
SOME LIMIT THEOREMS IN RENEWAL THEORY 

BY Luis G. GoRosTIZA 

In the author's work [5], which contains a section ( §4) of renewal theoretic 
results that are technical lemmata for that work, for brevity only a few of those 
results were proven. This paper contains some of the proofs omitted from [5] 
whose availability in connection with it has been suggested, and further related 
results. The order of presentation is determined by that of [5], and the techni­
calities involved in some of the statements, and some of the statements them­
selves, become relevant in the context of [5]; other results have their own in­
terest, such as the generalization of the elementary renewal theorem ( Corollary 
4); the limit moments of the interarrival time containing the present epoch, 
the spent waiting time and the residual waiting time (Proposition 5); and the 
limit joint conditional distribution, given the present epoch, of interarrival times 
attached and prior to a future epoch ( Proposition 9) . 

All the statements refer to a sequence (the interarrival times) T1, T 2 , • • • 

of nonnegative, nonidentically zero, independent random variables with com­
mon distribution µ, and to the random variable ( the number of renewal epochs 
up to the time t) N(t) = max {n:Sn St}, t 2 0, where S0 = 0 and S,. = 

:Z::f-1 Ti, n 2 1. We define Ti = 0 for i s 0. The underlying probability space 
is denoted (n, g:, P). 

• The following notation is used. The symbols i>, P and a.s. are abbreviations, 
respectively, for "in distribution", "in probability" and "almost surely". E 
denotes expectation, Ef /ill] conditional expectation with respect to the Borel 
field CB, and g:{ X a , a E a} the Borel field generated by the random elements 
Xa, a E a. The distribution of the random element Xis denoted µx. [ ] stands 
for the integral part of a real number, and + for the positive part. ls is the indi­
cator function of the set S, and Rn is n-dimensional Euclidean space. 

PROPOSITION 1. If Er1 a < oo for given a > 0, then 
1 p 
- max1<i<Neta)+1 Ti ~ 0 as t - oo. t - -

a.s. 
Proof. Since N(t)/t--1/En as t - oo ([3], p. 127), then for arbitrary 

E > 0 and o > 0, writing m = 1/ Er1 we have 

lim SUPt➔OO P[max1~i~(ta)+1 Ti 2 tE] 

s lim SUPt➔OO p [ max19~N(ta)+1 Ti 2 tE, N;;a) < m + 0] 

S lim SUPt➔oo P[max19~(mH)ta+1 r; 2: tE] 

= lim SUPt➔ OO (1 - p k1 < tE][(m+!)ta]+l) 

s 1 - lim inft➔OO ( 1 - (tE)"~t[~1 .. 2: tE]) (m+o)ta Plr1 < tE] = 0, 

because E r1" < oo implies that t" P[ r 1 2: t] ---+ 0 as t - oo . 

Remark. This result is valid even if En = oo (when a < 1). 
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COROLLARY 1. If Er/'· < (!':) for given a > 0, then 

1 P 1 P 
- TN(t'-')+I ~ 0 and - SUPo<s<ta(s - SN(s)) ~ 0 
t t - -

as t - oo. 

Proof. The second assertion follows from 

SUPo:o:s:9 (s - SN(s)) ~ max1:0:i:O:N(t)+l Ti. 

The second statement of this corollary is Lemma 4.1 of [5]. 

Let 7/, 80 , 81 , • • • be a sequence of random elements ( of some topological 
space), with 80 constant, which is independent of the sequence TI , r2 , • • • , 

and consider the Borel fields Sn = ;J'/7J, Bo, • • • , Bn-I, TI, • • • , Tn+I/ for each 
n 2::: 1, So = g:{ TI}, and S-1 = {,0, fl}, and the Borel field g:t generated by 7/, 

Bo , • • • , Bn-1 , TI , • • • , Tn+1 up to the random index N ( t), that is 

g:t = {A E g::A n [N(t) = n] E Sn for each n 2::: 0l, 

for each t > 0. 

PROPOSITION 2. For any random vector X and for each n 2::: 0 and t > 0 
a.s. 

E[l[N(t)=n]X / g:t] = Efl[N(t)=n]X / Sn]. 

Proof. Let S = [N(t) = n]. For A E g:t, 

IA lsX dP = IAnsX dP = IAnsE[X / Sn] dP = IA lsE[X I Sn] dP 

= I A E[lsX I Sn] dP, 

and the conclusion follows from the fact that E[lrNU)=nJX I Sn] is measurable 
with respect to g:t . 

This is Lemma 4.2 of [5]. 

PROPOSITION 3. Let gI , • • • , gk be the elementary symmetric functions of k 
arguments ( i.e., if X1 , • • • , Xk are the arguments, l:;x; , '1:;<jX;X J , • • • , IT;x;) and 
let iI, • • • , i 1 be integers such that 1 ~ iI < · · · < ii ~ k. For any measurable 
vector X defined on R"' or Rm for appropriate m, and for each n 2::: 0 and k 2::: 1 
and any permutation o- of { 1, • • • , k} we have, with the notation GI = gI( rn+I, 
• • • , Tn+k) Gk = gk( Tn+I , • • • , Tn+k), 

E[X(r1, • • ·, Tn, Tn+i1 , • • ·, Tn+i;, G1, ···Gk, Tn+k+I, ···)I Sn-I] 
a.s. 
= E[X(r1, • • • , Tn, Tn+u(i1), Tn+u(i;) , GI , • • • , Gk, 

Tn+k+I , • • •) I Sn-d-

Proof. For A E Sn-1 , 

I AX( TI, • • • , Tn, Tn+i1 , • • • , Tn+i;, GI, • • • , Gk, Tn+k+I, • • ·) dP 

= I Rn E[lAX( ) I TI = X1, • • • , Tn = Xn]µ(dxI) • • • µ(dxn) 

= I Rn h(xI, • •. , Xn)EX(xI, "". , Xn, Tn+i1, • •• , Tn+i;, G1 , "". , Gk, 

Tn+k+I, • • • )µ(dxI) • • • µ(dxn), 
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where h(x1 , • • • , Xn) = E[lA I ri = X1 , • • • , Tn = Xn]; hence it suffices to 
show that 

but this is obvious. 

COROLLARY 2. For each n ~ 0 and k ~ 1, for any permutation u of I 1, • • • , k} 
and any integers i1 , • • • , i 1 such that 1 ~ i1 < · · · < i; ~ k, and for any meas-
urable vector X defined on R"" or Rm for appropriate m 

a.s. 
= E[l[N(t)=n+k]X( TI, • • • , Tn, Tn+•(i1 ) , • • • , Tn+o(i;) , Tn+k+l, • • ·) I Sn-1], 

and in particular ( with n = 0) 

I [N(t)=k] X( T;,' ••• ' Ti;' Tk+l' ••• ) dP 

= I [N(t)=k] X( T,(i1), '•. , T,(i;), Tk+l, • '') dP. 

Proof. N (t) = n + kif and only if 

Apply Proposition 3 with l[N(t)=n+k]x in place of X. 

This result is Lemma 4.3 of [5]. 

As a simple application of Corollary 2, Wald's equation 

ESN(t)+l = ET1(EN(t) + 1), 

and Proposition 5, we obtain 

limt-+oo Cov ( T1 , N (t)) = Var T1 
ET1 • 

PROPOSITION 4. For all a > 0 and all integers n and m such that O ~ m ~ n, 

Proof. First we see that ET':.(o-n ~ ET'li-<o-m, for by Corollary 2 we have 
for all a > 0 

P[TN(t)-n ~ a] = L~n P[Tk-n ~ a, N(t) = k] 

L~n P[Tk ~ a, N(t) = k] ~ L;=m P[Tk ~ a, N(t) = k] 

I::=m P[Tk-m ~ a, N(t) = k] = P[TN(t)-m ~ a]. 

To prove that ET':<o ~ ET':(t)+1 it suffices to show that P[TN<tH1 ~ a] > 
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P[TN<t> ~ a] for all a > O, which is true if P[TH1 ~ a, N(t) = kJ ~ P[-r1: ~ a, 
N(t) = k] for all a > 0 and all k, which is obvious for a > t; for a ~ t 

P[n+1 ~ a, N(t) = k] 

= ft µ(dx1)f J-211 µ(dx2) ''' JJ--.:i-··•-zk-l µ(dx1:) J:a:s:(11,l-ao1-··•-o,k) µ(dx1:+1) 

and 

P[n ~ a, N(t) = k] 

= J: µ(dx1)!J-"' 1 µ(dx2) '' • J!-:r:i-•••-:r:k-l µ(dxr.) f:-.,1-'""-2/k µ(dxk+l) i 

hence it is enough to show that 

f~ µ(dx1)J:a:s:(11,o,-zi) µ(dx2) ~ f: µ(dx1)f:-11:1 µ(dx2), 

which is obvious for X < a; for X ~ a this is done by straightforward calcula­
tion, or by looking at the regions of integration, using Fubini's theorem ( con­
sider the cases a ~ 3;/2 and a < x/2 separately). 

PROPOSITION 5. If ET1 a:"1 < co for given a > 0, then in both the 'lattice and the 
non'lattice cases ([2], p. 54) 

and in the nonl,attice case 

E «+i 
lim1➔00 E(t - SNc1i)'" = lim1➔00 E(SN<tl+I - t)'" = (a ;.\)ETi • 

Proof. Let A denote the distribution of TN(tl+I , and II the renewal measure 
defined by 11( (x1, x,]) = E(N(x2) - N(x1)) with an atom of unit weight at 
the origin. Then ([4], p. 371) 

>.([0, x]) = JL.., µ((t - y, x])11(dy). 

It is easy to verify that A is absolutely continuous with respect to µ and 
that the Radon-Nikodym derivative of A with respect to µ is d>./dµ(x) 
= v((t - x, t]). Hence 

ET;c,i+1 = f'; x'"11((t - x, t])µ(dx). 

Since v( (t - x, t]) ~ K + Lx for all t and x, where K and L are some con­
stants (see [4), p. 360, or Propositions 7 and 6), the first conclusion is obtained 
from the Blackwell renewal theorem in both the lattice and the nonlattice 
cases ([2], p. 219) and the dominated convergence theorem. 

In the nonlattice case ([4], p. 369~371) 

5) . 5) 
t - SNcn-o and SNcii+i - t- 0 as t- co, 
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where 8: is the distribution' defined by . 

0([0, x]) = El • f~ P[T1 > s] ds. 
T1 

Since t - SNCtl :::::; TNCtl:+1 and SNcti+1 - t ~ TN<tl+I , and { T;c,i+1 , t ~ O} is 
uniformly integrable, then ([1], p. 32) 

= f: xaO(dx) =El f: xaP[T1 > x]dx· 
T1 

E a+l 

= (a +\)ET1 f: P[Tt+1 > x"+1] dxa+1 = T1 • 
·(a+ l)ET1 • 

COROLLARY 3; If Eria+l < oo for given a > 0, the:n for every integer n ~ 0 

SUPt ET;(t)+l-n < 00. 

Proof. It follows from Proposition 4 and the proof of Proposition 5. 

This result is Lemma 4.4 of [5]. 

From Proposition 5 the following limit covariances are easily obtained for 
the nonlattice case: 

limt➔oo Cov (t - SN(t) 'TN(t)H) = limt➔oo Cov (SN(t)+l - t, TN(t)H) 

ET/ET1 - (ET/)2 
2(ET1)2 

2ET/ET1 - 3(ET/)2 
12(ET1)2 

PROPOSITION 6. For every integer m ~ I there is a constant K such that for all 
t~O 

Proof. (See [3], p. 127) Since T1 is not identically zero there is a 8 > 0 such 
that P[ri ~ 8] = p > 0. Let T;' = 8 if Ti ~ 8 and T/ = 0 if Ti < 8, and let 
N'(t) = max {k:~t 1T/:::::; t}, t ~ 0. Clearly N'(t) ~ N(t), and hence 

EN'(t)m ~ EN(t)m, 

so that it suffices to prove the lemma for N'(t). N'(t) - [t/8] has the negative 
binomial distribution with parameters [t/8] + 1 and p, and in particular 

n ~ k, 
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where k is an integer. Using the fact that N' (t) 2 n if and only if ~r=1T/ ~ t 
one easily obtains 

EN'(tr ~ Lk:o;(t/o) t Ln;:,:I (;) pk+1(1 - pf-kj(n), 

where f(n) is the number of integers j such that nm ::; j < (n + l)m. Now 

and hence 

f(n)::; 1/_!,__xl/m I = m(n + 1r~1. 
dx x=(n+I)'" 

EN' Ctr ::; Lk«t/o) '!?!: E(N' (ok) + 1)"'- 1, 
- p 

andsinceN'(i'!k) ~ N'(t) fork::; t/o, 

EN'(tr::; t ([}] + 1) mE(N'(t) + 1r- 1. 

This expression is valid for every integer m 2 1, and therefore the conclusion 
follows from it by induction on m and the fact that EN' ( t) m increases with t. 

This proposition is Lemma 4.5 of [5]. 

The following result is used in the proof of Lemma 4.6 of [5]. 

PROPOSITION 7. Let T and H be nonnegative random variables that are jointly 
independent of/ Ti, i 2 1} and such that T ::; H a.s. Then for every integer m 2 0 

Proof. We will first show that for all k 2 0 

E[(N(H) - N(T) - l)+t ~ EN(H - T/. 

For each a > 0, denoting (a) = smallest integer 2 a, 

PfN(H) - N(T) - 1 2 a] 

L:'=o P[N(H) 2 r + 1 + (a), Sr~ T < Sr+rl 

L:'=o P[Sr+I+(a) ::; H, Sr ::; T < Sr+I] 

::; L:'=o P[I.:::::!ti") Ti::; H - T, N(T) = r]; 

using the independence hypothesis, 

P[L:1:~tial T; :s; H - T, N(T) = r] 

= J P[L::::~t~a) Ti ::; H - t, N(t) = r I T = l]µr(dt) 

= J P[S(a) ::; H - t I T = i]P[N (t) = r]µr(dt); 
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hence, by the monotone convergence theorem, 

P[N(H) - N(T) - 1 :2:: a] Sf P[Sca) S H - f IT = t]µT(dt) 

= P[Sca> s H - T] = P[N(H - T) :2:: a], 

which implies the desired result. 
Now, 

E(N(H) - N(T))m s E[(N(H) - N(T) - 1)+ + l]m 

= LZ-=0 cr:)E[CNCH) - N(T) - l)+r, 

which together with the above inequality yields the conclusion. 

The next proposition is the first assertion of Lemma 4.6 of [5], where the proof 
of the lemma appears. 

PROPOSITION 8. Lett and h be real numbers such that O s t s h, Tn and H,. 
nonnegative random variables that are jointly independent of { T;, i :2:: 1} and 

a.s. a.s. 
such that T,. SH,. a.s., Tn - t and Hn - has n - oo, and for a posit,ive 
integer m and some o > 0, sup,. EH,. m+6 < oo, and let bi , b2 , • • • be a sequence 
of pos#ive real numbers converging to infinity. Then 

l• E I N ( b,. H n) - N ( bn T n) _ h - !_ Im = O 
lmn➔ o:> b E . 

n Tl 

An immediate consequence of this proposition is the following generalization 
of the elementary renewal theorem. 

COROLLARY 4. For any real numbers a and {3 such that O S a < {3, and any 
o > 0, 

lim1---"' E (N({3t) ~ N(at)y = ({3 E~iay 

The following result is contained in the proof of Lemma 4.7 of [5]. 

PROPOSITION 9. If En < oo, if for p > 1 a measurable function f: Rm+i - R 
satisfies Elf( TI, 0 0 0 

, Tm+1) Ip < 00 and SUPt Elf( TN(t)-m, 0 0 0 
, TN(t)) t < 00, 

and if a1 and f3t , t :2:: 0, are real numbers such that lim inf1-oo a 1 > 0, lim 
SUP1---"' f3t < oo and lim inf1---"' (f31 - a1) > 0, then 

limt-+oo EI Efj( TN(/J,t)-m, • • • , TN({J 0t)) I 5'a,t] - Ef( TI, • • • , Tm+i) I = 0 

( 5' a, t is as defined above Proposition 2) . 

Since this statement holds for all bounded continuous functions f, it can be 
interpreted, in a loose way, by saying that if the difference between a future 
epoch and the present epoch tends to infinity about linearly, then, conditioned 
to present epoch, interarrival times attached and prior to the future epoch 
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jointly converge weakly to the product distribution of the measure µ with it­
self. It follows in particular from Proposition 9 that 

5) 

( TN(t)-m, •'' , TN(t)) ---------+ (TI, • • • , Tm+l) as t - 00, 

which implies that the highly dependent random variables TN(t)-m , • • • , TN(tl 

are asymptotically independent as t - oo • 

CENTRO DE INV1DSTIGACI6N DEL IPN' MEXICO 
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