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0. Introduction 

In this paper we extend a result of H. Rossi on the projective embedding of a 
neighborhood of a hypersurface with weakly positive normal bundle. We will 
prove the theorem with parameters. 

Definitions. Our analytic spaces will be ringed spaces as in [5]. Let Y be a 
compact analytic space, with L - Ya line bundle; Lis weakly positive if there 
is a relatively compact 1-pseudoconcave neighborhood of the zero-section of L. 
For X an analytic space, Y c X a compact subspace, let ff be the ideal sheaf of 
Yin X, and let E be the associated line bundle ( where if 8 is the sheaf of germs 
of sections of E, then 8 = g- 1) . Let N = E I Y be the normal bundle of Y in X; 
then Y is of algebraic codimension 1 in X if ;J7, = (d/§ 2 )- 1. 

For X, D analytic spaces, we say f:X - D is an analytic family if for each 
point x E X there is a neighborhood U of x and charts g: U - cm X C" and 
g' :f ( U) - en such that 

f(U) 

is commutative. Let dih,,(X) be the homological dimension of X at x, as defined 
in [I], p. 197. 

MAIN THEOREM. Let f:X - D be an analytic family, with Y c X a subfamily. 
Assume that Xis irreducible and paracompact, that D is a manifold, and that, for 
each d E D, the fallowing hold: 

(1) Xa is irreducible of pure dimension k > 2; 
( 2) Ya is compact and of algebraic codimension l in X d ; 

( 3) the normal bundle Na of Ya in X a is weakly positive; 
(4) dihy(X) - 2 dim (D) > 2, where dihy(X) = min{dihx(X) :x E Y}. 

Then there exists a neighborhood W of Y in X, an analytic family fv: V - D 
with each fiber a projective variety of pure dimension k, and a fiber-preserving 
injection g: W - V such that g( Y) is the family of hyperplane sections of V. 
(In other words, V - g(Y) is a family of affine varieties). 

The theorem for D a point is Theorem 3, p. 250 of [6]; we follow the idea of 
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the proof given there. The two key theorems needed for the generalization are 
the following, the first proved by Siu in [8], the second proved by Rossi in [7]. 

THEOREM 1. Let f: X --t D be a l-pseudoconcave family with exhaustion function <p 

and concavity bounds r*, r'/f . Suppose D is a complex manifold, and let S be a 
1r-flat coherent analytic sheaf on X; then for r E (r*, r'/f), the direct image sheaves 
Rif*(s/X) arecoherentatd E Dfori < min/dih,,(s):x E xd n<p-1(r)} - 2 
dim (D) - 1. 

See [8] for definitions and notations. This theorem extends finiteness of co­
homology results found in [1]. 

THEOREM 2. Let X be an analytic space such that 0(X) separates points of X. 
Let <p:X --t M be a holomorphic map of X into a complex manifold M. Let Ube 
an open set in M such that all holomorphic functions on U extend to M. Suppose V 
is a closed sub-variety of 'P -I ( U) such that 'P: V --t U is light, proper, and surjective. 
Then there is a closed subvariety V of X such that V n ({J -le U) = V. (Theorem 
2.7, p. 568 of [7].) 

Note: 'P is light if <p -i ( m) is a finite set of points for each m E M; 'P is proper 
if 'P - 1(K) is compact whenever K c Mis compact. 

Our assumption ( 4) is the only assumption which must be added to extend 
the result on one fiber; it is necessary for the application of theorem 1, as is the 
hypothesis that D is a manifold. A weakening of these hypotheses for theorem 1 
would produce the corresponding extension of the main theorem of this paper. 

In section 1 we will construct an injection into a family of projective spaces 
over small open sets in D, using Theorem 1; in section 2 we will show the image 
can be extended to a family of projective varieties, using theorem 2. Finally, we 
show in section 3 that all the local families fit together to form a family of vari­
eties over all of D. 

I would like to thank H. Rossi for providing many of the ideas in this paper, 
and for helping me with my initial attempts. 

I. Construction of an embedding 

PROPOSITION 1. Let f:X --t D be an analytic family, with subfamily f: Y --t D 
satisfying the assumptions of the main theorem. Assume further that 

(5) f:X --t D is a l-pseudoconcave map, with exhaustion junction 'P and 
concavity bound ( r * , r '/f) ; 

(6) there is an r0 > r* such that Y C <p-1(r0 , oo ]. 
Then for each d E D there is a neighborhood B of d, a neighborhood W of Y / B in 
X / B, and a fiber-preserving injection g: W --t pm X B such that g( Y / B) is con­
tained in H X B, where His the hyperplane at oo of Pm. 

Remark. After proving the proposition we will show that hypotheses (5) and 
( 6) follow from the others. 
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• Proof. Restrict X to some smaller neighborhood of Y such that dihxd (X) 
dih'yiX) for all d ED, where dihxiX) = min {dih,,(X):x E Xa}. 

Let E1 be the ideal sheaf of Yin X, let Ebe the associated line bundle, and let 
8'be the sheaf of germs of sections of E; then 8 = ,r-1_ As N = EI Y, we have 
;Ji = 8/Ef ·8. Tensor the exact sequence 

0-+i-+0-+0/i-+0 

by the locally free sheaf 8"; let Q' = 8' ® 0/,12 ""':rr' EB :rr•-1. Then we can write 
th.e resulting sequence as 

h o _, 8'- 2 ----+ 8' _, Q' -+ o, 
from which we get the long exact sequence of direct image sheaves 

0 _, R0f*(8'- 2 ) ~ R 0f *(8') -+ R 0h(Q') -+ 

( *) 

The sheaf :rr/ of germs of sections of Na" is supported on the compact set Ya; 
thus, by Satz 2, p. 343 of [3], there exists an integer s1 such that for all s 2: s1, 
H1( Ya , :na') = 0 and there is a canonical embedding of Ya into P(H 0 ( Ya , :rr/) *). 
For s > 81, we have H1( Yd, Qa") = 0; by the results of [4], p. 15-02 to 15-04, 
we can conclude that R1f *( Q') = 0 in a neighborhood of d, and that the map 

(**) R0f *(Q')a © (v0a/~a) -> H 0(Ya, Qa') 

is surj ective, where ~a is the ideal sheaf of { d} in D. The first result truncates 
the sequence (*) . 
. Using hypotheses ( 4), ( 5), and ( 6), we can apply theorem 1 to show that 

R 1j*(8 8
) and R 0J *(8') are coherent for alls (but for X smaller.) Hence the stalk 

R1j *( 88) d is a finitely generated module over v0a . For t > s1, consider the in­
creasing sequence (K2J} of submodules of R1f *(8i)a defined by 

K2; c= Kernel {h* o • • • o h*:R 1f *(8i)a-+ R1h(8t+ 21)a}; 

as v0d is Noetherian, the sequence becomes stationary for j greater than somejo. 
Hence for s > t + 2j0 , we have R1*(8')a ~ R:f*(8'+ 2)a. Thus for s large we 
can combine(*) and(**) to get 

(***) R 0f*(8")a---"> R 0f*(Q')a -+H 0(Ya, :na') EB H 0(Ya, 'JI/- 1), 

where both maps aresurjective. 
Let L = R0j *(8')a ® (v0a/~a) and let L * be its dual space; L * is isomorphic 

to cm+r for some m. For a neighborhood B of d, we get a canonical map 

g;X J B-+ pm X B, 

where g(x) is the linear functional defined by evaluation at x. We have a ca­
nonical section h' of 8'; we will take the dual of h' as the first coordinate of L *. 

i 

LEMMA. The map g is non-singular in a neighborhood of Ya . 



FAMILIES OF HYPERSURFACES 29 

Proof. As in [6], Theorem 3, we have guaranteed by (***) that we can extend 
the elements in H 0(Yd, 'J'ld') $ H 0(Yd, 'J'l/- 1) to give a map which is non­
singular at each point of Yd , hence in a ne1ghborhood of Yd . 

If we define H the hyperplane at CX) tb be the points where the first hofuo~ 
geneous coordinate vanishes, then g- 1(H) = Y, as h'(x) ~ 0 only-on-Y. This 
conclu~es the proof. 

COROLLARY. Assumptions (5) and (6) follow from the other assumptions. 

Proof. We can apply Theorem 3 of [6] to the normal bundle N~ 4 Yd to ob­
tain a neighborhood Ld of Yd in Nd and a proper injection 

F: (Ld - YS-ck ·- tJi.(o, R), 

for tJi.(0, R) the polydisk of radius R centered at.0. Let q/.= ~z~z. on C"; then 
'fJ o F is a strictly plurisubharmonic function on Ld - Yd . By Satz 6, p. 350 of 
[3], we can extend 'fJ o F to a strictly plurisubharmonic functiop. '{Jo on a neighbor­
hood·£ of Ld - Ya in E. Let r*, r111 be real-numbers such that kR2 < r* <r111 <-ex,-) 

then for a sufficiently small neighborhood B of d, the set 1\B) n { r*-< 'fJo < r111} 
has compact closure in L. Extend '{Jo to· b~ defined on a neighborhood ( again 
called L) of Y I Bin E I B, with '{Jo ~ r111 on the extended part. Shnnk B so that 
the set 

• a {x E L:<po(x) > ~*} nr1(B) is.contained i~ {.x E i:'fJo(x) = r*}. 

Chooser such that r* < r < r111, and let U = {x E L:'fJo(x) > r}. Choose·a 
relatively compact set B' CB and a neighborhood W of-Yin X.--For r' E R 
sufficiently large, we have 

r':h(aW nr\B')) n U = fZf. 

Let W,; = {x E WIB':r'-h(x) EU}. Thenf:W, -B'is 1-pseudoconcave,­
with exhaustion function '{Joo (r' ·h) and concavity bounds (r, r111), 

2. Extension to a subvariety 

PROPOSITION 2. Let f, X, Y, D be as in the main theorem; and assume we have 
the map g:X - pm X D constructed in Proposition 1 (for a restricted family). 
Then ford E D there is a·neighborhood B of d, a neighborhood u· of Y I B, and a 
subvariety V of pm X B such that g( U) c V and Vd; is of pure dimension kfor 
each d' E B. 

Proof. Let g(X) = W; consider wd - g(Yd) to be in cm. By theorem 6, 
p. 229 of [5], there is a-closed subvariety V d' of cm such that, for R large enough, 

vd' n (Cm - tJi.(O, R)) = (Wd - g(Y d)) n (C,;, - tJi.(0, R)). 

If we.attach g(Yd), we get a projective variety Vd of pure dimension k. 
Let F be an ( m - k - 1 )-dimensional plane m H X { d} such Jhat _F n V d := 
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f2f. We can assume F = { ( 0, • • • , 0, Z.H1 , • • • , Zm)}. Define the projection map 

1r:(Pm - F) X D-+ P" X D 

by projection on the first (k + 1) homogeneous coordinates. 

LEMMA. 1r: V d -+ P" X { d} is light. 

Proof. Let z E P" X {d}, and let v E 1r-1(z). DefineF v vas{w + v:w E F} 
where we add in homogeneous coordinates. Then v EE F implies F v v is 
( m - k )-dimensional. 

Assume Vd n (F v v) has dimension 1, i.e. 1r is not light. Then as Fis. of co­
dimension 1 in F v v, we know F n Vd has dimension 0, hence is non-empty, 
which contradicts our choice of F. 

As- V d is compact of pure dimension k, we also have that 1r is proper and sur­
jective. 

Let B be a neighborhood of d such that g(Y d') n (F X { d'}) = Jo for all 
d' in B. Let W' = W - g(Y). Then if R is sufficiently large and Bis a little 
smaller, the map 

1r:1r-1cck - A(o, R)) n w' 1 B - (d - A(o, R)) x B 

is light, proper, and surjective. 
For B' a sufficiently small neighborhood of d in B, there is an analytic cover 

u-:B' -+ A, where A is a polydisk in some en; as u is light, proper, and surjective, 
so is the map (id X u) 0 1r. We can apply Theorem 2 to obtain a subvariety 
v' of cm which extends 'lr- 1( ck - A(0, R)) n w' I B'. 

We can attach g ( Y I B') to V' to obtain a sub variety V of pm X B'; all 
we need to know is that Vis closed, i.e., that, in the notation of [5], p. 227, 
<lW' I B' = av'. But V' is connected at av' (Theorem 2, p. 227 of [5]), and 
is bounded on r- 1(aA(0, R + 1) ). Hence the part we have added is bounded, 
and Vis closed. 

3. Patching 

In this section we will show that the subvarieties we obtain are essentially 
unique, hence that we can patch together the local information to get a global 
family of projective varieties. We first investigate the way our embeddings 
vary with respect to the power of e•. 

Our sheaf sequence 

0 -+ d -+ 0 -+ 0/d -+ 0 

is induced by the map h:!J-+ e, where h is multiplication by the canonical 
section h of 8. We get an induced surjective map 

h*: (L'+i)*-+ (L')*. 

We want to show h* is compatible with the injections g"+i and g'. With respect 
to suitable coordinates, h* is projection followed by multiplication by h; fur-
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ther, the first coordinates are the special ones previously defined. If K = kernel 
(h*), then the induced map hP:P((L•+ 1)* - K) -P((L•)*) is the same 
as projection using homogeneous coordinates. Note that g'+1(x - Y) n K = 525, 
as h'+1 is non-zero on X - Y. Hence hP o g•+1 = g' on X - Y. As K is con­
tained in the hyperplane at oo of P( (L•+1)*), we get a projection map h*: cm' -
cm of the affine spaces. We can fill in g•+1(x - Y) and g'(X - Y) to obtain 
subvarieties v•+I of cm' and v· of cm. 

LEMMA. hft: v•+1 - V• is an isomorphism. 

Proof. For a sufficiently large polydisk d c cm', we have that h1 (V'+ 1 n 
( cm' - d)) is a closed subset of cm contained in v•. Ash* is a closed map on 
the compact set .6., the set h*(v•+ 1 n .6.) is closed; thus h*(v•+ 1) is a closed 
subvariety of cm which extends g'(X - Y). The proof of theorem 2 shows that 
the extension of g'(X - Y) is unique; hence h*: v•+1 - v• is an isomorphism. 

To complete the main theorem we cover D by a locally finite open cover 
{Bi} such that over each Bi we have an injection gi:Wi - Vi. We take the dis­
joint union V of the varieties, modulo the isomorphisms in the intersections 
Bi n B; . As the cover is locally finite, the embedding g: W - V is defined for 
some neighborhood W of Y. 

Remark: If Dis compact, we can take a finite value of s that will work over 
all of D; if further R0J *(e') is locally free (for instance, if R1/*(8') = 0), then 
Vis a subvariety of the family fp:P(R 0f*(e')*) -n of projective spaces. 
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