INERTIA GROUPS OF HOMOTOPY PROJECTIVE SPACES

BY WILLIAM BROWDER*

Let M^m be a closed smooth oriented manifold, and let θ^m be the group of *h*-corbordism classes of homotopy *m*-spheres of [Kervaire-Milnor]. Let $I(M^m) \subset \theta^m$ be the set of $\Sigma^m \in \theta^m$ such that the connected sum $M \not\cong \Sigma$ is diffeomorphic to M by an orientation preserving diffeomorphism. Then I(M) is a subgroup of θ^m and if $bP_{m+1} \subset \theta^m$ is the subgroup of Σ which bound parallelizable manifolds, let $I_0(M) = I(M) \cap bP_{m+1}$.

In [Browder, A], we studied $I_0(M^m)$ for m = 4k - 1, in particular when M^m is a π -manifold. In this note we use these methods to study the case where m = 4k - 1 and M is a homotopy real projective space, proving the result quoted in [Lopez de Medrano, V7].

THEOREM Let M^m be a homotopy real projective space of dimension m = 4k - 1, k > 1. Then $I_0(M) = 0$.

We begin with a result of [Olum]:

LEMMA 1 For m odd, any orientation preserving homotopy equivalence $h: P^m \to P^m$ (real projective space) is homotopic to the identity.

Following [Browder, A.], define $Q^{4k} = (M \times [0, 1] \# W)/g$ where $\partial W = \Sigma \in I_0(M)$, W parallelizable, # denotes connected sum along the boundary $M \times 1$, $g: M \times 0 \to (M \times 1) \# \partial W$ an orientation preserving diffeomorphism, so that Q is the identification space of $M \times [0, 1] \# W$ by the diffeomorphism g on the two boundary components.

LEMMA 2 Q/W is a fibre bundle over S^1 with fibre M.

This is [Browder, A (2.1)].

From now on let M be homotopy equivalent to P^m , m odd. Combining lemmas 1 and 2 we get:

LEMMA 3 Q/W is homotopy equivalent to $M \times S^1$.

For a bundle over S^1 with fibre M is determined by an automorphism of M and by Lemma 1 this is homotopic to the identity, so the lemma follows.

LEMMA 4 There is a linear bundle ξ^k over $M \times S^1$ such that $c^*(\xi) = \nu_Q$, the stable normal bundle of $Q^{m+1} \subset S^{m+k+1}$, where $c: Q \to Q/W \cong M \times S^1$ is the collapsing map.

This follows easily since W is parallelizable.

LEMMA 5 ξ is a fibre homotopy equivalent to $\nu_{M \times S^1}$.

^{*} This research was partially supported by an NSF grant.

INERTIA GROUPS

Proof: Let $\hat{c}: T(\nu_Q) \to T(\xi)$ be the bundle map covering c. Then the composite $S^{m+1+k} \xrightarrow{\alpha} T(\nu_Q) \xrightarrow{c} T(\xi)$ is of degree 1 on the top homology, where α is the natural collapsing map. It then follows from [Atiyah] that ξ is the fibre homotopy equivalent to $\nu_{M \times S^1}$. (See also [Spivak] or [Browder, S I§4]).

LEMMA 6 Let $d: M^m \times S^1 \to S^{4k}$ (m = 4k - 1) be a map of degree 1. There is a linear bundle η over S^{4k} such that $[\xi] = [\nu_{M \times S^1}] + d^*[\eta]$ in $KO(M \times S^1)$.

Proof: Since $\xi \mid M \times \frac{1}{2} = \nu_M + \epsilon^1 = \nu_q \mid M \times \frac{1}{2}$, it follows that if $\gamma = (\xi - \nu_{M \times S^1}), \gamma \mid M \times \frac{1}{2}$ and $\gamma \mid (pt) \times S^1$ are trivial so that $\gamma = r^*(\gamma')$, where γ' is a linear bundle over $\Sigma M = M \times S^1/(M \times \frac{1}{2}) \smile (pt.) \times S^1$ and γ is fibre homotopy trivial. By [Fujii], $KO(\Sigma P^{m-1}) = Z_2$ and the generator has non-zero Stiefel-Whitney classes. Since γ' is fibre homotopy trivial it follows that $[\gamma' \mid \Sigma P^{m-1}] = 0$ so that $[\gamma'] = d'^*[\eta]$ for $[\eta] \in KO(S^{4k})$, where $d':\Sigma M \cong \Sigma P^m \to \Sigma P^m/P^{m-1} \cong S^{4k}$. Hence $[\xi] = [\nu_{M \times S^1}] + r^*d'^*[\eta] = [\nu_{M \times S^1}] + d^*[\eta]$, since d'r = d.

Recall from [Milnor-Kervaire] the following:

LEMMA 7. If η is a linear bundle over S^{4k} then $p_k(\eta)$ is divisible by $(2k - 1)! a_k$, where $a_k = 2$ for k odd, $a_k = 1$ for k even.

Now we have, since $P(\nu_{M \times S^1}) = 1$

$$P(Q)^{-1} = P(\nu_Q) = P(c^*\xi) = c^*P(\xi) = c^*P(\nu_{M \times S^1} + d^*\eta) = c^*(P(\nu_{M \times S^1})P(d^*\eta)) = c^*(P(d^*\eta)) = c^*d^*P(\eta),$$

so that $p_i(Q) = 0$ for i < k and

$$p_{k}[Q] = (c^{*}d^{*}p_{k}(\eta)^{-1})[Q] = p_{k}(-\eta)(d_{*}c_{*}[Q] = p_{k}(-\eta)[S^{4k}].$$

By Lemma 7, $(2k - 1)!a_k$ divides $p_k(-\eta)$, so that $(2k - 1)!a_k$ divides the Pontrjagin number $p_k[Q]$, while all other Pontrjagin numbers of Q are zero.

Now P^{4k-1} is a Spin-manifold since $w_1(P^{4k-1}) = w_2(P^{4k-1}) = 0$. Since w_1 , w_2 are homotopy invariants it follows that M^m and $M^m \times S^1$ are Spin-manifolds so that $w_1(\xi) = w_2(\xi) = 0$ by Lemma 5 so that $w_1(\nu_Q) = w_2(\nu_Q) = 0$ by Lemma 4 and Q is also a Spin-manifold.

Hence, from [Atiyah-Hirzebruch]:

$$\hat{A}[Q] = \frac{B_k}{2(2k)!} p_k[Q] = \frac{B_k}{2(2k)!} (2k - 1)! a_k y$$

is an integer, even for k odd (when $a_k = 2$) so that y is a multiple of denominator $(B_k/4k)$, where $p_k[Q] = (2k - 1)!a_ky$. From the verification of the Adams conjecture [Quillen] [Sullivan] [Mahowald] and [Friedlander], denominator $\left(\frac{B_k}{4k}\right) = d_k$ is the order of im $J \subset \pi_{4k}^{s}$, and $y = z d_k$.

WILLIAM BROWDER

From the Index Theorem of [Hirzebruch] it follows that

$$\begin{aligned} \sigma\left(Q\right) &= 2^{2k} (2^{2k-1} - 1) B_k p_k[Q] / (2k) \\ &= 2^{2k} (2^{2k-1}) B_k a_k (2k - 1) ! d_k z / (2k) ! \\ &= 2^{2k-1} (2^{2k-1} - 1) B_k d_k a_k z / k = z \sigma_k \end{aligned}$$

where $\sigma_k = 8$ (order bP_{4k}) from [Kervaire-Milnor, page 531].

From [Browder, A (2.6)] we get that $\sigma(W) = \sigma(Q) = z\sigma_k$, so that ∂W is *h*-corbordant to S^{4k-1} by [Kervaire-Milnor, (7.5)] and we conclude that $I_0(M) = 0$.

Remarks

1. M^m , the 2-fold covering of M is a homotopy sphere, and if m is odd, the 2-fold covering of $M \not\cong \Sigma$ is $\tilde{M} \not\cong \Sigma \not\cong \Sigma$. Therefore if $\Sigma \in I(M)$, then $2\Sigma \in I(\tilde{M}) = 0$, since the homotopy spheres form a group under connected sum. Hence all our efforts were really necessary only to check the element of order 2 in bP_{4k} .

2. Using the verification of the Adams conjecture alluded to above and utilizing the techniques of [Brumfiel], the main result of [Browder, A] may be made more precise: If M^{4k-1} is a π -manifold, then $I_0(M) = 0$.

PRINCETON UNIVERSITY

References

- [1] M. F. ATIYAH, Thom complexes, Proc. London Math. Soc. 11 (1961) 291-310.
- M. F. ATIYAH and F. HIRZEBRUCH, Riemann-Roch theorems for differentiable manifolds, Bull. Amer. Math. Soc. 65 (1959) 276-81.
- [3] W. BROWDER [A], On the action of θⁿ(∂π), from Differential and Combinatorial Topology, a Symposium in honor of Marston Morse, edited by S. S. Cairns, Princeton Univ. Press 1965, 23-36.
- [4] —— [S], Surgery on simply-connected manifolds, Ergebnisse der Mathematik Bd. 65, Springer-Verlag.
- [5] G. BRUMFIEL, On the homotopy groups of BPL and PL/O. Ann. of. Math. 88 (1968). 291– 311.
- [6] E. FRIEDLANDER, Fibrations in etale homotopy theory, Publications Mathématiques I.H.E.S. vol. 42 (1972).
- [7] M. FUJII, KO-groups of projective spaces, Osaka J. Math. 4 (1967), 141-49.
- [8] F. HIRZEBRUCH, Topological Methods in Algebraic Geometry, Springer-Verlag, New York, 1966.
- [9] M. KERVAIRE and J. MILNOR, Groups of homotopy spheres, Ann. of Math. 77 (1963), 504-37.
- [10] S. LÓPEZ DE MEDRANO, Involutions on manifolds, Ergebnisse der Mathematik, Bd. 59, Springer-Verlag.
- [11] M. MAHOWALD, On the order of image of J. Topology 6 (1967), 371-78, and a more recent paper (to appear).
- [12] J. MILNOR and M. KERVAIRE, Bernoulli numbers, homotopy groups and a theorem of Rohlin. Proc. Int. Congress of Math., Edinburgh, 1958.

- [13] P. OLUM, Mappings of manifolds and the notion of degree, Ann. of Math. 58 (1953), 458–80.
- [14] D. QUILLEN, The Adams conjecture, Topology 10 (1971), 67-80.
- [15] —, Some remarks on etale homotopy and a conjecture of Adams, Topology 7 (1968), 111-16.
- [16] M. SPIVAK, Spaces satisfying Poincaré duality, Topology 6 (1967), 77-101.
- [17] D. SULLIVAN, Geometric Topology, Part I, Localization, Periodicity and Galois Symmetry, mimeographed notes MIT, 1970.

1