A CONNECTED COUNTABLE HAUSDORFF SPACE, *Sa* **FOR EVERY COUNTABLE ORDINAL** *a*

BY LAWRENCE L. LARMORE

We say that a topological space X is S_{α} for some ordinal α if, given distinct points $x, y \in X$, we can find open neighborhoods U_{β} ($\beta < \alpha$) of *x* and V_{β} ($\beta < \alpha$) of y such that (1) $U_0 \cap V_0 = \emptyset$; and (2) for any $\delta < \gamma < \alpha$, $\overline{U}_\gamma \subset U_\delta$ and $\bar{V}_{\gamma} \subset V_{\delta}$. The definition of S_{α} was originally given by Porter and Votaw [2].

In the present paper we constuct a countable connected locally connected topological space X which is S_{α} for every countable ordinal α . In [1], Jones and Stone pose the question of existence of a countable connected space which is P_a for every countable ordinal α . Since S_a implies P_{a+1} , X answers that question affirmatively.

The model spaces M_{α} **and** N_{α} **.** For any ordinal $\alpha = \lambda + n$, where λ is 0 or a limit ordinal and *n* is an integer, let $e(\alpha) = \lambda + 2n$, and let M_{α} be the set of all ordinals $\beta \leq e(\alpha)$, with the topology generated by the sets $A_{\gamma} = \{0 \leq \beta \leq e(\gamma)\}\$ and $B_{\gamma} = \{e(\gamma) < \beta \leqslant e(\alpha)\}\)$ for all $\gamma \leqslant \alpha$. Note that for any $0 \leqslant \delta \leqslant \gamma \leqslant \alpha$, $B_{\gamma} = eA_{\gamma} \subset B_{\delta}$ (where e denotes complementation). Let N_{α} be the quotient space obtained from $M_a \times \{0, 1\}$ by identifying $(0, 0)$ with $(0, 1)$; this identified point we call " 0 ." Let N_{α} be partially ordered as follows:

- (i) If $0 < \delta < \gamma \leq \alpha$, $(\delta, 0) < (\gamma, 0)$ and $(\delta, 1) < (\gamma, 1)$.
- (ii) For any $0 < \gamma \leq \alpha$, $0 < (\gamma, 0)$ and $0 < (\gamma, 1)$.

Note that M_{α} and N_{α} are both connected and locally connected, and that any connected subset of N_{α} has a least element.

In a certain sense, N_{α} , though not even Hausdorff, is a model for the property S_{α} ; *i.e.*, the two points $(\alpha, 0)$ and $(\alpha, 1)$ can be separated by appropriately nested sets. For each $0 \le \beta \le \alpha$, let $C_{\beta} = B_{\beta} \times \{0\}$, and let $D_{\beta} = B_{\beta} \times \{1\}$, neighborhoods of $(\alpha, 0)$ and $(\alpha, 1)$, respectively; then (1) $C_0 \cap D_0 = \emptyset$; and (2) for any $\delta < \gamma \leq \alpha$, $\bar{C}_{\gamma} \subset C_{\delta}$ and $\bar{D}_{\gamma} \subset D_{\delta}$.

LEMMA 1: *For any ordinal* $\alpha < \Omega$, *let* X_{α} *be any countable (finite or infinite) set*, and let a_{α} , $b_{\alpha} \in X_{\alpha}$ be specified. Then there exists a countable set $S \subset \prod_{\alpha < \Omega} X_{\alpha}$ *such that*

(i) For each finite set F of countable ordinals, the projection $P_F: S \to \prod_{\alpha \in F} X_\alpha$ *is onto.*

(ii) For any $\alpha < \Omega$ and for any $x, y \in S$, there exists a countable ordinal $\beta \geq \alpha$ such that $\{p_\beta x, p_\beta y\} = \{a_\beta, b_\beta\}$, where $p_\beta : S \to X_\beta$ is the projection.

Proof: It suffices to consider only the case where each X_{α} is infinite; we shall make that assumption hereafter. Henceforth, for any $\beta \in G \subset H$, G and H sets of ordinals less than Ω , let $P_g: \prod_{\alpha \in H} X_{\alpha} \to \prod_{\alpha \in g} X_{\alpha}$ and $p_g: \prod_{\alpha \in g} \to X_g$ denote the obvious projections.

For each positive integer *n*, let Q_n be an infinite set of positive integers; let the Q_n be chosen so that Q_i and Q_j are disjoint if $i \neq j$, and such that every positive integer lies in one of the Q_n . Also, for each ordered pair of positive integers (i, j) , where $i < j$, let $\Omega_{i,j}$ be any *uncountable* set of countably infinite ordinals; we insist that $\Omega_{i,j}$ and $\Omega_{p,q}$ are disjoint if $(i, j) \neq (p, q)$. For each integer $n \geq 1$, we shall inductively, on α , define a function:

$$
\Phi_{n,\alpha}: Q_n \to \prod_{\beta \leq \alpha} X_{\beta}
$$

such that:

(1) For each $\beta < \alpha$, the following diagram is commutative:

where $\Lambda = {\gamma \leq \beta}.$

(2) For each set F of exactly *n* distinct ordinals less than or equal to α , the composition $P_{\mathbf{F}} \circ \Phi_{n,\alpha}: Q_n \to \prod_{J \in \mathbf{F}} X_J$ is onto.

(3) If $\alpha \in \Omega_{i,j}$ for some (i,j) , then $i \in Q_n \Rightarrow p_{\alpha} \Phi_{n,\alpha}(i) = a_{\alpha}$ and $j \in Q_n \Rightarrow$ $p_{\alpha} \Phi_{n,\alpha}(j) = b_{\beta}$.

We let $\Phi_{n,n-1}:Q_n \to \prod_{\alpha \leq n-1} X_\alpha$ be any onto function. For any $0 \leq k \leq n-1$, let $\Phi_{n,k} = P_{k+1} \circ \Phi_{n,n-1}$. Properties (1) and (2) are obviously satisfied for all $\alpha \leq n-1$, while (3) is fulfilled vacuously since $\Omega_{i,j}$ contains no finite ordinals.

Suppose now that $n \le \alpha \le \Omega$, and $\Phi_{n,\beta}$ has been defined for all $\beta \le \alpha$, satisfying (1), (2), and (3) above. To define $\Phi_{n,\alpha}$, it is necessary and sufficient to specify $p_{\alpha} \Phi_{n,\alpha}(k)$ for all $k \in Q_n$; property (1) will then be satisfied automatically.

If $\alpha \in \Omega_{i,j}$ and $i \in Q_n$, let $p_{\alpha} \Phi_{n,\alpha}(i) = a_{\alpha}$. If $\alpha \in \Omega_{i,j}$ and $j \in Q_n$, let $p_{\alpha} \Phi_{n,\alpha}(j) = b_{\alpha}$. Thus (3) is assured.

Henceforth, let $Q_n' = Q_n - \{i, j\}$ if $\alpha \in \Omega_{i,j}$ for some (i, j) ; otherwise let $Q_n' = Q_n$. Let α be the set of all ordered pairs of the form (A, x) where A is a set of ordinals less than α with exactly $n-1$ elements, and where $x \in \prod_{\beta \in A'} X_{\beta'}$, where $A' = A \bigcap {\alpha}$. Let $(A_1, x_1), (A_2, x_2), \cdots$ be a specific denumeration of G. We shall inductively, on *m*, define $z_m \in Q_n'$ for each integer $m \geq 1$, such that:

(4) $P_{A_m}\Phi_{n,\beta}z_m = P_{A_m}x_m$ for all max $A_m \leq \beta < \alpha$

(5) $z_m \neq z_k$ for all $k < m$.

For any $m \geq 1$, suppose that $z_k \in Q_n'$ has been chosen for all $1 \leq k \leq m$, satisfying (4) and (5). It is of course only necessary that (4) be satisfied for $\beta = \beta_m =$ max A_m . Pick an ordinal $\delta < \alpha$ such that $\delta \notin A_m$. This is always possible since α

has at least *n* predecessors. Let $C = A_m \cup \{\delta\}$. Let $\gamma = \max C$. We have a commutative diagram:

where all functions are onto. Note that $P_{A_m}^{\quad -1}y$ is in one-to-one correspondence with X_{γ} , hence is infinite, for any $y \in \prod_{\beta \in A_m} X_{\beta}$. We now choose z_m to be any element of $Q_n' \cap (P_{A_m} \circ \Phi_{n,\gamma})^{-1}P_{A_m}x_m$ such that $z_m \neq z_k$ for any $1 \leq k \leq m$. This is always possible since only finitely many possibilities have been eliminated. Once all z_m are given, we define $p_\alpha \Phi_{n,\alpha}(z_m) = p_\alpha x_m$ for all m. If $i \in Q_n'$, and if $i \neq z_m$ for any *m*, let $p_a \Phi_{n,a}(i)$ be any element of X_a whatsoever.

We need only check that (2) is satisfied. Suppose that F is a set of ordinals less than or equal to α , and that F has exactly n elements. Let $\beta = \max F$. If $\beta < \alpha$, we are done, by the inductive hypothesis. If $\beta = \alpha$, let $x \in \prod_{\gamma \in F} X_{\gamma}$. Then $(F - {\alpha}, x) = (A_m, x_m)$ for some integer $m \geq 1$; $(P_F \circ \Phi_{n,\alpha})(z_m) = x$, ,and we are done.

For each *n*, let $\Phi_n: Q_n \to \prod_{\beta<\Omega} X_\beta$ be the unique function such that $P_{\alpha+1} \circ \Phi_n = \Phi_{n,\alpha}$ for all $\alpha < \Omega$, and let $S_n = \Phi_n(Q_n) \subset \prod_{\beta < \Omega} X_\beta$. Let $S = \bigcup_{n=1}^{\infty} S_n$. If F is any finite set of ordinals less than Ω , $P_F(S) \supset P_F(S_n) = \prod_{\beta \in F} X_{\beta}$, where *n* is the cardinality of *F*. Hence (i) is fulfilled. And if $\beta \in \Omega_{i,j}$; $p_\beta(\Phi(i)) = a_\beta$ and $p_{\beta}(\Phi(j)) = b_{\beta}$, where $\Phi = \bigcup_{n=1}^{\infty} \Phi_n$, hence (ii) is fulfilled. This concludes the proof of Lemma 1.

The Space X. Let $X \subset \prod_{\alpha < \alpha} N_{\alpha}$ be any countable subset such that (1) for F any finite set of countable ordinals, the projection $P_F: X \to \prod_{\alpha \in F} N_\alpha$ is onto; and (2) for any $x, y \in X$ and any $\beta < \Omega$, there exists countable $\alpha \geq \beta$ such that $p_{\alpha}(x) = (\alpha, 0)$ and $p_{\alpha}(y) = (\alpha, 1)$. Existence of such a set is guaranteed by Lemma 1.

We show that X is S_{α} for every countable α . Let $x, y \in X$. Without loss of generality, $p_{\alpha}(x) = (\alpha, 0)$ and $p_{\alpha}(y) = (\alpha, 1)$. For every $\beta < \alpha$, let $U_{\beta} = p_{\alpha}^{-1}C_{\beta}$ and $V_{\beta} = p_{\alpha}^{-1}D_{\beta}$. Conditions (1) and (2) in the first paragraph of this paper are then satisfied.

Finally, from Lemma 2, below, it follows that *X* is connected and locally connected; the latter since each N_{α} is locally connected.

LEMMA 2: For each $\alpha < \Omega$, let Y_{α} be any connected subset of N_{α} , such that $Y_{\alpha} = N_{\alpha}$ *for all but finitely many choices of* α *. Let* $Y = X \cap \prod_{\alpha < \alpha} Y_{\alpha}$. Then Y is connected.

Proof: For each α , let $m_{\alpha} \in Y_{\alpha}$ be the least element. We shall prove a lemma:

LEMMA 3: Let F be any finite set of countable ordinals, and let $\alpha \in F$. For each $\beta \in F$, let $x_{\beta} \in N_{\beta}$ be given, such that $x_{\alpha} = m_{\alpha}$. Suppose that $U \subset Y$ is open and

closed (in Y), and suppose that for all $y \in Y$ *,* $y \in U$ *provided* $p_{\beta}y = x_{\beta}$ *for all* $\beta \in F$. Then, for all $y \in Y$, $y \in U$ provided $p_{\beta}y = x_{\beta}$ for all $\beta \in F - {\{\alpha\}}$.

Proof: We prove this lemma by induction on $p_{\alpha}y$. Clearly, if $p_{\alpha}y$ is required to be m_{α} , there is no problem. Suppose then, for some $a \in N_{\alpha}$, the statement of the lemma holds for all *y* such that $m_a \leqslant p_a y \leqslant a$. We then show that it holds if $p_{\alpha}y = a$.

Case I: *a* odd. That is, $\{a\}$ is open. Let $b \in Y_a$ be the immediate predecessor of *a.* Every neighborhood of b must then contain *a.* Let W be an arbitrary neighborhood of y. Pick open sets ${V_{\beta} \subset Y_{\beta}}_{\beta<\Omega}$ such that, for some finite $G, V_{\beta}=N_{\beta}$ for all $\beta \notin (F \cup G)$, and such that $y \in \prod_{\beta<\Omega} V_{\beta} \subset W$. Pick $y' \in Y$ such that $p_{\alpha} y' = b$ and $p_{\beta} y' = p_{\beta} y$ for all $\beta \in (F \cup \widehat{G}) - {\alpha}$. By hypothesis, $y' \in U$. Pick open sets $\{U_\beta \subset Y_\beta\}_{\beta<\Omega}$ such that, for some finite H, $U_\beta = N_\beta$ for all $\beta \in (F \cup G \cup H)$, and such that $y' \in \prod_{\beta<\mathfrak{D}} U_{\beta} \subset U$. Now $a \in U_{\alpha}$. Pick $y'' \in Y$ such that $p_{\alpha}y'' = a$ and $p_{\beta}y'' = p_{\beta}y'$ for all $\beta \in (F \cup G \cup H) - {\alpha}$. Then $y'' \in U \cap W$. It follows that $y \in \overline{U} = U$.

Case II: a even. That is, $\{a\}$ is closed. Then every neighborhood of a contains a predecessor of a. Let W be an arbitrary neighborhood of y . Pick a finite set G and open sets $\{V_{\beta} \subset Y_{\beta}\}_{{\beta\leq 0}}$ such that $V_{\beta} = N_{\beta}$ for all $\beta \notin G$, and $y \in \prod_{{\beta} \leq 0} V_{\beta} \subset W$. Pick $b \in N_a$ such that $b < a$ and $b \in V_a$, and pick $y' \in Y$ such that $p_a y' = b$ and $p_{\beta}y' = p_{\beta}y$ for all $\beta \in (F \cup G) - {\alpha}$. By hypothesis, $y' \in U$. On the other hand, $y' \in W$. Thus $y \in \overline{U} = U$. This completes the proof of Lemma 3.

Returning to the proof of Lemma 2, we suppose that Y is disconnected. Let U and V be non-empty disjoint open sets such that $Y = U \cup V$, Pick $u \in U$. Pick open sets $\{U_\beta \subset Y_\beta\}_{\beta \leq \Omega}$ and $\{V_\beta \subset Y_\beta\}_{\beta \leq \Omega}$ such that, for some finite set F, U_{β} = V_{β} = N_{β} for all $\beta \notin F$, and such that $u \in \prod_{\beta < \Omega} U_{\beta} \subset U$ and $v \in \prod_{\beta<\Omega} V_{\beta} \subset V$. Pick $w \in Y$ such that $p_{\beta}w = m_{\beta}$ for all $\beta \in F$. Without loss of generality, $w \in U$. Pick open sets $\{W_{\beta} \subset Y_{\beta}\}_{{\beta} < \Omega}$ such that $w \in \prod_{{\beta} < \Omega} W_{\beta} \subset U$, and such that, for some finite set G, $W_{\beta} = N_{\beta}$ for all $\beta \notin G$. Let $F = (\alpha_1, \alpha_2, \cdots, \alpha_n)$. For each $0 \leq i \leq n$, we inductively prove the statement:

(R_i) For any $y \in Y$, $y \in U$ provided (1) $p_{\beta}y \in W_{\beta}$ for all $\beta \in G - F$, and (2) $p_{\alpha_i}y = m_{\alpha_i}$ for all $i < j \leq n$.

*R*₀ is implied by the statement $\prod_{\beta\leq 0}W_{\beta}\subset U$, while $R_i \Rightarrow R_{i+1}$ by Lemma 2, for all $0 \leq i \leq n$. Let $y \in Y$ be any element where $p_{\beta}y = p_{\beta}y$ for all $\beta \in F$, and $p_{\beta}y = p_{\beta}w$ for all $\beta \in G - F$. A priori, $y \in \prod_{\beta < \Omega} V_{\beta} \subset V$, while $R_n \Rightarrow y \in U$: contradiction.

CALIFORNIA STATE COLLEGE, DoMiNGuEz HILLS

REFERENCES

[1) F. **B.** _JONES and STONE, A. H. *Countable locally connected Urysohn spaces,* Coll. Math. • **22(1971),** 239'-44.

[2] $J. R. PORTER and VOTAW, CH., $S(\alpha)$ spaces and regular Hausdorff extensions (to appear).$