
ON u-CONNECTED SETS 

BY A. GARCIA-MA.YNEZ 

1. Introduction 

The purpose of this paper is to find the best possible generalization of the fol­
lowing theorem, due to Sierpinski: 

1.1 No Hausdorff continuum can be expressed as a countable union of closed, non­
empty, mutually disjoint subsets. (See [2] 2.49 or [4], p. 173, Th. 6 ). 

At the end we give a series of examples to exhibit possible limitations to this 
task. 

In order to get two immediate generalizations, we need some definitions. 

1.2 Let X be an arbitrary topological space. A sequence C1, C2 , • • • of subsets 
of Xis a u-partition of X if the C/s are non-empty and mutually disjoint and 
their union is X. A u-partition of X is closed (resp., compact; resp., connected) 
if each element is closed (resp., compact; resp., connected). A connected space X 
is u-connected if it has no closed u-partition. If p E X, the constituant of p is 
the union of all compact connected subsets of X containing p and the u-component 
of pis the union of all u-connected subsets of X containing p. 

The following three properties of u-connected sets can be proved easily. We 
omit their proof. 

1.3 If { Ca I a E I} is a family of u-connected subsets of a space X with non-empty 
intersection, then U { Ca I a El} is u-connected. 

1.4 If A E 2x is u-connected and A c A1 c A-, then A1 is u-connected. In par­
ticular, the closure of a u-connected set is u-connected. 

1.5 If H 1 , H2, • • • is a closed u-partition of a space X and A is a u-connected 
subset of X, then A C Hn for some n. 

It is clear that two different constituants of a space X must be disjoint. By 
1.3 and 1.4, each u-component of X must be closed and u-connected. Besides, 
two different u-components of X must be disjoint. Finally, by 1.1 and 1.3, each 
constituant of a Hausdorff space is u-connected. 

THEOREM 1.6. No locally compact, connected, Hausdorff space X has a compact 
u-partition. 

Proof. If C1, C2, • • • were such a partition of X, then { oo}, C1, C2, • • • would 
be a closed u-partition of the one point compactification x+ = X U { oo} of X, 
and this would contradict 1.1. 

THEOREM 1.7. Every connected space which is a finite union of u-connected sub­
spaces is u-connected. 
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Proof. If X = D1 U D2 U · · • U Dr, where each D. is o--connected, then 
X = C1 U C2 U • • • U Cr, where C, is the u-component of X containing D •. 
Since X is connected, we must have C1 = C2 = • • • = Cr = X, so that X is 
u-connected. 

This theorem has two important corollaries: 

1.8 Every connected H ausdorjf space X with only a finite number of constituants is 
u-connected. 

1.9 Every locally compact, locally connected, connected, H ausdorjf space X is u­
connected. 

Proof. For every pair of points a, b E X, there exists a chain R1 , R2 , • • • , Rn 
from a to b consisting of regions with compact closure. Then R1- U R 2- U • • • 
U Rn - is a continuum in X containing { a, b} . This implies that X has only one 
constituant. 

As examples 4.1, 4.2 and 4.3 show, Corollary 1.9 is false if we omit any of the 
assumptions. 

Some other easily proved properties of u-connected sets are described in the 
next 

THEOREM 1.10 

a) Every continuous image of a u-connected space is u-connected. 
b) Every product of u-connected spaces is u-connected. 
c) A connected space X is o--connected if and only if every point of X has a 

u-connected neighborhood. 

S. Mazurkiewicz proves in [5] the following results: 

1) There exists a closed connected subset of the plane which is not u-connected. 
2) No closed connected subset of the plane admits a closed connected o--partition. 

It is well known that the last result above is false in Ra. In fact, in 4.3 we provide 
an example of a closed connected subset of Ra which admits a closed connected 
u-partition. 

2. Main Theorem 

For each point p in an arbitrary topological space X, we define, by transfinite 
induction.* 

C° (p) = constituant of X containing p, and for each ordinal number a > 0, 
C" (p) = { x E X I there exists a finite chain K1, K2 , • • • , Km from p to x 

such that K. = C"• (p,)-, where a; < a, p; E X for i = 1, 2, • • • , ml. 
In a Hausdorff space each C" (p) is u-connected. In any space, C" (p )- c C13 (p) 

whenever a < {3. 

LEMMA 2.1. Let X be a topological space and let r be the least infinite cardinal 

* For a complete account on the algebra of cardinals and ordinals, see [1], Chap. 2. 
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number such that X has a basis of cardinality <I'. If p E X, there exists an ordinal 
ct < r such that C" (p) = C13 (p) for each ordinal {3 such that ct ::; {3 < r. 

Proof. Assume the theorem is false. Then, for each ct E r, there exists a unique 
f (ct) E r such that f (ct) > ct and C" (p) ~ ct<a> (p ), but C" (p) = C13 (p) for 
each {3 E [ct, f(ct)). The function g:r - r defined as g(ct) = f(f(ct)) has the 
following property: 

If ct E r, then C" (p )- ~ cu<a) (p ), for 

C" (p )- c ct<al (p) ~ ctu<ocll (p) = cu<al (p ). 

The family g = { H I for some ct E r, H = cu<a) (pr} has cardinality r, for 
otherwise there would exist {3 E r such that C13 (p )- = cu<a) (pr for each ct in a 
subset T of r of cardinality r and, therefore, taking ct E T, where ct > g (/3) 
we would obtain 

CfJ (p )- ~ cu<fJl (p) c C" (p) ~ cu<al (p ), 

contradicting the equality C13 (p )- = cu<a) (pr. 
g is then a family of closed sets in X, linearly ordered by inclusion, of cardinality 

r. But this cannot happen in a space having a basis of cardinality < r. 
Let p EX and r be as in 2.1. We define D(p) = C"(p), where ct is the first 

ordinal in r such that C" (p) = CfJ (p) for each {3 E [ct, r). 
Observe that each D (p) is closed in X, for if D (p) = C" (p ), then 

ca (pr C c"+1 (p) = C" (p). Also, if D (p) n D (q) ~ <I>, necessarily 
D(p) = D(q).ForifD(p) = C"(p),D(q) = CfJ(q)and,say,ct::; {3,then 

ca(p)- = ca(p) C c 13+1(q) C cfJ+2(p) = C"(p), 

so that ca(p) = cH 1(q) = cfj(q). 

THEOREM 2.2. 1 )Let X be a connected Hausdorff space. If there exists a finite 
set of points Pi , Pz , • • • , Pn in X and an ordinal number ct such that 

X = C"(p1) U .. · U C"(pn), 

then Xis u-connected. 
2) Let X beau-connected Hausdorff space. If there exists a sequence p1, p2, • • • 

in X and an ordinal number a such that X = U ~1 Ca (p, ), then, for some p E X, 
X = D(p). 

Proof. 1) is a direct consequence of 1.7, 1.3 and 1.4. As for 2), notice that 
X = D (p1) U D (p2) U • • • . Since Xis u-connected and the sets D (p.) are closed 
and disjoint if different, we have X = D (p.) for each index i. 

3. Enlarging u•connected sets 

In this section we prove that a connected Hausdorff space is u-connected if it 
contains a u-connected subset with a certain property. (See corollaries 3.5 and 
3.6 below). This is another direction on which an improvement of 1.1 can be 
achieved. 
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We shall make use of the following theorem on separation of Trspaces: 

3.1 Let X be a locally compact Hausdorff space with compact components and let 
A, B be subsets of X such that A is compact and Bis closed. If no component of X 
intersects both A and B, then there exist two disjoint subsets C, D of X such that C is 
compact, Dis closed, A c C, B c D and X = CUD. 

Now we are able to prove: 

THEOREM 3.2. Let K1 , K2 , • • • be a closed u-partition of a connected Trspace 
X. If L is a locally compact subset of X with compact components, then 

Kn,....., IntL ,:,!E 4> 
for each n. 

Proof. If Int L = <P, there is nothing to prove. Our hypothesis, combined with 
1.1, implies that L ,:,fE X. Hence we can assume that <P ,:,fE Int L ,:,fE X. Proceed­
ing by contradiction, assume that Int L contains some Kn, say, K1 c Int L. 
Let M be a component of L intersecting K1. Necessarily, Mn Fr (IntL) ,:,fE <P, 
for if M c Int L, 3.1 guarantees the existence of a separation L = C U D, 
where C is compact, M c Cc Int Land L n Fr (Int L) c D. Then 

X = C U [D U (X ,....., L)] 

would be a separation of X, contradicting its connectedness. Then we have 
M n Fr (Int L) ,:,fE <P. But 1.5 implies that M c K1 c Int L, a contradiction. 

COROLLARY 3.3. If G is an open subset of X with compact closure, then 
Kn ,....., G ,:,!E 4> for each n. 

Proof. Take L = a-in the theorem. 

COROLLARY 3.4. If besides being connected and Hausdorff, X is locally compact, 
then no Kn can be compact. 

Proof. A compact Kn would have a compact neighborhood, contradicting 
previous corollary. 

COROLLARY 3.5. Let X be a connected Trspace. Then X is u-connected if and 
only if X has a u-connected subspace S such that L = X ,....., S is locally compact 
and has compact components. 

COROLLARY 3.6. Let X be a locally compact, connected Trspace. Then X is 
u-connected if and only if X has a u-connected region whose complement has com­
pact components. 

4. Examples 

4.1 There exists a connected, locally connected Hausdorff space X which is not 
u-connected. 

Proof. Let X be the set of natural numbers. Denote by S the set of all arith­
metic progressions {a+ n d In = 0, 1, • • ·} where a E X and dis a prime greater 
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than a. If -r is the topology of X having Sas a subbasis, then (X, -r) is connected, 
locally connected, Hausdorff and countable, so this space cannot be u-connected. 
(See [3]). 

4.2 There exists a Ti-locally connected continuum which is not u-connected. 

Proof. Just take the integers with the smallest Ti-topology. 

4.3 There exists a locally compact, connected Trspace which is not u-connected. 
More than that, there exists a closed connected subset of R3 which admits a closed 
connected u-partition. 

Proof. For each positive integer n, let Kn c R3 consist of the lines x = ±2n 
on the plane z = O; the lines x = ±2, x = ±4, • • • , x = ±2n on the plane 
z = 1/n; the segment { (x, n, 1/n) I -2n ~ x ~ 2n} and the two circles described 
on the segments { (±2n, n, z) IO ~ z ~ 1/n} as diameters and lying in the 
plane y = n. The sets Kn are closed, connected and mutually disjoint. Their 
union X is also closed (in R3 ) and connected. Therefore X provides our example. 

The following example was given to me by Dr. Edwin E. Moi:se: 

4.4 There exists a connected, punctif orm subset of R2 which is not u-connected. 

Proof. Let a1 , a2 , • • • be a family of closed arcs in the unit circle SI such that: 
i) The arcs a; are mutually disjoint. 

ii) Their union is a dense subset of SI. 
The arcs a; can be obtained by induction as follows: let P1, P2, • • • be a count­

able dense subset of SI. Let a1 be a closed arc in SI containing P1 . Assuming that 
a1 , a 2 , • • • , an have been constructed in such a way that a; n a; = <I> for i c;t-j 
and with {p1, P2, • • • , Pn} c aI U a2 U • • • U an, let kn be the smallest index 
such that 

Pkn (t: u.i=l a;. 

Define an+1 as any closed arc in SI r-., U .i=I a; containing Pkn . Let H n be the set of 
points in the closed unit disk comprised between the circles x2 + y2 = 1/n, 
x2 + y2 = 1 and the segments joining the origin to the end points of a,. . Let D 
be Kuratowski's punctiform set (See [4], p. 135). Clearly D can be mapped 
homeomorphically into Hn in such a way that the image contains a dense sub­
set of Fr H.,. . If Dn is the image set, X = { (O, 0 )} U D1 U D2 U • • • provides the 
example. 

Note. Keeping the notation of 4.4, we can see that 1.6 fails if we drop the 
assumption of local compactness. Indeed, H1, H 2 , • • • , { (O, O)} constitutes a 
compact, connected u-partition of the connected set Y = { (O, O)} U H1 U H2 

u .... 
4.5 Let X be an indecomposable metric continuum and let K be a proper sub­
continuum of X. Then X r-,J K has uncountably many constituants and each of them 
is dense in X. Therefore, by 1.4, X r-,J K is u-connected. 
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Proof. Let M be the composant of X containing K. Then every composant of 
X different from M is a constituant of X ,..._, K. But X has uncountably many 
composants and each of them is dense in X. (For a proof of these results see [4], 
p. 204-214). 

We finish this paper with two conjectures: 

Let X be a connected, locally compact T 2-space. Then X is <T-connected if and only 
if for some p E X, we have X = D (p ). (Compare with 2.2.) 

Every connected and locally connected subset of the n-dimensional Euclidean space 
R" is <T-connected. 

CENTRO DE INVESTIGACI6N DEL LP.N. 
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