## A CONNECTED COUNTABLE HAUSDORFF SPACE, $S_{\alpha}$ FOR EVERY COUNTABLE ORDINAL $\alpha$

## BY LAWRENCE L. LARMORE

We say that a topological space X is  $S_{\alpha}$  for some ordinal  $\alpha$  if, given distinct points  $x, y \in X$ , we can find open neighborhoods  $U_{\beta}$  ( $\beta < \alpha$ ) of x and  $V_{\beta}$  ( $\beta < \alpha$ ) of y such that (1)  $U_0 \cap V_0 = \emptyset$ ; and (2) for any  $\delta < \gamma < \alpha$ ,  $\overline{U}_{\gamma} \subset U_{\delta}$  and  $\overline{V}_{\gamma} \subset V_{\delta}$ . The definition of  $S_{\alpha}$  was originally given by Porter and Votaw [2].

In the present paper we constuct a countable connected locally connected topological space X which is  $S_{\alpha}$  for every countable ordinal  $\alpha$ . In [1], Jones and Stone pose the question of existence of a countable connected space which is  $P_{\alpha}$  for every countable ordinal  $\alpha$ . Since  $S_{\alpha}$  implies  $P_{\alpha+1}$ , X answers that question affirmatively.

The model spaces  $\mathbf{M}_{\alpha}$  and  $\mathbf{N}_{\alpha}$ . For any ordinal  $\alpha = \lambda + n$ , where  $\lambda$  is 0 or a limit ordinal and n is an integer, let  $e(\alpha) = \lambda + 2n$ , and let  $M_{\alpha}$  be the set of all ordinals  $\beta \leq e(\alpha)$ , with the topology generated by the sets  $A_{\gamma} = \{0 \leq \beta < e(\gamma)\}$  and  $B_{\gamma} = \{e(\gamma) < \beta \leq e(\alpha)\}$  for all  $\gamma \leq \alpha$ . Note that for any  $0 \leq \delta < \gamma \leq \alpha$ ,  $\vec{B}_{\gamma} = CA_{\gamma} \subset B_{\delta}$  (where C denotes complementation). Let  $N_{\alpha}$  be the quotient space obtained from  $M_{\alpha} \times \{0, 1\}$  by identifying (0, 0) with (0, 1); this identified point we call "0." Let  $N_{\alpha}$  be partially ordered as follows:

- (i) If  $0 < \delta < \gamma \leq \alpha$ ,  $(\delta, 0) < (\gamma, 0)$  and  $(\delta, 1) < (\gamma, 1)$ .
- (ii) For any  $0 < \gamma \leq \alpha$ ,  $0 < (\gamma, 0)$  and  $0 < (\gamma, 1)$ .

Note that  $M_{\alpha}$  and  $N_{\alpha}$  are both connected and locally connected, and that any connected subset of  $N_{\alpha}$  has a least element.

In a certain sense,  $N_{\alpha}$ , though not even Hausdorff, is a model for the property  $S_{\alpha}$ ; *i.e.*, the two points  $(\alpha, 0)$  and  $(\alpha, 1)$  can be separated by appropriately nested sets. For each  $0 \leq \beta < \alpha$ , let  $C_{\beta} = B_{\beta} \times \{0\}$ , and let  $D_{\beta} = B_{\beta} \times \{1\}$ , neighborhoods of  $(\alpha, 0)$  and  $(\alpha, 1)$ , respectively; then  $(1) C_0 \cap D_0 = \emptyset$ ; and (2) for any  $\delta < \gamma \leq \alpha$ ,  $\tilde{C}_{\gamma} \subset C_{\delta}$  and  $\tilde{D}_{\gamma} \subset D_{\delta}$ .

LEMMA 1: For any ordinal  $\alpha < \Omega$ , let  $X_{\alpha}$  be any countable (finite or infinite) set, and let  $a_{\alpha}$ ,  $b_{\alpha} \in X_{\alpha}$  be specified. Then there exists a countable set  $S \subset \prod_{\alpha < \Omega} X_{\alpha}$ such that

(i) For each finite set F of countable ordinals, the projection  $P_F: S \to \prod_{\alpha \in F} X_{\alpha}$  is onto.

(ii) For any  $\alpha < \Omega$  and for any  $x, y \in S$ , there exists a countable ordinal  $\beta \ge \alpha$  such that  $\{p_{\beta}x, p_{\beta}y\} = \{a_{\beta}, b_{\beta}\}$ , where  $p_{\beta}: S \to X_{\beta}$  is the projection.

**Proof:** It suffices to consider only the case where each  $X_{\alpha}$  is infinite; we shall make that assumption hereafter. Henceforth, for any  $\beta \in G \subset H$ , G and H sets of ordinals less than  $\Omega$ , let  $P_{\sigma}: \prod_{\alpha \in H} X_{\alpha} \to \prod_{\alpha \in \sigma} X_{\alpha}$  and  $p_{\beta}: \prod_{\alpha \in \sigma} \to X_{\beta}$  denote the obvious projections.

For each positive integer n, let  $Q_n$  be an infinite set of positive integers; let the  $Q_n$  be chosen so that  $Q_i$  and  $Q_j$  are disjoint if  $i \neq j$ , and such that every positive integer lies in one of the  $Q_n$ . Also, for each ordered pair of positive integers (i, j), where i < j, let  $\Omega_{i,j}$  be any uncountable set of countably infinite ordinals; we insist that  $\Omega_{i,j}$  and  $\Omega_{p,q}$  are disjoint if  $(i, j) \neq (p, q)$ . For each integer  $n \geq 1$ , we shall inductively, on  $\alpha$ , define a function:

$$\Phi_{n,\alpha}:Q_n\to\prod_{\beta\leq\alpha}X_\beta$$

such that:

(1) For each  $\beta < \alpha$ , the following diagram is commutative:



where  $\Lambda = \{\gamma \leq \beta\}.$ 

(2) For each set F of exactly n distinct ordinals less than or equal to  $\alpha$ , the composition  $P_F \circ \Phi_{n,\alpha}: Q_n \to \prod_{J \in F} X_J$  is onto.

(3) If  $\alpha \in \Omega_{i,j}$  for some (i,j), then  $i \in Q_n \Rightarrow p_{\alpha} \Phi_{n,\alpha}(i) = a_{\alpha}$  and  $j \in Q_n \Rightarrow p_{\alpha} \Phi_{n,\alpha}(j) = b_{\beta}$ .

We let  $\Phi_{n,n-1}: Q_n \to \prod_{\alpha \leq n-1} X_{\alpha}$  be any onto function. For any  $0 \leq k < n-1$ , let  $\Phi_{n,k} = P_{k+1} \circ \Phi_{n,n-1}$ . Properties (1) and (2) are obviously satisfied for all  $\alpha \leq n-1$ , while (3) is fulfilled vacuously since  $\Omega_{i,j}$  contains no finite ordinals.

Suppose now that  $n \leq \alpha < \Omega$ , and  $\Phi_{n,\beta}$  has been defined for all  $\beta < \alpha$ , satisfying (1), (2), and (3) above. To define  $\Phi_{n,\alpha}$ , it is necessary and sufficient to specify  $p_{\alpha}\Phi_{n,\alpha}(k)$  for all  $k \in Q_n$ ; property (1) will then be satisfied automatically.

If  $\alpha \in \Omega_{i,j}$  and  $i \in Q_n$ , let  $p_{\alpha}\Phi_{n,\alpha}(i) = a_{\alpha}$ . If  $\alpha \in \Omega_{i,j}$  and  $j \in Q_n$ , let  $p_{\alpha}\Phi_{n,\alpha}(j) = b_{\alpha}$ . Thus (3) is assured.

Henceforth, let  $Q_n' = Q_n - \{i, j\}$  if  $\alpha \in \Omega_{i,j}$  for some (i, j); otherwise let  $Q_n' = Q_n$ . Let  $\alpha$  be the set of all ordered pairs of the form (A, x) where A is a set of ordinals less than  $\alpha$  with exactly n - 1 elements, and where  $x \in \prod_{\beta \in A'} X_{\beta'}$ , where  $A' = A \cap \{\alpha\}$ . Let  $(A_1, x_1), (A_2, x_2), \cdots$  be a specific denumeration of  $\alpha$ . We shall inductively, on m, define  $z_m \in Q_n'$  for each integer  $m \ge 1$ , such that:

(4)  $P_{A_m}\Phi_{n,\beta}z_m = P_{A_m}x_m$  for all max  $A_m \leq \beta < \alpha$ 

(5)  $z_m \neq z_k$  for all k < m.

For any  $m \ge 1$ , suppose that  $z_k \in Q_n'$  has been chosen for all  $1 \le k < m$ , satisfying (4) and (5). It is of course only necessary that (4) be satisfied for  $\beta = \beta_m = \max A_m$ . Pick an ordinal  $\delta < \alpha$  such that  $\delta \notin A_m$ . This is always possible since  $\alpha$ 

has at least n predecessors. Let  $C = A_m \bigcup {\delta}$ . Let  $\gamma = \max C$ . We have a commutative diagram:



where all functions are onto. Note that  $P_{A_m}^{-1}y$  is in one-to-one correspondence with  $X_{\gamma}$ , hence is infinite, for any  $y \in \prod_{\beta \in A_m} X_{\beta}$ . We now choose  $z_m$  to be any element of  $Q_n' \cap (P_{A_m} \circ \Phi_{n,\gamma})^{-1} P_{A_m} x_m$  such that  $z_m \neq z_k$  for any  $1 \leq k < m$ . This is always possible since only finitely many possibilities have been eliminated. Once all  $z_m$  are given, we define  $p_{\alpha} \Phi_{n,\alpha}(z_m) = p_{\alpha} x_m$  for all m. If  $i \in Q_n'$ , and if  $i \neq z_m$  for any m, let  $p_{\alpha} \Phi_{n,\alpha}(i)$  be any element of  $X_{\alpha}$  whatsoever.

We need only check that (2) is satisfied. Suppose that F is a set of ordinals less than or equal to  $\alpha$ , and that F has exactly n elements. Let  $\beta = \max F$ . If  $\beta < \alpha$ , we are done, by the inductive hypothesis. If  $\beta = \alpha$ , let  $x \in \prod_{\gamma \in F} X_{\gamma}$ . Then  $(F - \{\alpha\}, x) = (A_m, x_m)$  for some integer  $m \ge 1$ ;  $(P_F \circ \Phi_{n,\alpha})(z_m) = x$ , and we are done.

For each *n*, let  $\Phi_n: Q_n \to \prod_{\beta < \Omega} X_\beta$  be the unique function such that  $P_{\alpha+1} \circ \Phi_n = \Phi_{n,\alpha}$  for all  $\alpha < \Omega$ , and let  $S_n = \Phi_n(Q_n) \subset \prod_{\beta < \Omega} X_\beta$ . Let  $S = \bigcup_{n=1}^{\infty} S_n$ . If *F* is any finite set of ordinals less than  $\Omega$ ,  $P_F(S) \supset P_F(S_n) = \prod_{\beta \in F} X_\beta$ , where *n* is the cardinality of *F*. Hence (i) is fulfilled. And if  $\beta \in \Omega_{i,j}$ ;  $p_\beta(\Phi(i)) = a_\beta$  and  $p_\beta(\Phi(j)) = b_\beta$ , where  $\Phi = \bigcup_{n=1}^{\infty} \Phi_n$ , hence (ii) is fulfilled. This concludes the proof of Lemma 1.

The Space X. Let  $X \subset \prod_{\alpha < \Omega} N_{\alpha}$  be any countable subset such that (1) for *F* any finite set of countable ordinals, the projection  $P_F: X \to \prod_{\alpha \in F} N_{\alpha}$  is onto; and (2) for any  $x, y \in X$  and any  $\beta < \Omega$ , there exists countable  $\alpha \ge \beta$  such that  $p_{\alpha}(x) = (\alpha, 0)$  and  $p_{\alpha}(y) = (\alpha, 1)$ . Existence of such a set is guaranteed by Lemma 1.

We show that X is  $S_{\alpha}$  for every countable  $\alpha$ . Let  $x, y \in X$ . Without loss of generality,  $p_{\alpha}(x) = (\alpha, 0)$  and  $p_{\alpha}(y) = (\alpha, 1)$ . For every  $\beta < \alpha$ , let  $U_{\beta} = p_{\alpha}^{-1}C_{\beta}$  and  $V_{\beta} = p_{\alpha}^{-1}D_{\beta}$ . Conditions (1) and (2) in the first paragraph of this paper are then satisfied.

Finally, from Lemma 2, below, it follows that X is connected and locally connected; the latter since each  $N_{\alpha}$  is locally connected.

LEMMA 2: For each  $\alpha < \Omega$ , let  $Y_{\alpha}$  be any connected subset of  $N_{\alpha}$ , such that  $Y_{\alpha} = N_{\alpha}$ for all but finitely many choices of  $\alpha$ . Let  $Y = X \cap \prod_{\alpha < \Omega} Y_{\alpha}$ . Then Y is connected.

*Proof*: For each  $\alpha$ , let  $m_{\alpha} \in Y_{\alpha}$  be the least element. We shall prove a lemma:

**LEMMA 3:** Let F be any finite set of countable ordinals, and let  $\alpha \in F$ . For each  $\beta \in F$ , let  $x_{\beta} \in N_{\beta}$  be given, such that  $x_{\alpha} = m_{\alpha}$ . Suppose that  $U \subset Y$  is open and

closed (in Y), and suppose that for all  $y \in Y$ ,  $y \in U$  provided  $p_{\beta}y = x_{\beta}$  for all  $\beta \in F$ . Then, for all  $y \in Y$ ,  $y \in U$  provided  $p_{\beta}y = x_{\beta}$  for all  $\beta \in F - \{\alpha\}$ .

*Proof*: We prove this lemma by induction on  $p_{\alpha}y$ . Clearly, if  $p_{\alpha}y$  is required to be  $m_{\alpha}$ , there is no problem. Suppose then, for some  $a \in N_{\alpha}$ , the statement of the lemma holds for all y such that  $m_{\alpha} \leq p_{\alpha}y < a$ . We then show that it holds if  $p_{\alpha}y = a$ .

Case I: a odd. That is,  $\{a\}$  is open. Let  $b \in Y_{\alpha}$  be the immediate predecessor of a. Every neighborhood of b must then contain a. Let W be an arbitrary neighborhood of y. Pick open sets  $\{V_{\beta} \subset Y_{\beta}\}_{\beta < \Omega}$  such that, for some finite G,  $V_{\beta} = N_{\beta}$ for all  $\beta \notin (F \cup G)$ , and such that  $y \in \prod_{\beta < \Omega} V_{\beta} \subset W$ . Pick  $y' \in Y$  such that  $p_{\alpha}y' = b$  and  $p_{\beta}y' = p_{\beta}y$  for all  $\beta \in (F \cup G) - \{\alpha\}$ . By hypothesis,  $y' \in U$ . Pick open sets  $\{U_{\beta} \subset Y_{\beta}\}_{\beta < \Omega}$  such that, for some finite H,  $U_{\beta} = N_{\beta}$  for all  $\beta \notin (F \cup G \cup H)$ , and such that  $y' \in \prod_{\beta < \Omega} U_{\beta} \subset U$ . Now  $a \in U_{\alpha}$ . Pick  $y'' \in Y$ such that  $p_{\alpha}y'' = a$  and  $p_{\beta}y'' = p_{\beta}y'$  for all  $\beta \in (F \cup G \cup H) - \{\alpha\}$ . Then  $y'' \in U \cap W$ . It follows that  $y \in \overline{U} = U$ .

Case II: a even. That is,  $\{a\}$  is closed. Then every neighborhood of a contains a predecessor of a. Let W be an arbitrary neighborhood of y. Pick a finite set G and open sets  $\{V_{\beta} \subset Y_{\beta}\}_{\beta < \alpha}$  such that  $V_{\beta} = N_{\beta}$  for all  $\beta \in G$ , and  $y \in \prod_{\beta < \alpha} V_{\beta} \subset W$ . Pick  $b \in N_{\alpha}$  such that b < a and  $b \in V_{\alpha}$ , and pick  $y' \in Y$  such that  $p_{\alpha}y' = b$  and  $p_{\beta}y' = p_{\beta}y$  for all  $\beta \in (F \cup G) - \{\alpha\}$ . By hypothesis,  $y' \in U$ . On the other hand,  $y' \in W$ . Thus  $y \in \overline{U} = U$ . This completes the proof of Lemma 3.

Returning to the proof of Lemma 2, we suppose that Y is disconnected. Let U and V be non-empty disjoint open sets such that  $Y = U \cup V$ , Pick  $u \in U$ . Pick open sets  $\{U_{\beta} \subset Y_{\beta}\}_{\beta < \Omega}$  and  $\{V_{\beta} \subset Y_{\beta}\}_{\beta < \Omega}$  such that, for some finite set F,  $U_{\beta} = V_{\beta} = N_{\beta}$  for all  $\beta \notin F$ , and such that  $u \in \prod_{\beta < \Omega} U_{\beta} \subset U$  and  $v \in \prod_{\beta < \Omega} V_{\beta} \subset V$ . Pick  $w \in Y$  such that  $p_{\beta}w = m_{\beta}$  for all  $\beta \in F$ . Without loss of generality,  $w \in U$ . Pick open sets  $\{W_{\beta} \subset Y_{\beta}\}_{\beta < \Omega}$  such that  $w \in \prod_{\beta < \Omega} W_{\beta} \subset U$ , and such that, for some finite set G,  $W_{\beta} = N_{\beta}$  for all  $\beta \notin G$ . Let  $F = (\alpha_1, \alpha_2, \cdots \alpha_n)$ . For each  $0 \leq i \leq n$ , we inductively prove the statement:

(*R<sub>i</sub>*) For any  $y \in Y$ ,  $y \in U$  provided (1)  $p_{\beta}y \in W_{\beta}$  for all  $\beta \in G - F$ , and (2)  $p_{\alpha_i}y = m_{\alpha_i}$  for all  $i < j \leq n$ .

 $R_0$  is implied by the statement  $\prod_{\beta < \Omega} W_\beta \subset U$ , while  $R_i \Rightarrow R_{i+1}$  by Lemma 2, for all  $0 \leq i < n$ . Let  $y \in Y$  be any element where  $p_{\beta}y = p_{\beta}v$  for all  $\beta \in F$ , and  $p_{\beta}y = p_{\beta}w$  for all  $\beta \in G - F$ . A priori,  $y \in \prod_{\beta < \Omega} V_\beta \subset V$ , while  $R_n \Rightarrow y \in U$ : contradiction.

CALIFORNIA STATE COLLEGE, DOMÍNGUEZ HILLS

## References

[1] F. B. JONES and STONE, A. H. Countable locally connected Urysohn spaces, Coll. Math. **22**(1971), 239-44.

[2] J. R. PORTER and VOTAW, CH., S(a) spaces and regular Hausdorff extensions (to appear).