A CONNECTED COUNTABLE HAUSDORFF SPACE, S.
FOR EVERY COUNTABLE ORDINAL «

By LawrENCE L. LARMORE

We say that a topological space X is S, for some ordinal « if, given distinct
points z, y € X, we can find open neighborhoods Uz (8 < a) of zand Vs (8 < a)
of y such that (1) Uy N Vy = &;and (2) forany 6 < v < a, U, C Us and
V, € Vs. The definition of S, was originally given by Porter and Votaw [2].

In the present paper we constuct a countable connected locally connected
topological space X which is S, for every countable ordinal «. In [1], Jones and
Stone pose the question of existence of a countable connected space which is
P, for every countable ordinal «. Since S, implies P.41, X answers that question
affirmatively.

The model spaces M, and N, . For any ordinal @ = A + n, where A is 0 or a
limit ordinal and » is an integer, let e(a) = N 4+ 2n, and let M, be the set of all
ordinals 8 < e(a), with the topology generated by thesets 4, = {0 < 8 < e(v)}
and B, = {e(y) < 8 < e(a)} forall v < «. Note that forany 0 < é < v < ¢,
By = @A, C B; (where @ denotes complementation). Let N, be the quotient
space obtained from M, X {0, 1} by identifying (0, 0) with (0, 1); this identified
point we call “0.” Let N, be partially ordered as follows:

) Ho<o<vy<a 3,0) < (v,0)and (5,1) < (v, 1).
(i) Forany 0 < vy € 0,0 < (v,0)and 0 < (v, 1).

Note that M, and N, are both connected and locally connected, and that any
connected subset of N, has a least element.

In a certain sense, N, , though not even Hausdorff, is a model for the property
S. ; 1.e., the two points (e, 0) and (a, 1) can be separated by appropriately
nested sets. For each 0 < 8 < o, let C5 = Bz X {0}, and let Ds = Bs X {1},
neighborhoods of (a, 0) and (e, 1), respectively; then (1) Co N Dy = ¢J; and
(2)forany s < vy < a,C, < Csand D, C D;.

LEMya 1: For any ordinal o < Q, let X, be any couniable (finiie or infinite) set,
and let aq, be € X, be specified. Then there exists a countable set S C Ha<9 X.
such that

(i) For each finite set F of countable ordinals, the projection Pr: 8 —> [ [acr X
18 onto.

(i) For any o < @ and for any z, y € 8, there exists a countable ordinal
B8 2 « such that {psx, psy} = {ag, bg}, where ps: S — X is the projection.

Proof: 1t suffices to consider only the case where each X, is infinite; we shall
make that assumption hereafter. Henceforth, for any 8 € G < H, G and H sets
of ordinals less than Q, let Pg: [Jacs Xo — [Jace Xa and ps:]Jace — Xo
denote the obvious projections.
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For each positive integer n, let @, be an infinite set of positive integers; let the
Q. be chosen so that @: and Q; are disjoint if 7 5 7, and such that every positive
integer lies in one of the @, . Also, for each ordered pair of positive integers
(4,7), where 7 < 7, let Q,,; be any uncountable set of countably infinite ordinals;
we insist that Q. ; and @, , are disjoint if (7, 7) = (p, ¢). For each integer n > 1,
we shall inductively, on «, define a function:

‘bn,a:Qn - Hﬁ_<_a Xﬁ
such that:

(1) For each 8 < «, the following diagram is commutative:

II'VS'! X,

Pa

‘I’na

¢, 1 %,

where A = {y < 8}.

(2) For each set F of exactly n distinet. ordinals less than or equal to e,
the composition Pro®,,.:Q, — [[ser X, is onto.

(8) If & € Q;;forsome (7,7), then 7 € @, = p.®,o(?) = aeandj € Q, =
pn@n,d(j) = bﬂ' '

We let ®,,0-1:Qn — | [a<n X« be any onto function. For any0 € k <n — 1,
let @, = Pji10 P n-1. Properties (1) and (2) are obviously satisfied for all
a < n — 1, while (3) is fulfilled vacuously since Q;,; contains no finite ordinals.

Suppose now that n < a < Q, and &, 5 has been defined for all 8 < «, satisfy-
ing (1), (2), and (3) above. To define ®, ., it is necessary and sufficient to
specify pe®n,« (k) forallk € @, ;property (1) will then be satisfied automatically.

If «a€ Q5 and 7€ Q,, let pu®,a(i) = Gu. If « € Q,;; and j € Q,, let
Pe®Prne(j) = be. Thus (3) is assured.

Henceforth, let Q," = Q. — {¢, j} if @ € Q.,; for some (¢, 7); otherwise let
Q. = Q.. Let @ be the set of all ordered pairs of the form (4, z) where 4 is a
set of ordinals less than a with exactly n — 1 elements, and where z € [[gea: Xa/,
where A" = A N {a}. Let (41, #1), (42, 22), - - - be a specific denumeration of
@. We shall inductively, on m, define z,, € Q,’ for each integer m > 1, such that:

(4) P4, Pnpzm = Py, xmforallmax 4, <8 < a

(5) 2m #= 2 forall kb < m.
For any m > 1, suppose that z. € @, has been chosen for all 1 < k < m, satisfy-
ing (4) and (5). It is of course only necessary that (4) be satisfied for 8 = 8, =
max A,, . Pick an ordinal § < a such thaté ¢ A,,. This is always possible since a
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has at least n predecessors. Let C = A,, U {6}. Let ¥ = max C. We have a com-
mutative diagram:

1lscc Xs

Pcbﬁn,y
Pay,
———)
Qn Pa,po®n,y HﬁEAm Xg

where all functions are onto. Note that P, 'y is in one-to-one correspondence
with X, , hence is infinite, for any y € []se4,, Xs. We now choose z, to be any
element of Q,” N (Pa,, o@n,.,)—lPAmx,,, such that z,, # zx forany 1 < k < m.
This is always possible since only finitely many possibilities have been eliminated.
Once all 2, are given, we define po®, o (2n) = Putm for all m. If ¢ € Q,’, and if
1 # 2n for any m, let pe®n o (7) be any element of X, whatsoever.

We need only check that (2) is satisfied. Suppose that F' is a set of ordinals
less than or equal to @, and that F has exactly n elements. Let 8 = max F. If
B < a, we are done, by the inductive hypothesis. If 8 = o, let 2 € [[,er Xy .
Then (F — {a},2) = (An, z.) for some integer m 2> 1; (Pro®n,q) (2m) = z,
and we are done.

For each n, let ®,:Q, — ][]s<e Xs be the unique function such that
Pa+1 ° f_bn = fbn,afor alla < Q, andle‘c Sn = cI>" (Qn) c Hﬂ<9 Xﬁ . LetS = Uc::l S,,.
If F is any finite set of ordinals less than @, Pr(S) D Pr(S.) = [[ser X5,
where 7 is the cardinality of F. Hence (1) is fulfilled. Andif 8 € Q. ;;ps(®(Z)) = a3
and pg (®(j)) = bg, where ® = Jn=1®,, hence (ii) is fulfilled. This concludes
the proof of Lemma 1.

The Space X. Let X C Ha<rz N, be any countable subset such that (1) for
F any finite set of countable ordinals, the projection Pp: X — [Jaer Ne is onto;
and (2) for any z, ¥y € X and any 8 < @, there exists countable & > 8 such that
Pefz) = (a,0) and pa (y) = (e, 1). Existence of such a set is guaranteed by
Lemma 1.

We show that X is S, for every countable «. Let z, y € X. Without loss of
generality, p. (@) = (a,0) and pa(y) = (e, 1). For every 8 < a, let Us = p, 'Cg
and Vs = p, Ds . Conditions (1) and (2) in the first paragraph of this paper are
then satisfied.

Finally, from Lemma 2, below, it follows that X is connected and locally
connected ; the latter since each N, is locally connected.

LeEmMA 2: Foreach o < Q,let Y, be any connected subset of N o , suchthat Yo = Na
for all but finitely many choices of a. Let Y = X N [ ucq Yo . Then Y is connected.

Proof: For each «, let m, € Y, be the least element. We shall prove a lemma:

LeMmMA 3: Let F be any finite set of countable ordinals, and let « € F. For each
B € F, let xg € Ng be given, such that £, = m. . Suppose that U C Y 1is open and
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closed (in Y'), and suppose that for all y € Y, y € U provided psy = x5 for all
B € F.Then, forally € Y,y € U provided pgy = xgfor all B € F — {a}.

Proof: We prove this lemma by induction on p.y. Clearly, if p.y is required to
be m, , there is no problem. Suppose then, for some a € N, , the statement of the
lemma holds for all y such that m, < p.y < a. We then show that it holds if

Doy = a »

Case I: @ odd. That is, {a} is open. Let b € Y, be the immediate predecessor
of a. Every neighborhood of b must then contain a. Let W be an arbitrary neigh—
borhood of y. Pick open sets { Vg C Yg}a<q such that, for some ﬁnlte G Vs =
for all g ¢ (F U @), and such that y € [Js<e Vs € W. Pick ¢’ € Y such that
pay = band pgy’ = peyforallg € (FU @) — {a}. By hypothesis, y’ € U. Pick
open sets {Us C Ypslpgcn such that, for some finite H, Us = Nz for all
B¢ (FUGUH), andsuch thaty’ € Hﬂ<n Usc U.Nowa € U,.Picky” € Y
such that pey” = a and pgy” p,gy forallge (F UG UH) — {a}. Then

y" € UNW. It follows that y € U = U.

Case I1: a even. That is, {a} is closed. Then every neighborhood of a contains a
predecessor of a. Let W be an arbitrary neighborhood of y. Pick a finite set G' and
open sets { Vs C Ysls<qsuch that Vs = Ngforallg ¢ G,andy € [[s<a Vs C W.
Pick b € N, such that b < aand b € V,, and pick ¥y’ € Y such that p.y’ = b
and pgy’ = pey for all g € (F U G) — {a}. By hypothesis, 4” € U. On the other
hand, 5’ € W. Thusy € U = U. This completes the proof of Lemma 3.

Returning to the proof of Lemma 2, we suppose that Y is disconnected. Let U
and V be non-empty disjoint open sets such that ¥ = U U V, Pick u € U. Pick
open sets {Us C Yglacg and { Vs C Yglpcn such that, for some finite set F,
Us = Vg = Ng for all 8 ¢ F, and such that u € [Js<oUs < U and
v € []s<a Vs © V. Pickw € Y such that psw = mg for all € F. Without loss of
generality, w € U. Pick open sets {Ws C Y3}s<q such that w € [Jsca W < U,
and such that, for some finite set G, Wg = Ng for all 8 ¢ (G. Let
F = (1,0, - an). Foreach 0 < 7 < n, we inductively prove the statement:

(R:). Forany y € Y,y € U provided (1) pgy € Wgforall g € G — F, and
(2) Pajy = mq; foralls < j < n.

Ry is implied by the statement [ [s<o Ws C U, while R; = R.;1 by Lemma 2,
forall 0 € 7 < n. Let y € Y be any element where pgy = pgv for all 8 € F,
and pgy = pewforall@ € G — F. A priori,y € [Jsca Vs C V,whileR, =y € U:
contradiction.
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