HOMOLOGY OF KNOT GROUPS: I GROUPS WITH DEFICIENCY ONE¹

By M. A. GUTIÉRREZ

Abstract. The homology of a knot group with deficiency one is trivial above dimension 2.

§0. Introduction

A knot is an embedding $k: S^n \to S^{n+2}$ $(n \in \mathbb{N})$. The normal bundle $\nu(k(S^n) \subset S^{n+2})$ is always trivial; let $X = S^{n+2}$ — Int T where T is a tubular neighborhood of $k(S^n)$ (diffeomorphic to $S^n \times D^2$). Notice $\partial N \cong S^n \times S^1$. X is called the complement of k.

A *n*-knot group is a group of the form $\pi_1(X)$. The inclusion $\partial X \subset X$ induces a map of fundamental groups; the loop $(*) \times S^1$, where $* \in S^n$, is called a *meridian* and it is determined up to conjugation.

The purpose of this note is to describe the homology (with integral coefficients) of knot groups; by simple Alexander duality we know

(i) $H_1(\Pi) = Z$, (ii) $H_2(\Pi) = 0$.

In fact from [5, 7], if Π is the commutator subgroup of Π , we have

PROPOSITION 1. If Π is a 1-knot group and $q \geq 2$

$$H_q(\Pi) = H_q(\tilde{\Pi}) = 0.$$

We extend that result to any *n*-knot group $(n \ge 2)$ of deficiency one (cf. [2; §7] and [7]).

§1. Higher dimensional knot groups

In [3] it is proved that any finitely presented group Π satisfying (i) and (ii) of 0 and the extra-condition

(iii) There exists an element of $\alpha \in \Pi$ whose normal closure is all of Π ,

is an *n*-knot group for $n \ge 3$. In fact α turns out to be a meridian of II. Condition (iii) is abbreviated by saying that II has weight 1.

Little is known about 2-knot groups but if we change (ii) by the stronger condition

(ii') II has deficiency one, that is, it has a presentation with r + 1 generators and relations, for some $r \in N$,

then Π is a 2-knot group cf. th. 1, below).

Certainly, these are not all the 2-knot groups; in [1; ex. 12], it is proved that

¹ A previous version of this paper was written while the author was Visiting Professor at the National University of Mexico, under the OAS Multinational Project of Mathematics.

 $Z_3 \times_{\varphi} Z$ is a 2-knot group, where the notation indicates the semidirect product of Z_3 with Z with automorphism $\varphi: Z_3 \to Z_3$ given by multiplication by 2. As we shall see, this group cannot satisfy (ii').

§2. Adding handles

Suppose II is a finitely presented group satisfying (i), (ii') and (iii), then [4; p. 141] II has a preabelian presentation of the following form

$$\langle \alpha, \beta_1, \cdots, \beta_r; \beta_j = B_j(\alpha, \beta_r) \rangle$$

where $1 \leq j \leq r$ and if Φ is the free group in the letters $\alpha, \beta_1, \dots, \beta_r$, the words B_j lie in the commutator subgroup $\tilde{\Phi}$ by (iii) the group generated by the β_j and with relations $\beta_j = B_j(1, \beta_r)$ is trivial; this means that the map $\beta_j \rightarrow \beta_j (B_j(1, \beta_r))^{-1}, \alpha \rightarrow \alpha$, is an automorphism of Φ by [4; th. 3.3]. Taking the inverse automorphism, we get a new presentation for Π

(1)
$$\langle \alpha, \beta_1, \cdots, \beta_r; \beta_j = B_j(\alpha, \beta_r) \rangle$$

where, again, $j = 1, \dots, r, B_j \in \tilde{\Phi}$ and $B_j(1, \beta_\tau) = 1$.

THEOREM 1. Let Π be a finitely presented group satisfying (i), (ii') and (iii). Then, there exists an embedding $f: S^2 \to S^4$ such that, if X is the complement of $f, \pi_1(X) = \Pi$.

Proof. We start with a particular example originally found by Sumners in [6]; consider the knot group

(2)
$$\langle \alpha, \beta; \beta^2 \alpha \beta^{-1} \alpha^{-1} = 1 \rangle$$

This presentation has the desired form (1). As in [6] take the standard embedding $D^3 \subset D^5$ with boundary the standard embedding $S^2 \subset S^4$. Attach $K = D^5 - D^3$ a trivial 1-handle $h^1 \approx D^1 \times D^4$. The boundary of $K \cup h^1$ has fundamental group

 $\langle \alpha, \beta : \rangle,$

where α represents the meridian around D^3 and β the loop around h^1 . In $\partial(K \cup h^1)$ represent the word $\beta^2 \alpha \beta^{-1} \alpha^{-1}$ by an embedded loop γ as in the figure. If we put D^3 back in $K \cup h^1$, γ homotops, and thus, by [8], isotops to the loop β . This means that if we attach a 2-handle h^2 along a tubular neighborhood of γ , we recover an embedding

$$f: D^3 \to D^5 \cong K \cup h^1 \cup_{\gamma} h^2$$

and $f \mid \partial D^3: S^2 \to S^4$ is a knot with group presented by (2).

In the general case, to K attach r 1-handles h_j^1 and in $\partial(K \cup \bigcup h_j^1)$ represent the words $\beta_j B_j^{-1}$ by loops γ_j . Attach 2-handles h_j^2 along neighborhoods of γ_j . If we put D^3 back in $K \cup \bigcup h_j^1$, the γ_j isotops to β_j because $B_j(1, \beta_r) = 1$, thus $\partial(D^5 \cup \bigcup h_j^1 \cup \bigcup h_j^2)$ is the standard sphere and $\partial(K \cup \bigcup h_j^1 \cup \bigcup h_j^2)$ is the complement of a knot with group presented by (1).

M. A. GUTIERREZ

§3. Homology of Groups

We want to extend proposition 1 to all knot groups with deficiency one:

THEOREM 2. Let Π be a finitely presented group satisfying (i), (ii') and (iii). If Π is its commutator subgroup, for $q \geq 2$

$$H_q(\Pi) = H_q(\tilde{\Pi}) = 0.$$

Proof. Again we begin with Sumners' example: the trivial knot $S^2 \subset S^4$ can be extended to $\Delta^3 \subset S^4$ where Δ is a disk and $\partial \Delta = S^2$. With the notation of th. 1, $\Delta \subset \partial(K \cup h^1)$ but the arc γ pierces Δ in two points with opposite intersection numbers (cf. figure).

Remove two small disks, neighborhoods of $\Delta \cap \gamma$ and attach a tube $S^2 \times D^1$ to the punched disk to obtain $F \approx (S^1 \times S^1)_0$ where M_0 is obtained from the closed manifold M by punching a hole to it. $F \subset \partial(K \cup h^1 \cup h^2)$ and thus it is a Seifert manifold (cf. [2]) of the knot constructed in [6].

At this point we recall the notation introduced in [2; §0]: let Y be obtained from S^4 by cutting along F, that is by removing the interior of a regular neighborhood of F in S^4 . Y is a compact manifold with boundary $F_0 \cup F_1$ where $F_t \approx F$

and $F_0 \cap F_1 = S^2$. The map $\nu_t: F \approx F_t \subset \partial Y \subset Y$ induces maps $\nu_t: \pi_1(F) \to \pi_1(Y)$. If both ν_t are monomorphic, F is called minimal.

In the present case it is not difficult to prove that $\pi_1(F) = \pi_1(Y) = Z$ and,

$$\nu_0(n) = n$$
 and $\nu_1(n) = 2n$ $(n \in \mathbb{Z})$.

By [5; th. 4.5.1], if II is presented by (2), \tilde{II} is the infinite free product with amalgamations

(3)
$$\tilde{\Pi} = \cdots *_Z Z *_Z Z *_Z \cdots$$

where the ν_t are the amalgamating maps.

Let Λ be the integral group ring of Z; it can be identified to $Z[t, t^{-1}]$ where t is a variable. As in [2; §2] from [5; th. 4.5.1] we find an exact Mayer-Vietoris sequence

(4)
$$\rightarrow H_q(\pi_1(F)) \otimes \Lambda \xrightarrow{d} H_q(\pi_1(Y)) \otimes \Lambda \rightarrow H_q(\tilde{\Pi}) \rightarrow H_{q-1}(\pi_1(F)) \otimes \Lambda \rightarrow \cdots$$

where $d(\alpha \otimes 1) = (\nu_0(\alpha) \otimes t) - (\nu_1(\alpha) \otimes 1)$, whenever the maps $\nu_t: \pi_1(F) \to \pi_1(Y)$ are monomorphisms. Clearly in the particular case (2), the amalgamations in (3) are monomorphic and from (4) we conclude $H_q(\tilde{\Pi}) = 0$ for $q \geq 2$.

From the Wang sequence

(5)
$$\rightarrow H_q(\tilde{\Pi}) \xrightarrow{t-1} H_q(\tilde{\Pi}) \rightarrow H_q(\Pi) \rightarrow H_{q-1}(\tilde{\Pi}) \rightarrow$$

we conclude $H_q(\Pi) = 0$ in the same range.

For the general case, we again rely on the construction of th. 1. The disk $\Delta \subset S^4$ can be embedded in $\partial(K \cup U h_j^1)$ and the arcs γ_j pierce it with zero intersection number.

We know

 $\pi_1(\partial(K \cup \bigcup h_j^{1}) = \langle \alpha, \beta_1, \cdots, \beta_r \rangle; \quad \text{write} \quad \gamma_j = b_j a^{\eta_1} \omega_1 \alpha^{\eta_2} \omega_2 \cdots \alpha^{\eta_s} \omega_s \alpha^{\eta_{s+1}}$

where $\Sigma \eta_i = 0$ and the ω_i are words in β_1, \dots, β_r only. Now we study $\gamma_j \cap \Delta$, a set of $\Sigma_i \mid \eta_i \mid$ points corresponding to the α^{η_i} . Thus, we can index the points by $x_1, \dots, x_{|\eta_i|}$ $(i = 1, \dots, s + 1)$ by the way they occur in γ_j . Suppose $\eta_1, \dots, \eta_i > 0$ and $\eta_{i+1} < 0$; we can add a tube T_1 to $\Delta - (N_1^{i+1} \cup N_{|\eta_i|}^i)$, where N_j^i is a small (open) disk in Δ around x_j^i , joining ∂N_1^{i+1} to $\partial N_{|\eta_i|}^i$ along the loop representing ω_i . This reduces the number of intersection points by two. Now add a tube T_2 joining $x_{|\eta_i|-1}^i$ to x_2^{i+1} along $\alpha^{-1}\omega_i\alpha$, and concentric to T_1 . By repeating this process, we eliminate $\mid \eta_{i+1} \mid$ intersection points. Suppose x_k^j (j < i)is the first point that is not eliminated. Add a tube T starting at x_k^j along $\alpha^{\eta}\omega_j\alpha^{\eta_{j+1}}\omega_{j+1}\cdots\omega_i\alpha^{\eta_{i+1}}$ where $\eta = \eta_j + \cdots + \eta_{i+1}$. If $\eta_{i+2} > 0$, we punch holes around the points $x_1^{i+2}, \dots, x_{\eta_{i+2}}^{i+2}$ to let T go through them to x_1^{i+3} ; if $\eta_{i+3} > 0$ we repeat the process until we find a σ with $\eta_{\sigma} < 0$ and end the tube T at x_1^{σ} with core

$$\alpha^{\eta}\omega_{j}\cdots\omega_{\sigma-1}\alpha^{\eta_{\sigma}}.$$

Next, we add a new tube T' joining $x_{k-1}{}^{i}$ to $x_{2}{}^{\sigma}$ and so on. In the process we leave holes around $x_{1}{}^{i+2}, \cdots, x_{n_{i+2}}{}^{i+2}, x_{1}{}^{i+3}, \cdots$, we now join $x_{n_{\sigma-1}}{}^{\sigma-1}$ to $x_{k'}{}^{i}$, where $x_{k'}{}^{j'}$ is the first point not yet removed. Since $\Sigma \eta_{\ell} = 0$ all points are joined by tubes and we obtain an orientable 3-manifold F, obtained from Δ by adding tubes, that is a Seifert manifold for the knot $S^2 \to \partial(K \cup \bigcup h_j{}^1 \cup \bigcup h_j{}^2)$. F has free fundamental group in the symbols b_1, \cdots, b_k (one for each added tube) and $\pi_1(\partial(K \cup \bigcup h_j{}^1) - F)$ is also free in the symbols $\beta_1, \cdots, \beta_r, C_1, \cdots, C_k$ where

$$\nu_0(b_\ell) = W_\ell$$
 and $\nu_1(b_\ell) = C_\ell$.

Here W_{ℓ} is a word in β_1, \dots, β_r and $C_1, \dots, C_{\ell-1}$. This shows that both maps are monomorphisms. Attaching the handles h_j^2 to $\partial(K \cup \bigcup h_j^1) - F$ along the γ_j eliminates the β_j and thus

The knot $S^2 \to \partial(K \cup U h_j^1 \cup U h_j^2)$ has a Seifert manifold F such that Fand $Y = (S^4 - F)$ have free fundamental group L of the same rank and the maps $\nu_t: L \to L$ are monomorphisms. In that case

$$\tilde{\Pi} = \cdots *_L L *_L L *_L \cdots$$

and by (4) and (5), theorem 2 follows at once.

§4. Further remarks

We can generalize theorems 1 and 2 in two directions:

I. A link is an embedding of m disjoint copies of S^n in S^{n+2} :

$$\ell:mS^n \to S^{n+2}$$

As usual we consider $\pi = \pi_1(S^{n+2} - \operatorname{Im}(\ell))$ and $H_1(\pi) = \mathbb{Z}^m$. If $n \ge 2$, $H_2(\pi) = 0$ and π has weight m. If π has deficiency m then

- a) There exists a link $mS^2 \rightarrow S^4$ with group π and,
- b) $H_q(\pi) = 0$ $(q \ge 2$. (The corresponding statement on the commutator is false.)

II. First of all, observe that if $\Pi = Z_3 \times_{\varphi} Z$ as described in §1, by the Wang sequence

$$\cdots \to H_q(\mathbb{Z}_3) \xrightarrow{\varphi_* - I} H_q(\mathbb{Z}_3) \to H_q(\Pi) \to H_{q-1}(\mathbb{Z}_3) \to \cdots$$

but $\varphi_* = I$, for q = 3, thus

$$H_3(\Pi) = \mathbf{Z}_3 \neq \mathbf{0}$$

thus Π cannot have deficiency one by th. 2.

Let $f: S^2 \to S^4$ be a knot and F a minimal (cf. [2; §0]) Seifert manifold. Suppose $\Pi = \pi_1(S^4 - f(S^2))$ and $\tilde{\Pi}$ is finite. With the techniques of [2] one can prove

$$H_3(\Pi) = H_3(\Pi)$$

which is obviously false for some groups satisfying (i), (ii) and (iii). If any 2-knot

has a minimal Seifert manifold this would show that the class of 2-knot groups is smaller than the class of 3-knot groups. Whether every 2-knot has such minimal Seifert manifolds, I do not know.

INSTITUTE FOR ADVANCED STUDY, PRINCETON, N. J.

References

- R. H. Fox, A quick trip through knot theory, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961), 120-67. Prentice Hall, Englewood Cliffs, N. J., 1962.
- [2] M. GUTIÉRREZ, An exact sequence calculation for the second homotopy of a knot I: Proc. Amer. Math. Soc. 32 (1972), 571-77, II, to appear.
- [3] M. A. KERVAIRE, On higher dimensional knots. Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse) 105–19, Princeton Univ. Press., Princeton, N. J., 1965.
- [4] W. MAGNUS, A. KARRASS AND D. SOLITAR, Combinatorial group theory: Presentations of groups in terms of generators and relations. Pure and Applied Mathematics Vol. XIII. Interscience Publishers (John Wiley & Sons, Inc.) New York-London-Sydney, 1966.
- [5] L. NEUWIRTH, Knot groups, Annals of Mathematics Studies 56, Princeton Univ. Press, Princeton, N. J., 1965.
- [6] D. W. SUMNERS, Homotopy torsion in codimension two knots, Proc. Amer. Math. Soc. 24(1970), 229-40.
- [7] R. G. SWAN, Minimal resolutions for finite groups, Topology 4(1965), 193-208.
- [8] C. T. C. WALL, Diffeomorphisms of 4-manifolds, J. London Math. Soc. 39(1964), 131-40.