SOME GENERALIZATIONS OF THE HAUSDORFF SEPARATION AXIOM
Por A. Garcia-MAYNEZ

1. Introduction

In the last few years, a considerable attention has been paid to separation
axioms in topological spaces lying between T (the Fréchet axiom) and 7. (the
Hausdorff axiom). The KC-axiom: every compact subset is closed is perhaps the
most useful. In [3], A. Wilansky proposes a definition of k-space for not necessarily
Hausdorff spaces and proves that a KC-space is a k-space if and only if its one
point compaectification is a KC-space. We modify slightly Wilansky’s definition
of k-space, but both definitions turn out to be equivalent in KC-spaces. We
propose also a definition of paracompactness for not necessarily regular spaces
which of course reduces to the classic definition under the assumption of regu-
larity. Finally, we introduce the concept of KS-space and by a series of examples
we exhibit connections between locally compact, KC, KS, T, and k-spaces. Our
two main results, (2.6) and (2.9), deseribe, respectively, a sufficient condition
for a T1-space to be Hausdorff and a necessary and sufficient condition for a KC,
KS-space to have a KS one point compactification.

2. Basic definitions

A subset A of a topological space is compacily closed if for each closed compact
set K in the space, A 1 K is compact. X is a k-space if every compactly closed
subset is closed. A compact space X is shrinkable if for each finite open cover
{Vi, Va, -+-, Val of X there exists a compact cover {K;, Ko, -+, K.} of X
such that K; € V; for each 7. A topological space is KC (resp. KS) if every
compact (resp. compact closed) subset is closed (resp. shrinkable). X is a
US-space if every convergent sequence in X has exactly one limit. X is pare-
compact if every open cover of X has a closed locally finite refinement. X is

locally compact (resp. locally paracompact) if every point of X has a compact (resp.
" a closed paracompact) neighborhood.

As a consequence of these definitions, we obtain the following results. (2.1),
(2.2) and the first part of (2.3) can be proved easily. We give a reference for the
remaining statements.

(2.1) Every KC-shrinkable space is paracompact. Conversely, every compact
and paracompact space is shrinkable.

(2.2) Every compact T-space is paracompact.

23) T,= KC & KS = KC = US = T and no converse implication holds.
(See examples (3.2), (3.4), (3.5) and (3.6) below).

(24) A KC-space which is locally compact or first countable is a k-space.
(See, for instance, [2], Chap. VII, Th. 13).

(2.,5) The one point compactification of a KC-space is a US-space. It is a
KC-space if and only if X is a k-space. (See theorems 3 and 5 in [3]).
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- 'We prove now our first result.
(2 6) Every locally paracompact Ty-space is Hausdorff.

Proof Leta,b € X, a = b. Let H be a closed paracompact nelghborhood of a.
If b ¢ H, then int (H) and X ~ H are disjoint open sets about @ and b, respec-
tively, and there is nothing else to prove. So assume b € H. For ea,ch/x € H,
a # x = b, let V, be an open set about z disjoint from {a, b}. Let Vi, V3 be open
sets such that @ € V,, b € Vs, a¢ Vs and b ¢ V,. The cover § =
{V. N H|z € H} of H has a closed locally finite refinement {W.|a € I}.
For each a € I select z(a) € H such that W, C Vi and let H, = Uy W.
Then {H, [ z € H} is also a closed locally finite refinement of g. Finally,

R=int H)N (X ~UpeH,) and 8 =X~ UyH,
are disjoint open sets about @ and b, respectively, and the proof is complete.

(2.6.1) CoroLrLARY. Even paracompact Ti-space X s normal and every locally
paracompact Ti-space s completely regular.

Proof. Assume first X is paracompact and T'; . Since every paracompact space
is locally paracompact, X is Hausdorff. To prove X is regular, let a € X and let
H be a closed set such that a ¢ H. For each z € H, there is an open set V, such
that z € V, and a ¢ V,-. Since X is paracompact and

se = {X~H}U leeH

is an open cover of X, 3 has an indexed closed locally ﬁmte refinement
{T} U{T.|x € H}, where T € X ~ H and T, C V, for each = € H. (See [1],
Chap. VIII Th. 1 4) Then X ~ T and X ~ U,exz T, are d1s101nt open sets con-
taining H and a, respectively. .

To prove that X is normal we reason exactly as before repl'acing a by a closed
set A disjoint from H. Assume now that X is locally paracompact and T4.
Since every paracompact Tj-space is normal and normality implies complete
regularity, every point of X has a completely regular closed nelghborhood This
clearly implies that X is completely regular. -

(2.6.2) - CoroLLARY. Every compact slmnka_ble KC-space is T .
Proof. This is a consequence of (2.1) and (2.6).

(2.6.3) CoroLLARY. Every locally bompact, KC, KS-space is T, .
We exhibit now a consequence of (2.5) and (2.6.2).

(2.7) A KC, k-space X is locally compact and Hausdorff if and only if the one
point compactification Xt of X is shrinkable.

Proof. If X is locally compact-and T, then X *is T, and hence shrinkable by
(2.2) and (2.1). If X" is shrinkable, then by (2.6.2) and (2.5), Xtis Hausdorff
Hence X is Hausdorff and locally compact. :
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We will find the next lemma very useful in proving our second main result
(2.9).

(2.8) Lmmma. A subset C C X s compactly closed if and only if C U {o} s
compact in X7

Proof. Assume first C is compactly closed and let {W, [ a € I} be a cover of
C U {=} with open sets in X*. Choose ay € I such that © € W,,. Then
X" ~ W,, is a closed compact subset of X. Since C is compactly closed,
CN Xt~ W.,,) is compact and {X N W, |a € I} is a cover of this set with
open sets in X. Therefore there exist s, - - - , o, € I such that ¢ N (X ~ W,,)
C Wo U --- U W,, . Therefore {Wa,, Way, -+, Wa,} is a subfamily of
{W.|a € I} covering C U { =} and this set is compact. Conversely, if C U {«}
is a compact subset of Xt and K is a closed compact subset of X, then K is also
closed in X by the definition of the topology in X*. Therefore K N (C U {w}) =
K N C is compact.

(2.9) TuroreM. Let X be a KC, KS-space. Then X" is a KS-space if and only
if the following condition holds:

x) IfK C V < X, where K is compact and V is open, then there exist Sy, Sz € 2%
such that K C 81 C 8, C V, 8z us compact, and X ~ S, is compacily closed.

Proof. Assume condition *) holds. Since every compact shrinkable space is a
KS-space, it suffices to prove that X is shrinkable. Let Vi, V,, -+, V, be
open sets in X such that X* = V; U --- U V,,. We may assume, without loss of
generality, that « € V,but © ¢ V,fori < n. Theset L = X"~ V. is compact
and is contained in V; U --- U V,_;. By the #) condition, there exist subsets
Si, S of Xsuchthat Lc Sy 8, < ViU ---U. V,_1, where S, is compact
and X ~ 8; is compactly closed. Since S is shrinkable, there exist compact sets
Ly, - +,Lyyin Xsuchthat S = ;U --- UL, ;,where L;,C V;,i=1,2, -+,
n — 1. Now, by (2.8), L, = X" ~ 8;is a compact subset of X*. Then

Xt=nULU---UL,,

where L; is compact in X" and L; € V,fori = 1,2, - - - , n. Conversely, assume
X*is shrinkable and let K € V < X, where K is compact and V is open. Since X
is shrinkable and Xt = (X* ~ K) U V, there exist compact sets Ty, T: in X*
such that X* = T, U T2, 1 € X" ~ K and T, € V. If we define
Si=VNEX ~T),8 =T, UK, then K © 8; C S: € V. Besides S; is com-
pact since it is the union of two compact sets. Finally, by (2.8), X ~ S; is com-
pactly closed since X ~ 8 = T, U (X* ~ V) is compact.

3. Examples and counterexamples

In this section, we will prove, among other things, that the three hypotheses in
corollary (2.6.3) are independent. We will say that a topological space is KF
if every compact subset is finite. KF Ti-spaces are automatically KC and KS,
so they are very useful to provide examples.



HAUSDORFF SEPARATION AXIOM 41

(8.1) Ezample. There exists a T> , KF-space which is not a k-space.

Proof. Let 2 be the first uncountable ordinal and let X = @ + 1, ie., X
consists of all ordinals < Q. Define a topology 7in X as follows: V € 7 if and only
if2¢ VorQ € V and for some ordinal « < Q, V D {xla < 2 < 9}. It can be
proved easily that X is T, KF, and non-discrete. But X is not a k-space since
every subset of X is compactly closed.

(8.2) Example. There exists a compact shrinkable US-space which is not KC.

Proof. Let Y be the one point compactification of the space deseribed in (3.1).
By (2.5), Y is a US-space which is not KC; by (2.9), Y is shrinkable.

(3.3) TuroreMm. Every T., KF, k-space X 1is discrete.

Proof. By (2.7) and (2.9), X is locally compact. But every locally compact
T, KF-space’is discrete.

(84) Ezxample. There exists a KC, KS-space which is not 7.

Proof. Let X be an uncountable set and let 7 be the topology for X consisting
of the empty set and all subsets of X with countable (finite or infinite) com-
plements. It can be proved easily that every infinite subset of X has an open
cover with no finite subcover, and hence X is KF. Now every non-empty open
subset of X is dense in X, so X cannot be Hausdorff.

(3.5) Ezample. There exists a compact KC-space which is not shrinkable.

Proof. Let X be a T first countable space which is not locally compact (for
instance, the rationals in the line with the usual topology). By (2.4), X is a
KC Fk-space and by (2.5) and (2.7), X* is a compact KC-space which is not
shrinkable.

(3.6) Ezample. There exists a compact T;-space which is not US.

Proof. Let X be an infinite set with the almost indiscrete topology, that is,
the topology 7 consisting of the empty set and all subsets of X with finite com-
plements. (X, ) is then a compact T';-space such that every sequence in X which
has no constant subsequence converges to each point of X, so X cannot be
US.

We finish this paper with an open question:
Is every normal T;-space locally paracompact?
CeENTRO DE INVESTIGACION DEL IPN
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