
HOMOLOGY OF KNOT GROUPS: I GROUPS WITH 
DEFICIBNCY ONE1 

BY M. A. GUTIERREZ 

Abstract. The homology of a knot group with deficiency one is trivial above 
dimension 2. 

§0. Introduction 

A knot is an embedding k: Sn ---+ sn+ 2 ( n E N). The normal bundle 11( k (Sn) c 
sn+ 2) is always trivial; let X = sn+ 2 - Int T where Tis a tubular neighborhood 
of k(Sn) (diffeomorphic to Sn X D2). Notice aN ,..._, Sn X S1. Xis called the 
complement of k. 

An-knot group is a group of the form 1r1(X). The inclusion ax C X induces a 
map of fundamental groups; the loop ( *) X S1, where* E sn, is called a meridian 
and it is determined up to conjugation. 

The purpose of this note is to describe the homology ( with integral coefficients) 
of knot groups; by simple Alexander duality we know 

(i) H1(II) = Z, 
(ii) H2(II) = 0. 

In fact from [5, 7], if ii is the commutator subgroup of II, we have 

PROPOSITION 1. If II is a 1-knot group and q 2'.'. 2 

Hq(II) = Hg(ii) = 0. 

We extend that result to any n-knot group (n 2:: 2) of deficiency one (cf. [2; §7] 
and [7]). 

§1. Higher dimensional knot groups 

In [3] it is proved that any finitely presented group II satisfying (i) and (ii) 
of §0 and the extra-condition 

(iii) There exists an element of a E II whose normal closure is all of II, 
is an n-knot group for n 2'.'. 3. In fact a turns out to be a meridian of II. Con­
dition (iii) is abbreviated by saying that II has weight 1. 

Little is known about 2-knot groups but if we change (ii) by the stronger 
condition 

(ii') II has deficiency one, that is, it has a presentation with r + 1 generators 
and relations, for some r E N, 

then II is a 2-knot group cf. th. 1, below). 
Certainly, these are not all the 2-knot groups; in [1; ex. 12], it is proved that 

1 A previous version of this paper was written while the author was Visiting Professor at 
the National University of Mexico, under the OAS Multinational Project of Mathematics. 
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Za X tp Z is a 2-knot group, where the notation indicates the semidirect product 
of Za with Z with automorphism cp: Za - Za given by multiplication· by 2. As we 
shall see, this group cannot satisfy (ii'). 

§2. Adding handles 

Suppose II is a finitely presented group satisfying (i), ('ii') and (iii), then 
[4; p. 141] II has a preabelian presentation of the following form 

(a,/31, ••• ,{3,:{3i = Bi(a,{3.,.)) 

where 1 ::::; j :::; r and if cl> is the free group in the letters a, {31 , • • • , {3, , the words 
Bi lie in the commutator subgroup <I> by (iii) the group generated by the 
/3i and with relations /3i = Bi(l, (3.,.) is trivial; this means that the map 
/3i- /3i(Bi(l, (3.,.) )- 1, a - a, is an automorphism of cl> by [4; th. 3.3]. Taking the 
inverse automorphism, we get a new presentation for II 

(1) (a, /31, • • ·, {3,: /3i = Bi(a, (3.,.)) 

where, again,j = 1, • • ·, r, Bi E <I> and Bi(l, (3.,.) = l. 

THEOREM 1. Let II be a finitely presented group satisfying (i), (ii') and (iii). 
Then, there exists an embedding f: s2 - 84 such that, if X is the complement of 
f, 'll"1(X) = II. 

Proof. We start with a particular example originally found by Sumners in [6]; 
consider the knot group 

(2) 

This presentation has the desired form (1). As in [6] take the standard embed­
ding D3 c D5 with boundary the standard embedding s2 c s4. Attach K = 
D" - D3 a trivial I-handle h1 ~ D1 X D4. The boundary of K U h1 has funda­
mental group 

(a, {3: ), 

where a represents the meridian around D3 and {3 the loop around h1• In a(K l:.J h1) 

represent the word f32af3-1a- 1 by an embedded loop -y as in the figure. If we put 
D3 back in K U h1, -y homotops, and thus, by [8], isotops to the loop {3. This 
means that if we attach a 2-handle h2 along a tubular neighborhood of -y, we 
recover an embedding 

f:D 3 - D5 ,..., K u h1 u'Y h2 

and f I aD3 : s2 - S4 is a knot with group presented by ( 2). 
In the general case, to K attach r I-handles h/ and in a(K U U h/) represent 

the words /3iBi 1 by loops 'Yi. Attach 2-handles h/ along neighborhoods of 'Yi. 
If we put D3 back in K U U h/, the 'Yi isotops to /3i because Bi(l, (3.,.) = 1, thus 
a(D 5 U U h/ U U h/) is the standard sphere and a(K U U h/ U U h/) is the 
complement of a knot with group presented by ( 1). 
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§3. Homology of Groups 

We want to extend proposition 1 to all knot groups with deficiency one: 

THEOREM 2. Let IT be a finitely presented group satisfying (i), (ii') and (iii). 
If ti is its commutator subgroup, for q ~ 2 

Hq(IT) = Hg(fi:) = 0. 

Proof. Again we begin with Sumners' example: the trivial knot S2 c S4 can be 
extended to t::..3 c S4 where t::.. is a disk and iJt::.. = S2• With the notation of th. 1, 
t::.. c a(K U h1) but the arc 'Y pierces t::.. in two points with opposite intersection 
numbers (cf. figure). 

Remove two small disks, neighborhoods off::.. n ')' and attach a tube S2 X D1 

to the punched disk to obtain F ~ (S 1 X S1) 0 where Mo is obtained from the 
closed manifold M by punching a hole to it. F c iJ(K U h1 U h2) and thus it is 
a Seifert manifold ( cf. [2]) of the knot constructed in [6]. 

At this point we recall the notation introduced in [2; §0]: let Y be obtained 
from S4 by cutting along F, that is by removing the interior of a regular neighbor­
hood of Fin 84. Y is a compact manifold with boundary F0 U F1 where Ft~ F 
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and Fon F1 = S2• The map Pi:F;::::,; Ft C &Y C Y induces maps Pt:'Tt'1(F) -), 
'1t'1(Y). If both Pt are monomorphic, Fis called minimal. 

In the present case it is not difficult to prove that 'Tt'1(F) = 'Tt'1(Y) = Zand, 

Po(n) = n and P1(n) = 2n (n E Z). 

By [5; th. 4.5.1], if II is presented by (2), ii is the infinite free product with 
amalgamations 

(3) 

where the Pt are the amalgamating maps. 
Let A be the integral group ring of Z; it can be identified to Z [t, r 1] where t 

is a variable. As in [2; §2] from [5; th. 4.5.1] we find an exact Mayer-Vietoris 
sequence 

(4) -Hi'Tt'1(F)) ® Ai!:._,,Hq('Tt'1(Y)) ® A-Hq(:fi)-Hq-1('Tt'1(F)) ®A_.··· 

where d(a ® 1) = (Po(a) ® t) - (P1(a) ® 1), whenever the maps Pt:'1t'1(F)-), 
,r 1 ( Y) are monomorphisms. Clearly in the particular case ( 2), the amalgama­
tions in (3) are monomorphic and from ( 4) we conclude Hq(ii) = 0 for q ~ 2. 

From the Wang sequence 

(5) 

we conclude Hq{II) = 0 in the same range. 
For the general case, we again rely on the construction of th. 1. The disk 

A c S4 can be embedded in &(K U U h/) and the arcs 'Yi pierce it with zero 
intersection number. 

We know 
1r1 (a(K U U h/) = (a, /31, • • • , {3,: ); 

where '1;7/i = 0 and the Wi are words in /31' ••• 'f3r only. Now we study 'Yin A, 
a set of '1;. I 7/, I points corresponding to the an•. Thus, we can index the points by 
x1, • • • , x1n;I (i = 1, • • • , s + 1) by the way they occur in 'Yi. Suppose 

Hl LJ i 
7/l, • • • , 7/i > 0 and 7/i+J < O; we can add a tube T1 to A - (N1 N ln;I), 

where N/ is a small (open) disk in A around x/, joining &N1H 1 to aN•1~;I along 
the loop representing Wi . This reduces the number of intersection points by two. 
Now add a tube T2 joining x•1n;1-1 to x/+I along a- 1wia, and concentric to T1. By 
repeating this process, we eliminate I 7/i+1 I intersection points. Suppose x/ (j < i) 
is the first point that is not eliminated. Add a tube T starting at x/ along 
anw;an;+,wi+ 1 • • • wian;+, where 7/ = 7/i + · · · + 7/Hl . If 'f/;+2 > 0, we punch holes 
around the points X1 <+2, • • • , Xn;+ 2 <+2 to let T go through them to x/+3; if 7/i+a > 0 
we repeat the process until we find a u with 7/.-< 0 and end the tube T at xt with 
core 
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Next, we add a new tube T' joining x,._/ to xt and so on. In the process we 
1 h 1 d H2 H2 H3 • • .--1 t ; eave o ~~ aroun X1 , • • • , x~;+ 2 , X1 , • • • , we now Join x~,-i o x1r,• ' 

where X1r,•3 is the first point not yet removed. Since ~7/t = 0 all points are joined 
by tubes and we obtain an orientable 3-manifold F, obtained from A by adding 
tubes, that is a Seifert manifold for the knot S2 - a(K U U h/ U U h/). F has 
free fundamental group in the symbols b1 , • • • , bk ( one for each added tube) and 
1r1( a(K U U h/) - F) is also free in the symbols /31, • • • , /3r, Ci, • • • , C1r, where 

11o(b,) = W, and v1(b,) = C, . 

Here W, is a word in /31 , • • • , /3r and C1, • • • , C,_1. This shows that both maps 
are monomorphisms. Attaching the handles h/ to a(K U U h/) - F along the 
'Y; eliminates the {3; and thus 

The knot s2 ---+ a(K U U h/ U U h/) has a Seifert manifold F such that F 
and Y = (s4 - F) have free fundamental group L of the same rank and the 
maps 111: L ---+ L are monomorphisms. In that case 

ii = . . . *LL*LL*L ••• 

and by (4) and (5), theorem 2 follows at once. 

§4. Further remarks 

We can generalize theorems 1 and 2 in two directions: 

I. A link is an embedding of m disjoint copies of Sn in sn+2: 

t:mS" - S"+2. 

As usual we consider 1r = 1r1(S"+2 - Im(.e)) and H1( 1r) = Z"'. If n ~ 2, H2( 1r) = 
0 and 1r has weight m. If 1r has deficiency m then 

a) There exists a link mS 2 - 84 with group 1r and, 
b) H q( 1r) = 0 ( q ~ 2. (The corresponding statement on the commutator is 

false.) 

II. First of all, observe that if II = Za X <P Z as described in §1, by the Wang 
sequence 

but 'P* = I, for q = 3, thus 

Ha(II) = Za ~ 0 

thus II cannot have deficiency one by th. 2. 
Letf:S 2 - s4 be a knot and Fa minimal (cf. [2; §O]) Seifert manifold. Sup­

pose II = '11"1 ( s4 - f ( S2)) and ii is finite. With the techniques of [2] one can 
prove 

Ha(II) = Ha(ii) 

which is obviously false for some groups satisfying (i), (ii) and (iii). If any 2-knot 
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has a minimal Seifert manifold this would show that the class of 2-knot groups 
is smaller than the class of 3-knot groups. Whether every 2-knot has such mini­
mal Seifert manifolds, I do not know. 

INSTITUTE FOR ADVANCED STUDY, PRINCETON, N. J. 
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