Since $H^*(K(\mathbb{Z}_2, n); \mathbb{Z}_2)$ is known, we can apply the universal coefficient theorems. Setting $K = K(Z_2, n)$, we have

$$
H^{n+1}(K; Z_2) = Z_2 = \text{Hom}(H_{n+1}(K), Z_2) + \text{Ext}(Z_2, Z_2)
$$

which implies that $H_{n+1}(K) = 0$. Secondly

 $H^{n+2}(K; Z_2) = Z_2 = \text{Hom}(H_{n+2}(K), Z_2) + \text{Ext}(0, Z_2)$

which implies that $H_{n+2}(K)$ is equal to *Z* or Z_{2r} , $r \geq 1$. But $H^{n+2}(K; Z_2)$ is generated by $\operatorname{Sq}^2 i_n$ and $d_1 \operatorname{Sq}^2 i_n = \operatorname{Sq}^3 i_n$ which is non-zero, so, in particular, $\operatorname{Sq}^2 i_n$ is not the mod 2 reduction of a Z_4 class. This implies that $H_{n+2}(K)$ must equal *Z2 •* Finally, we have

$$
H^{n+3}(K; Z_2) = Z_2 + Z_2 = \text{Hom } (H_{n+3}(K); Z_2) + \text{Ext } (Z_2, Z_2)
$$

implying that $H_{n+3}(K)$ is equal to *Z* or Z_{2^r} , $r \geq 1$. $H^{n+3}(K; Z_2)$ has generators Sq^3 i_n and Sq^2 Sq^1 i_n ; the first Bockstein d_1 vanishes on the first and is non-zero on the second, implying that the first generator is the mod 2 reduction of a *Z4* class and the second isn't. Since Ext $(Z_2, Z_4) \rightarrow$ Ext (Z_2, Z_2) is an isomorphism the Z_2 summand generated by Sq^3 i_n must be Ext (Z_2, Z_2) . This leaves $Sq^2 Sq^1 i_n$ as the generator of Hom $(H_{n+3}(K); Z_2)$, and since $Sq^2 Sq^1 i_n$ is not the reduction of a Z_4 -class, $H_{n+3}(K)$ must equal Z_2 .

LEMMA 2.7. *The composition*

 RP^{2k+3} $\xrightarrow{u^{2k+1}} K(Z_2, 2k+1)$ $\xrightarrow{r_{2k+1}} X_{2k+1}$ $\xrightarrow{Sq^4 i_{2k-1}} K(Z_3, 2k+3)$

represents zero in $H^{2k+3}(RP^{2k+3}; Z_8) = Z_8$ when $2 | k$ and 4 times the generator when $2 \not\perp k$.

Proof. Recall that $d_2(Sq^4 i_{2k-1}) = \gamma(3, 1)$ in $H^*(X_{2k}; Z_2)$, so the $Sq^4 i_{2k-1}$ in $H^*(X_{2k}; Z_2)$ is not the reduction of a Z_8 class. Therefore the Sq⁴ i_{2k-1} in $H^*(X_{2k+1};$ (Z_8) is not in the image of p_{2k+1} ^{*}, and so r_{2k+1} ^{*} (Sq⁴ i_{2k-1}) is non-zero in $H^{2k+3}(K(Z_2, \mathcal{E}_2))$ $2k + 1$; Z_8), which, by Lemma 2.6, is equal to Z_2 . It remains only to find the conditions under which the map $(u^{2k+1})^*$ is non trivial on $H^{2k+3}(-; Z_8)$. We have

$$
H^{2k+3}(RP^{2k+3}; Z_8) \leftarrow H^{2k+3}(K(Z_2, 2k+1); Z_8)
$$

$$
Z_8 \qquad \qquad Z_2
$$

and by the universal coefficient theorem this is non trivial if and only if $(u_{2k+1})_*$ is non-zero on $H_{2k+3}(-)$, which is true if and only if $(u_{2k+1})^*$ is non trivial on $H^{2k+3}(-; Z_2)$. But this is equivalent to Sq² u^{2k+1} being non-zero, which is equivalent to the condition $2 \nmid k$.

LEMMA 2.8. *Given any map f:RP*^{2k+3} $\rightarrow X_{2k}$, then $f^*(Sq^4 i_{2k-1}) = 0$, *where* Sq^{4} i_{2k-1} is considered as a class in $H^{*}(X_{2k};Z_{4})$.

Proof. f factors through $K(Z_2, 2k)$ since $p_{2k} \circ f$ is null homotopic. Therefore it will suffice to check that any map $g:RP^{2k+3}\to K(Z_2, 2k)$ is trivial on $H^{2k+3}(-;Z_4)$. By the universal coefficient theorems, this amounts to showing that the induced maps

Hom
$$
(H_{2k+3}(RP^{2k+3}), Z_4) \leftarrow
$$
 Hom $(H_{2k+3}(K(Z_2, 2k)), Z_4)$

and

$$
Ext (H_{2k+2}(RP^{2k+3}), Z_4) \leftarrow Ext (H_{2k+2}(K(Z_2, 2k)), Z_4)
$$

are zero. The second map is zero since $H_{2k+2}(RP^{2k+3}) = 0$. That the first map is zero will follow if $H_{2k+3}(RP^{2k+3}) \to H_{2k+3}(K(Z_2, 2k))$ is zero, which in turn will follow (by the universal coefficient theorem and Lemma 2.6) if $H^{2k+3}(RP^{2k+3})$; Z_2) \leftarrow $H^{2k+3}(K(Z_2, 2k); Z_2)$ is zero. But *g* is homotopic to 0 or u^{2k} , and $\text{Sq}^2 \text{Sq}^1 u^{2k}$ and $Sq^3 u^{2k}$ are both zero for all values of k .

We first prove part ii of Theorem 4 for the 2-primary component only. When $2 \nmid k$, we consider the composition $RP^{2k+2} \xrightarrow{} K(Z, 2k+1) \xrightarrow{}$ X_{2k+1} , which lifts to a map $\widehat{f}:RP^{2k+2} \to X_{2k+2}$. By Lemma 2.7, the extension of $r_{2k+1} \circ u^{2k+1}$ to RP^{2k+3} does not lift, and so, by Lemma 2.4, $[f \circ v] \neq 0$.

The following Proposition completes the proof for the case $2 \nmid k$.

PROPOSITION 2.9. *Given any map* $f:RP^{2k+2} \to X_{2k+2}$, *then the reduction* mod 4 of $[f \circ v]$ *is zero.*

Proof. We alter the Postnikov system for S^{2k-1} by killing $Sq^4 i_{2k-1}$ in $H^*(X_{2k+1})$; Z_2) as a Z_4 class rather than as a Z_8 class. We get

$$
K(Z_4, 2k + 2) \rightarrow Z_{2k+2}
$$

\n
$$
\downarrow
$$

\n
$$
K(Z_2, 2k + 1) \rightarrow X_{2k+1} \xrightarrow{\text{Sq}^4 i_{2k-1}} K(Z_4, 2k + 3)
$$

\n
$$
\downarrow
$$

\n
$$
\vdots
$$

By naturality of pull backs, there is a map $\phi: X_{2k+2} \to Z_{2k+2}$ which is mod 4 reduction on $\pi_{2k+2}(-)$. It will suffice to show that for any map $f:RP^{2k+2} \to Z_{2k+2}$, $[f \circ \nu] = 0$. Consider $p_{2k+2} \circ f$ and denote its extension to RP^{2k+3} by g. The Sq⁴ i_{2k-1} in $H^*(X_{2k+1}; Z_4)$ is the image under p_{2k+1}^* of the Sq⁴ i_{2k-1} in $H^*(X_{2k}; Z_4)$, so by Lemma 2.8, $g^*(Sq^i i_{2k-1}) = 0$. Therefore g lifts, and it follows from Lemma 2.3 that $[f \circ \nu] = 0$.

24 JOSEPH STRUTT

The next Proposition completes the proof of part ii for the 2-primary component.

PROPOSITION 2.10. If $2 \mid k$, *then for any map f* : $RP^{2k+2} \rightarrow X_{2k+2}$, *we have* $[f \circ \nu] =$ 0.

Proof. If we can show that $p_{2k+2} \circ f$ factors through the fibre $K(Z_2, 2k+1)$, we are done by Lemmas 2.7 and 2.3. The composition $p_{2k} \circ p_{2k+1} \circ p_{2k+2} \circ f:RP^{2k+2} \to$ $K(Z, 2k - 1)$ is null homotopic, so $p_{2k+1} \circ p_{2k+2} \circ f$ factors through the fibre $K(Z_2, 2k)$ by a map q, say:

$$
K(Z_2, 2k+1) \rightarrow X_{2k+1}
$$
\n
$$
RP^{2k+2} \xrightarrow{\text{p}_{2k+2}0 \text{ f}} K(Z_2, 2k) \xrightarrow{\text{p}_{2k}} X_{2k}
$$
\n
$$
K(Z, 2k-1) \xrightarrow{\text{Sq}^2_{2k+1}} K(Z_2, 2k+1)
$$

It remains only to show that $r_{2k} \circ q$ is null homotopic. We consider the fibre mapping sequence of the fibration $K(Z_2, 2k) \rightarrow X_{2k} \rightarrow K(Z, 2k - 1)$:

$$
\cdots \longrightarrow [RP^{2k+2}, K(Z, 2k-2)] \xrightarrow{ \textrm{Sq}^2} [RP^{2k+2}, K(Z_2, 2k)]
$$

$$
\xrightarrow{ (r_{2k}) \#} [RP^{2k+2}, X_{2k}] \longrightarrow \cdots
$$

Since 2 | k, the map "Sq²" is an isomorphism, so (r_{2k}) $\mathscr{K} = 0$. It follows that $r_{2k} \circ g$ is null homotopic.

In order to study the 3-primary part of $\pi_{2k+2}^{\text{Proj}}(S^{2k-1})$, we must construct a mod 3 Postnikov system. It is known that $H^*(K(Z, 2k - 1); Z_3)$ has a fundamental class i_{2k-1} , and the next group is a Z_3 in dimension $2k + 3$ generated by P^1_{2k-1} where P^1 is the first reduced power operation of Steenrod. We construct a space Y_{2k+2} by killing this class:

$$
K(Z_3, 2k+2) \rightarrow Y_{2k+2}
$$

\n
$$
\downarrow
$$

\n
$$
K(Z, 2k-1) \xrightarrow{P^1 i_{2k-1}} K(Z_3, 2k+3).
$$

It can be verified that the Z_3 -cohomology of Y_{2k+2} is Z_3 in dimension $2k - 1$ and 0 in dimensions $2k + 1$ through $2k + 3$. The map $S^{2k-1} \to K(Z, 2k - 1)$ representing the fundamental class of S^{2k-1} lifts to Y_{2k+2} and the lifting induces an isomorphism on $H^{i}(-; Z_3)$ for $i \leq 2k + 2$ and a monomorphism for $i = 2k + 3$. By the \mathfrak{C}_p approximation theorem (see [2] Chapter 10), it induces an isomorphism on homotopy groups through dimension $2k + 2$. Therefore the above is a mod 3 Postnikov resolution of S^{2k-1} .

By the fibre mapping sequence, $[RP^{2k+2}, Y_{2k+2}] = 0$, so, in particular,

 $\pi_{2k+2}^{\text{Proj}}(Y_{2k+2}) = 0$, implying that the 3-primary part of $\pi_{2k+2}^{\text{Proj}}(S^{2k-1})$ is zero. This concludes the proof of Theorem 4.

TULANE UNIVERSITY OF LOUISIANA

REFERENCES

[1] H. CARTAN, Seminaire H. Cartan 1954-1955, Paris.

- **[2] R.** E. MosHER AND M. C. TANGORA, Cohomology Operations and Applications in Homotopy Theory, Harper and Row, New York, 1966.
- [3] E. H. SPANIER, Algebraic Topology, McGraw-Hill, New York, 1966.
- [4] **N.** E. STEENROD AND D. B. A. EPSTEIN, *Cohomology Operations,* Annals of Mathematical Studies, 50, Princeton University Press, Princeton, 1962.
- [5] J. STRUTT, Projective Homotopy Classes, Thesis, University of Illinois, 1970.
- [6] ----, "Projective homotopy classes of Stiefel manifolds" (submitted)
- [7] P. ZvENGROWSKI, "Skew linear vector fields on spheres" (to appear, J. London Math. **Soc.)**