
A CONNECTED COUNTABLE HAUSDORFF SPACE, Sa 
FOR EVERY COUNTABLE ORDINAL a 

BY LA WREN CE L. LARMORE 

We say that a topological space Xis Sa for some ordinal a if, given distinct 
points x, y E X, we can find open neighborhoods Uf1 ((3 < a) of x and Vf3 ((3 < a) 
of y such that (1) Uo n Vo = 0; and (2) for any o < -y < a, V-r c Ua and 
i\ C Va. The definition of Sa was originally given by Porter and Votaw [2]. 

In the present paper we constuct a countable connected locally connected 
topological space X which is Sa for every countable ordinal a. In [1], Jones and 
Stone pose the question of existence of a countable connected space which is 
Pa for every coW1table ordinal a. Since Sa implies P a+i, X answers that question 
affirmatively. 

The model spaces Ma and Na . For any ordinal a = A + n, where A is O or a 
limit ordinal and n is an integer, let e(a) = A + 2n, and let Ma be the set of all 
ordinals (3 < e (a), with the topology generated by the sets A-r = { 0 < (3 < e (-y)} 
and B-r = {e(-y) < (3 < e(a)} for all-y <a.Note that for any O < o < -y < a, 
B-y = eA-r c Ba (where e denotes complementation). Let Na be the quotient 
space obtained from Ma X { 0, 1} by identifying (O, 0) with (0, 1); this identified 
point we call "O." Let Na be partially ordered as follows: 

(i) If O < o < -y < a, (o, O) < (-y, O) and (o, 1) < (-y, 1). 
(ii) For any O < 1' ~ a, 0 < (-y, O) and O < (1', 1). 

Note that Ma and Na are both connected and locally connected, and that any 
connected subset of Na has a least element. 

In a certain sense, Na , though not even Hausdorff, is a model for the property 
Sa ; i.e., the two points (a, 0) and (a, 1) can be separated by appropriately 
nested sets. For each O < (3 < a, let Cf3 = B13 X {Ol, and let Df3 = Bf1 X {l}, 
neighborhoods of (a, 0) and (a, 1 ), respectively; then (1) Co n Do = 0; and 
(2) for any o < -y < a, C -r C Ca and D-r C Da . 

LE:mrA 1: For any ordinal a < n, let Xa be any countable (finite or infinite) set, 
and let aa, ba E X~ be specified. Then there exists a countable set S C Ila<n X., 
such that 

(i) For each finite set F of countable ordinals, the projection PF:S - ITaoXa 
is onto. 

(ii) For any a < Q and for any x, y E S, there exists a countable ordinal 
(3 ;?:: a such that { Pf3X, pi3y) = { ai3 , b13), where p13: S - X 13 is the projection. 

Proof: It suffices to consider only the case where each Xa is infinite; we shall 
make that assumption hereafter. Henceforth, for any (3 E G c H, G and H sets 
of ordinals less than 11, let Pa: ITarnXa - ITaEaXa and P/3:ITaEa - Xp 
denote the obvious projections. 
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For each positive integer n, let Qn be an infinite set of positive integers; let the 
Qn be chosen so that Q; and Qi are disjoint if i 7"' j, and such that every positive 
integer lies in one of the Qn . Also, for each ordered pair of positive integers 
(i, j), where i < j, let O;,i be any uncountable set of countably infinite ordinals; 
we insist that !J;,f and Op,q are disjoint if (i, j) 7"' (p, q). For each integer n ~ 1, 
we shall inductively, on a, define a function: 

such that: 

(1) For each {3 < a, the following diagram is commutative: 

where A = b < {3}. 

(2) ]'or each set F of exactly n distinct. ordinals less than or equal to a, 
the composition PF O <I>n,a:Qn ----'> ITJEFXJ is onto. 

(3)' Ifa E !J;,iforsome (i,j),theni E Qn=}Pa<I>n,a(i) = a,.andj E Qn =} 

Pa<I>n,a(j) = bp, 

We let <I>n,n-1:Qn - Ila:S:n-1 Xa be any onto function. For any O:::; k < n - 1, 
let <I>n,k = Pk+l O <I>n,n-I • Properties (1) and (2) are obviously satisfied for all 
a < n - 1, while (3) is fulfilled vacuously since £2;,i contains no finite ordinals. 

Suppose now that n < a < n, and <I>n,/l has been defined for all /3 < a, satisfy~ 
ing (1), (2), and (3) above. To define <I>,.,a, it is necessary and sufficient to 
specify Pa<I>n,a (k) for all k E Qn ; property (1) will then be satisfied automatically. 

If a E !J;,f and i E Qn, let Pa<I>n,a (i) = aa. If a E £2;,f and j E Q,., let 
Pa<I>n ,a (j) = b,, . Thus (3) is assured. 

Henceforth, let Qn' = Qn - { i, j} if a E ni,i for some (i, J); otherwise let 
Qn' = Qn. Let Ct be the set of all ordered pairs of the form (A, x) where A is a 
set of ordinals less than a with exactly n - I elements, and where x E Ilpu, Xw , 
where A' = A n f al, Let (A1, X1), (A2, X2), '·' be a specific denumeration of 
Ct. We shall inductively, on m, define Zm E Qn' for each integer m > I, such that: 

(5) Zm 7"' Zk for all k < m. 
For any m > I, suppose that Zk E Qn' has been chosen for all I < k < m, satisfy­
ing ( 4) and ( 5). It is of course only necessary that ( 4) be satisfied for {3 = f3m = 
max Am . Pick an ordinal o < a such that o (£ Am . This is always possible since a 
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has at least n predecessors. Let C = Am U { o}. Let 'Y = max C. We have a com­
mutative diagram: 

where all functions are onto. Note that P A,,,- 1y is in one-to-one correspondence 
with X..,, hence is infinite, for any y E II/JEAm Xf:J. We now choose Zm to be any 
element of Qn' n (PAm O <I>n,-y)-1P AmXm such that Zm ¥ Zk for any 1 < k < m. 
This is always possible since only finitely many possibilities have been eliminated. 
Once all Zm are given, we define Pa<Pn,a (zm) = PaXm for all m. If i E Q/, and if 
i ¥ Zm for any m, let Pa<I>n,a (i) be any element of Xa whatsoever. 

We need only check that (2) is satisfied. Suppose that F' is a set of ordinals 
less than or equal to a, and that F has exactly n elements. Let {3 = max F. If 
/3 < a, we are done, by the inductive hypothesis. If {3 = a, let x E Il..,oX..,. 
Then (F - /a}, x) = (Am, Xm) for some integer m? I; (PF 0 <I>n,a)(Zm) = x, 
,and we are done. 

For each n, let <I>n: Qn - II(:J<ll x(:J be the unique function such that 
p a+I O <I>n = <I>n ,a for all O! < n, and let Sn = <I>n ( Qn) C II(:J<D x(:J • Lets = u:=l Sn. 
If Fis any finite set of ordinals less than £1, PF (S) :::J PF (S,.) = Ilf:JEF Xf:J, 
wherenisthecardinalityofF.Hence (i)isfulfilled.Andif/3 E Qi,i ;pf:J(<I>(i)) = a13 

and P/3 ( <I> (j)) = b13 , where <I> = U :=1 <I>n , hence (ii) is fulfilled. This concludes 
the proof of Lemma 1. 

The Space X. Let X C Ila<n Na be any countable subset such that (1) for 
F any finite set of countable ordinals, the projection PF:X - rraEFNa is onto; 
and (2) for any x, y E X and any {3 < £1, there exists countable a > /3 such that 
Pa (x) = (a, 0) and Pa (y) = (a, 1 ). Existence of such a set is guaranteed by 
Lemma 1. 

We show that Xis Sa for every countable a. Let x, y E X. Without loss of 
generality, Pa (:r) = (a, 0) and Pa (y) = (a, 1 ). For every /3 < a, let U13 = Pa - 1C13 
and V13 = Pa -iDfJ . Conditions (1) and (2) in the first paragraph of this paper are 
then satisfied. 

Finally, from Lemma 2, below, it follows that X is connected and locally 
connected; the latter since each Na is locally connected. 

LEMMA 2: For each a < £1, let Ya be any connected subset of Na, such that Ya = Na 
for all but finitely many choices of a. Let y = X n Ila<D Ya. Then y is connected. 

Proof: For each a, let ma E Y,. be the least element. We shall prove a lemma: 

LEMMA 3: Let F be any finite set of countable ordinals, and let a E F. For each 
/3 E F, let XfJ E N/J be given, such that Xa = ma. Suppose that U C Y is open and 
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closed (in Y), and suppose that for all y E Y, y E U provided PfJY = XfJ for all 
/3 E F. Then, for ally E Y, y E U provided PfJY = XfJ for all /3 E F - {a}. 

Proof: We prove this lemma by induction on p,.y. Clearly, if p,.y is required to 
be m,. , there is no problem. Suppose then, for some a E N,. , the statement of the 
lemma holds for all y such that ma < p,.y < a. We then show that it holds if 
PaY = a. 

Case I: a odd. That is, {a} is open. Let b E Ya be the immediate predecessor 
of a. Every neighborhood of b must then contain a. Let W be an arbitrary neigh­
borhood of y. Pick open sets { v{J C YfJlfJ<fl such that, for some finite G, vii = N{J 
for all /3 EE (F U G), and such that y E IL<n VfJ c W. Picky' E Y such that 
p,.y' = band Pf!Y1 = Pf!Y for all /3 E (FU G) - {a}. By hypothesis, y' E U. Pick 
open sets { UfJ c YfJ}fJ<n such that, for some finite H, UfJ = NfJ for all 
{3 EE (FU GU H), and such that y' E IlfJ<fl UfJ c U. Now a E Ua. Picky" E Y 
such that p,.y" = a and p13y11 = Pf!Y1 for all fJ E (F U G U H) - {a} . Then 
y" E U n W. It follows that y E 7J = U. 

Case II: a even. That is, { a} is closed. Then every neighborhood of a contains a 
predecessor of a. Let W be an arbitrary neighborhood of y. Pick a finite set G and 
open sets {VfJ c YfJlfJ<nsuch that Vp = NfJforall,B Ef: G, andy E IlfJ<!l VfJ c W. 
Pick b E Na such that b < a and b E Va, and picky' E Y such that Pa.Y' = b 
and PiiY' = Pf!Y for all .B E (F U G) - {a}. By hypothesis, y' E U. On the other 
hand, y' E W. Thus y E 7J = U. This completes the proof of Lemma 3. 

Returning to the proof of Lemma 2, we suppose that Y is disconnected. Let U 
and Vbe non-empty disjoint open sets such that Y = U U V, Pick u E U. Pick 
open sets {Up C Yplp<n and fVfJ c YfJ}P<!l such that, for some finite set F, 
UfJ =; V13 = N fJ for all fJ EE F, and such that u E IIfJ<!l UfJ c U and 
v E Il 13<ii Vp C V. Pick w E Y such that ppw = mfJ for all /3 E F. Without loss of 
generality, w E U. Pick open sets {Wp c Yp)fJ<ll such that w E IlfJ<!l WfJ c U, 
and such that, for some finite set G, W13 = Np for all {3 EE G. Let 
F = (a1, a2, • • • an), For each O ~ i ~ n, we inductively prove the statement: 

(R,) For any y E Y, y E U provided (1) PfJY E WfJ for all /3 E G '- F, and 
(2) Pa;Y = ma; for all i < j < n. 

Ro is implied by the statement IlfJ<!l WfJ c U, while R; ⇒ R;+1 by Lemma 2, 
for all O ~ i < n. Let y E Y be any element where PfJY = PfJV for all {3 E F, 
and PfJY = PfJW for all/3 E G - F. A priori, y E IlfJ<!l v{J C V, "\Yhile Rn ⇒ y E u: 
contradiction. 
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