A REMARK ON A THEOREM OF R. C. JAMES

BY K. K. JUN

If E is an infinite dimensional Banach space with dual space E^* then a biorthogonal system (x_n, f_n) , i.e. $(x_n) \subset E$, $(f_n) \subset E^*$, $f_n(x_m) = \delta_{mn}$, is a Schauder basis for E if, for each $x \in E$

(1)
$$x = \sum_{n=1}^{\infty} f_n(x) x_n$$

convergence in the norm topology of E.

A closed subspace E_{\circ} of E is *complemented* in E if there is a bounded linear projection P (i.e. $P^2 = P$) from E onto E_{\circ} . When we use the term "subspace" from now on we mean a "closed infinite dimensional subspace".

Denote the set of all bounded linear operators from E to F by $\mathfrak{L}(E, F)$, E and F Banach spaces. The purpose of this brief note is to give a simple proof of the following known result.

THEOREM 1: If E has a complemented subspace E_{\circ} with a Schauder basis then $\mathfrak{L}(E, E)$ is not reflexive.

This theorem follows from the Grothendieck-Schatten theory of tensor products [1], [8]. Indeed the theorem has been exploited from this point of view by the author's colleague J. R. Holub [2], [3].

We give here a truly elementary proof, avoiding tensor products, based on the following remarkable result of R. C. James [5] (see also [6], [4]): A Banach space E is non-reflexive if and only if, for each number r < 1, there exists a sequence $\{z_i\}$ of elements in the unit ball of E and a sequence $\{f_i\}$ of continuous linear functionals with unit norms such that

(2)
$$f_n(z_i) > r \quad \text{if} \quad n \leq i, f_n(z_i) = 0 \quad \text{if} \quad n > i.$$

(Geometrically, a Banach space E is reflexive if and only if its unit sphere contains no large flat region.)

We prove the following somewhat stronger statement of the main result.

THEOREM 2: Suppose E and F are infinite dimensional Banach spaces containing biorthogonal systems $(x_i, f_i), (y_i, g_i)$ respectively such that

(a) $||x_i|| \leq 1$ for each i; (b) $||g_i|| = 1$ for each i; and, (c) $\sup_n ||\sum_{i=1}^n f_i(x)y_i|| \leq ||x||$ for each $x \in E$. Then $\mathfrak{L}(E, F)$ is not reflexive.

Proof. Define $T_n: E \to F$ by

(3)
$$T_n(x) = \sum_{i=1}^n f_i(x) y_i$$

By (c) $||T_n|| \leq 1$ for all *n*. If $A = (a_i) \subset F^*$ is such that $\Sigma ||a_i|| < +\infty$

define $G_{\mathcal{A}}$ by

(4)
$$G_{\mathbf{A}}(T) = \sum_{i=1}^{\infty} a_i(Tx_i)$$

where $T \in \mathfrak{L}(E, F)$ is arbitrary. Then,

(5)
$$|G_A(T)| \leq \sum_{i=1}^{\infty} ||a_i|| ||Tx_i|| \leq (\sum_{i=1}^{\infty} ||a_i||) ||T||$$

by (a) and so $G_A \in (\mathfrak{L}(E, F))^*$.

Let $a_{i,n} = \delta_{in}g_n$, $A_n = (a_{i,n})$ and $G_n = G_{A_n}$. Then $||G_n|| \le \sum_{i=1}^{\infty} ||a_{i,n}|| = ||g_n|| = 1$ by (5) and (6). Also, since $||T_n|| \le 1$,

(6) $||G_n|| \ge |G_n(T_n)| = |\sum_{i=1}^{\infty} a_{i,n}(T_n x_i)| = |g_n(T_n x_n)| = |g_n(y_n)| = 1,$

i.e.

(7)
$$||G_n|| = 1 \quad \text{for all } n.$$

Let $i \leq n$. Then

$$G_i(T_n) = g_i(T_n(x_i)) = \sum_{j=1}^n f_j(x_i)g_i(y_j) = 1$$

If i > n then clearly $G_i(T_n) = 0$. By the theorem of James above, $\mathfrak{L}(E, F)$ is non-reflexive.

Theorem 1 is an immediate corollary; for, if (z_i, h_i) is a Schauder basis for E_{\circ} and P is a projection from E onto E_{\circ} and $x_i = y_i = z_i$, $f_i = h_i \circ P$, $g_i = h_i$ then E can be renormed so that a), b) and c) hold. Indeed without loss of generality we may suppose

(8)
$$0 < \inf_n || z_n || \le \sup_n || z_n || < +\infty.$$

For $x \in E_{\circ}$ define

(9)
$$||x||_{\circ} = \sup_{m \le n} ||\sum_{i=m}^{n} h_i(x) z_i||$$

It is straightforward to check that

$$\| z_n \|_{\circ} = \| h_n \|_{\circ} = 1$$
, and $\| \sum_{i=1}^n h_i(x) z_i \|_{\circ} \le \| x \|_{\circ}$

for each $x \in E_{\circ}$.

Define |x| on E by

(10)
$$|x| = ||Px||_{\circ} + ||(I - P(x))|$$

where I is the identity operator on E.

Now

(11)
$$|Px| = ||P(Px)||_{\circ} + ||(I-P)(Px)|| = ||Px||_{\circ} \le |x|$$

and so |P| = 1. Thus (a), (b) and (c) hold.

We observe that there are infinite dimensional E and F for which $\mathfrak{L}(E, F)$ is reflexive. Indeed by Pitts theorem [7], $\mathfrak{L}(\ell^q, \ell^p)$ is reflexive for q > p > 1.

30

Whether there are infinite dimensional E and F such that both $\mathfrak{L}(E, F)$ and $\mathfrak{L}(F, E)$ are reflexive appears to be open.

We conclude by remarking that the proof of theorem 2 shows that if E and F satisfy the hypothesis of that theorem, then $\ell^1 \subset (\mathfrak{L}(E,F))^*$. Indeed the mapping $A \to G_A$ is an isomorphism of $\ell^1 \otimes F^*$ into $(\mathfrak{L}(E,F))^*$ for $\ell^1 \otimes F^*$ is exactly the absolutely converging sequences in F^* [1],

LOUISIANA STATE UNIVERSITY

References

- A. GROTHENDIECK, Produits tensoriels topologiques et espaces nucleaires, Mem. Amer. Math. Soc. 16(1955), 140 pages.
- [2] J. R. HOLUB, Tensor product bases and tensor diagonals, Dissertation Louisiana State University, 1969.
- [3] ——, Hilbertian operators and reflexive tensor products. Pacific J. Math. 36(1971), 185-94.
- [4] R. C. JAMES, Reflexivity and the supremum of linear functionals, Ann. of Math. 66(1957), 159-69.
- [5] , Weak compactness and reflexivity, Israel J. of Math. 2(1964), 101-19.
- [6] , Characterizations of reflexivity, Studia Math. 23(1964), 201-16.
- [7] H. PITT, A note on bilinear forms, J. of London Math. Soc. 11(1936), 174-80.
- [8] R. SCHATTEN, A Theory of cross spaces, Ann. Math. Studies no. 26, Princeton, 1950.