
A CONNECTIVITY MAP f:S"--+ S"- 1 DOES NOT COMMUTE 
WITH THE ANTIPODAL MAP 

BY J. H. V. HUNT 

1. Introduction 

In 1956 in [8] J. Nash asked whether Brouwer's fixed point theorem held for 
connectivity maps. In 1957 in [4] 0. H. Hamilton answered this question af~ 
firmatively. Since then a number of papers on connectivity maps and non-con­
tinuous functions has appeared, notably those of J. Stallings [9] and G. T. 
Whyburn [12], [13], [14]. However, in [5] I pointed out that no further theorems 
of algebraic topology had been proved for connectivity maps. In this article we 
prove the proposition stated in the title, which for continuous functions is 
equivalent to the Borsuk-Ulam antipodal point theorem (see pp. 138-139 
of [7]). 

2. A disconnection theorem 
In this section X will denote a Peano continuum. 
We shall say that a subset L of X is semi-cl,osed in X if for each convergent 

sequence Ki , K2 , • • • of components of L, lim K, is a single point or a subset 
of L. This definition is given on p. 131 of [11]. It follows from the definition that 
the components of a semi-closed set Lare closed in X. Further, we notice from 
(5.2), p. 132 of [11], that the components of a semi-closed set Land the single 
points of X - L form an usc decomposition of X. 

We shall say that a subset L of X disconnects two points p, q in X if p and q lie 
in different components of X - L. This definition is given on p. 439 of [10]. In 
[14] and [5] the same definition is given, but in these papers the phrase "weakly 
separates" is used instead of "disconnects." 

Before proving the disconnection theorem of this section (theorem (2.1) ), 
we state the following result. 

LEMMA (2.1 ). Let X be a unicoherent Peano continuum and Tan involution on 
X. Let L be a subset of X with closed components such that T (L) = L and L se-pa­
rates x, T (x) in X for all x EE L. Then there is a component K of L such that 
T(K) = K and K separates x, T(x) in X for all x EE K. 

This is proved as a theorem in [6]. It is a generalization of the lemma of [2], 
where the set Lis assumed to be compact. 

THEOREM (2.1). Let X be a unicoherent Peano continuum and Tan involution 
on X. Let L be a semi-closed subset of X such that T (L) = L and L disconnects x, 
T (x) in X for all x EE L. Then there is a component K of L such that T (K) = K 
and K se-parates x, T (x) in X for all x EE K. 

PROOF. The collection of disjoint closed sets consisting of the components of L 
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and the single points of X - Lis an usc decomposition of X. Let 71":X - 7r(X) 
be the monotone projection from X onto the decomposition space 7l" (X). 

By (2.21 ), p. 138 of [11], 7l" (X) is a unicoherent Peano continuum. Further, it 
follows from (2.2), p. 138 of [11], that 7r(L) is totally disconnected. Thus, by 
lemma 1 of [1], the quasi-components of 7r(X) - 7r(L) are connected. However, 
by (5.3), p. 132 of [11], 7l" IX - L:X - L - 7r(X ...:.... L) is a homeomorphism. 
Thus the quasi-components of X - L are connected. 

But this means that L separates x, T (x) in X for all x EE L. Since L has closed 
components, it now follows from lemma (2.1) that there is a component K of L 
such that T (K) = Kand K separates x, T (x) in X for all x EE K. 

3. The main theorem 

In this section we denote by S" the set of all points x = (x1 , X2 , • • • , Xn+1) 
such that I:f~l x\ = 1 in Euclidean (n + 1 )-space c+ 1. We identify the set of 
all points X = (x1 ' X2 ' ••• ' Xn+l) in En+I defined by Xn+I = 0 with E". Finally 
we denote by T the antipodal map on S" defined by T (x) = -x. 

We need the following lemma in order to prove theorem (3.1), on which the 
main theorem is based. 

LEMMA (3.1). If F1, F2, ••• 'Fn are self-antiporlal closed sets in sn and each 
F; separates x, -x in sn for all X EE F;, then n:=1F; ~ fZJ. 

PROOF. Suppose that n:=1F; = f2}, and write sn - F; = G; LJ TG;, where 
G; and TG; are disjoint open sets. Then G1, TG1, G2, TG2, • • • , Gn, TGn is a 
finite open covering of S". Thus there is a finite closed covering H1, TH1, H2, 
TH2, • • • , H,., TH,. of S,,. such that H, c G; for each i. However, H; n TH, = f2J 
for each i, and this contradicts theorem (21.3 ), p. 138 of [7]. 

THEOREM (3.1 ). If Li, L2, • • • , L,. are self-antipodal semi-closed sets in S" 
and each L; disconnects x, -x in S" for all X EE L;' then n;=l L; ¥ f2J. 

Proof. We suppose that n > 1. Then for each i there is by theorem (2.1) a 
self-antipodal component K, of L; such that K, separates x, -x in S" for all 
x EE K;. By lemma (3.1), nf=1K; ~ f2}. Thus nf=1L; ~ f2}, which proves the 
theorem. 

A function f:X - Y is called a connectivity map if for each connected set C in 
X the graph of the restricted function f I C: C - Y is a connected subset of X X Y. 

Notice that a connectivity function preserves connectedness. Notice also that 
the proof of theorem (3.1) of [3] establishes the following proposition: if f:X - Y 
is a connectivity function, where X and Y are Peano continua, and if F is a 
closed subset of Y, then r 1 (F) is a semi-closed subset of X. 

THEOREM (3.2). There is no connectivity map f:S" - sn-i which commutes 
with the antipodal map. 

Proof. The case n = 1 is obvious, because a connectivity map preserves con-
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nectedness. Thus, taking n > 1, we suppose that there is a connectivity map 
f:S"--------, sn-I which commutes with the antipodal map, so thatf(-x) = -f(x) 
for all x E S". 

Let A;, for each i ::; n, be the set of all points X = (x1, X2, • • • 1 Xn) in sn-I 

such that x; = 0. Then A; is a self-antipodal set which separates x, -x in sn-I 

for a11 x E sn-I - A;. Further, ni=l A. = 0. 
Now put L; = T 1(A;). Then L, is a self-antipodal semi-closed subset of S". 

In addition, if X E S11 - L. then L. disconnects x, - X in sn, because f preserves 
connectedness andA,separatesf (x),f(-x) ( = -f(x)) in S11- 1• Thus, by theorem 
(3.1), n,=1L, ~ fZf. But this is impossible because n,=1A, = 0, and so the 
theorem is proved. 
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SASKATOON. 
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