SOME LIMIT THEOREMS IN RENEWAL THEORY
BY LUI‘S G. GGOROSTIZA

In the author’s work [5], which contains a section (§4) of renewal theoretic
-results that are technical lemmata for that work, for brevity only a few of those
results were proven. This paper contains some of the proofs omitted from [5]
whose availability in connection with it has been suggested, and further related
results. The order of presentation is determined by that of [5], and the techni-
calities involved in some of the statements, and some of the statements them-
selves, become relevant in the context of [5]; other results have their own in-
terest, such as the generalization of the elementary renewal theorem (Corollary
4); the limit moments of the interarrival time containing the present epoch,
the spent waiting time and the residual waiting time (Proposition 5); and the
limit joint conditional distribution, given the present epoch, of interarrival times
attached and prior to a future epoch (Proposition 9).

‘All the statements refer to a sequence (the interarrival times) i, 72, «:-
of nonnegative, nonidentically zero, independent random variables with com-
mon distribution g, and to the random variable (the number of renewal epochs
up to the time ¢) N(¢) = max {n:S, <}, t > 0, where S, = 0 and S, =
D ri7i,n > 1. We define r; = 0 for ¢ < 0. The underlying probability space
is denoted (@, F, P).

"The following notation is used. The symbols D, P and a.s. are abbreviations,
respectively, for ‘“in distribution’, ‘““in probability” and ‘“almost surely’”’. E
denotes expectation, E[ |®8] conditional expectation with respect to the Borel
field ®, and F{X,., « € @} the Borel field generated by the random elements
Xeo,a € @. The distribution of the random element X is denoted ux .[ ] stands
for the integral part of a real number, and * for the positive part. 14 is the indi-
cator function of the set S, and R" is n-dimensional Euclidean space.

Prorosition 1. If En* < « for given a > 0, then

1 P
n maXjc<yao+1 i — 0 as §— oo,

Proof. Since N(t)/tﬁ'ﬁ 1/Em as t — «» ([3], p. 127), then for arbitrary
e > 0 and & > 0, writing m = 1/E+; we have
lim sup.. Plmaxicicwin+1 7i = te]
N({t%)
ta

<m+6:]

< lim sup;»w P [maX1gi§N(La)+l T > le,

< lim sUps>w PlMaxicicomismi i > tel
lim SUpew (1 — P [rp < te] /™01

a (m+d)t
___(te) ]()t[:)laz t€]> Plr < te] = 0,

because Er* < o« implies that {*P[r; > {] > 0 as{ — o,
Remark. This result is valid even if Ery = o (when o < 1).
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CoroLrary 1. If Em® < « for given a > 0, then

1 P 1 P
TG —— 0 and 7 supo<s<ia(s — Syw) —— 0

ast — o .‘
Proof. The second assertion follows from
SUPo<s<t (s — Swyw) < maxi<i<n (41 Ti -
The second statement of this corollary is Lemma 4.1 of [5].

Let , 6, 61, --- be a sequence of random elements (of some topologlcal
space), with 6 constant, which is independent of the sequence 71, 7, - -+,
and consider the Borel fields G, = F{», o, -+, 0pa, 71, - -+, Tata} for each
n 2> 1,6 = F{n}, and g3 = {, @}, and the Borel field F, generated by 7,
6y, -y Ona, T, ", Tasa Up to the random index N (¢), that is

={A4 € 5:AN[N(t) = n] € g, for each n > 0},
for each ¢t > 0.
ProposITION 2. For any random vecior X and for eachn > 0 and t > 0

a.s.
Elwy-mX | 5] = Elnw=-mX | Gal.

Proof. Let S = [N(¢) = n]. For 4 € &,

fA lstP = fAnstP = fAnsE[Xl Sn] dP = f.; lsE[X | Sn] dP
= [4 E1:X | Gl dP,

and the conclusion follows from the fact that E[liw—nX | Gs] is measurable
with respect to ¥, .

This is Lemma 4.2 of [5].

ProrosiTioN 3. Let g1, -, gr be the elemeniary symmetric functions of k
arguments (i.e., if 1, -+ , Ty are the arguments, Zx; , DicB&; , * - -, Wx;) and
let 11, -+, 1; be integers such that 1 < 41 < -+ < 2; < k. For any measurable
vector X defined on R” or R™ for appropriate m, and for each n > 0 and k > 1
and any permutation o of {1, -, k} we have, with the notation Gy = gi(Tny1,

T Tn-Hc) Gk = gk(7"+17 R Tn+k),

E[X(Tl7 Tty Tay Tatdry Ty Tadij Gl) Gk) Tn+k+1 )lgn—l]
a.S.
= E[X(Tl7 Tty Tay, TadeGr s Ty Tado(i) Gl;"':ka
Tntk41, °° ) l gn——I]-

Proof. For A € Gn1,,

JaX(ri, ooy Tuy Totiss 0y Tatiy s Gy o0y Giy Tagipr, =+ +) dP

= fEnE[lAX( Y m=1, o0, T = Zalu(day) - p(dzn)

= [wh(z, - - @) EX (21, ) Tny Tasiy - s Tuiiy, Gy ooy G, '
Tatrir, * ) p(d@) - - p(dza),
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where h(z1, - -, %s) = E[la| 7 = 21, -+, 7o = %,); hence it suffices to
show that
D
(Ti17 ,Tl'j)Gly ,Gk) = (Tv(il), Y TG("j)JGI; e ,Gk)’
but this is obvious.

COROLLARY 2. For eachn > 0 and k > 1, for any permutation o of {1, --- , k}
and any integers 4, - -+ , t; such that 1 < 4 < --- < 1; < k, and for any meas-
urable veclor X defined on R™ or R™ for appropriate m

ElliwyentmX (71, ** 5 Tay Tagizs *** 5 Tadiz » Tnthtt, ) | Gl

. Ellin=n+aX (70, ** % 5 Tny Tadolin) s ** " 5 Totolip) s Tatkals ) | Guil,
and in particular (withn = 0)
Sy X(7iyy -+, 7455 Tegn, -+ +) dP
= Jww=n X (a5 =+ 5 Tetipy » Toar, == -) dP.
Proof. N(t) = n + k if and only if
Diarit D s U< D i Dt Tani F Tagnar
Apply Proposition 3 with 1x@)—nixX in place of X.
This result is Lemma 4.3 of [5].
As a simple application of Corollary 2, Wald’s equation
ESyw+1 = Eni(EN(t) + 1),
and Proposition 5, we obtain

Var T1

E1'1
ProposiTION 4. For all o > 0 and all integers n and m such that 0 < m < n,

Erywy—n < Etvwy—m < Etne+ -

limeo Cov (71, N(t)) =

Proof. First we see that Eryey—n < E7yw-m, for by Corollary 2 we have
foralla > 0

Plrywy— > a] = Z;;n Plry = a, N(t) = k]
2k Pl > a, N(t) = k] < 25m Pl > a, N(t) = K]
= > o Plreem > a, N(t) = k] = Plryw-m > al.

To prove that Erxey < Erne it suffices to show that Plrywm+ > a] >
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Plrywy = a] for all @ > 0, which is true if Plreiq > @, N(t) = k] > Plr = a,
N(t) = k] for all @ > 0 and all k, which is obvious fora > #;fora < ¢
Plrii1 2 6, N(t) = K

= [0 u(dm)[o™ u(dw) -+ o7 T u(din) [rmaxtertoy—eo—on) #(Tr41)
and
Plr, > a, N(¢) = k]

= [§ u(dw) [0 uldas) -+ [a™ 7 u(dwe) [raimr—op #(dBes1);
hence it is enough to show that

o 1(der) [maxiao—ey) 0(dm2) > [ p(do) [z, n(das),

which is obvious for # < a; for z > a this is done by straightforward calcula-
tion, or by looking at the regions of integration, using Fubini’s theorem (con-
sider the cases ¢ > /2 and & < /2 separately).

ProrositioN 5. If En*™ < « for given o > 0, then in both the lattice and the
nonlaltice cases ([2], p. 54)

ETla-H
Er, ’

lim¢—>eo E‘T;(g)-{—l =

and in the nonlattice case

1
E‘Tla+

T @+ DEn

Proof. Let X denote the distribution of 741, and » the renewal measure
defined by »((z1, 2s]) = E(N(x3;) — N(21)) with an atom of unit weight at
the origin. Then ([4], p. 371)

A0, z]) = [is u((t — y, =) v(dy).

It is easy to verify that A is absolutely continuous with respect to u and
that the Radon-Nikodym derivative of A with respect to u is d\/du(z)
= »((¢t — z, t]). Hence

Ervpa = f: z%v((t — =z, t])u(dz).

Since »((t — z, t])) < K + Lz for all ¢t and z, where K and L are some con-
stants (see [4], p. 360, or Propositions 7 and 6), the first conclusion is obtained
from the Blackwell renewal theorem in both the lattice and the nonlattice
cases ([2], p. 219) and the dominated convergence theorem.

In the nonlattice case ([4], p. 369-371)

Iimg.m E(t - SN(t))a = limg.m E(Sy(t)-ﬂ, - t)a

D , D
t — Syn——60 and Sypypr —t—— 0 ast— o,



36 Wi LUIS-G. GOROSTIZA

where 6 is the distribution defined by . -

é([O, z]) = E’L‘rl [5 Plri > sl ds.

Since t — Sy < TN(¢)1+1 and Sywps1 — ¢ S TN+, and {T;(t)+1; t > 0} is
uniformly integrable, then ([1], p. 32)

limsw E(t — SN(z))a = limiw E(SN(t)+l — t)a
© a h ) ]- © a . .
=f0x0(dx)=E—,T;foxP[Tl>x]dx
-1
(d + I)E‘rl

a+1

¢ Pl > 2*7 dx"“;l = _Bn" .
~ T @ ¥ DBEn

COROLLARY 3. If Er*™ < o« for given o > 0, then for every integer n > 0
‘ sup; Ervmyt1n < . ‘ . ‘ :
Proof. It follows from Proposition 4 and the proof of Proposition 5.

This result is Lemma 4.4 of [5].

From Proposition 5 the following limit covariances are easily obtained for
the nonlattice case:

limse Cov (¢ — Sxay TN(¢)+1) = lim;so Cov (SN(:)+1 — &, TNw+1)

_ ErlEr — (Erl®)?

2(Em)? ’
_ . 2Er°Er, — 3(Er’)’
lim»w Cov (¢ — Sy ;SN(t)H - t) = - I‘I-QI(E'H)5 = ) ’

ProrosiTioN 6. For every integer m > 1 there is a constant K such that for all
t>0

EN(t)™ < K max {1, {"}.

Proof. (See [3], p. 127) Since 7; is not identically zero there is a 6 > 0 such
that P[r; > 8] = p > 0. Let i =0if ;,>8and v/ =0if r: < 9, and let
N'(t) = max {k:Zk17d < 1}, t > 0. Clearly N'(t) > N(¢), and hence

EN'(t)™ > EN(1)™,

so that it suffices to prove the lemma for N'(t). N'(¢) — [t/é] has the negative
binomial distribution with parameters [¢/5] 4+ 1 and p, and in particular

PIN'(6k) = n] = (D)p""(1 —p)"™,  n 2>k
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where k is an integer. Using the fact that N'(1) > = if and only if Siyr < ¢
one easily obtains

n 1 n—
EN'(1)" < Zkgu/a) o anl <Z) P — p)"M(n),
where f(n) is the number of integers 7 such that n™ < j < (n 4+ 1)™. Now

fln) < l/dixx”m =m(n + 1),

z=(n+1)m

and hence
EN' ()™ < Dicam ;’—%E(N/(Bk) + )"

and since N'(8k) < N'(t) for k < t/s,

EN' ()" < % <[§] + 1) mB(N'(8) + 1)

This expré$sion is valid for évery integer m > 1, and therefore the conclusion
follows from it by induction on m and the fact that EN "" increases with ¢. ‘
This proposition is Lemma 4.5 of [5].
The following result is used in the proof of Lemma 4.6 of [5].

Prorosition 7. Let T and H be nonnegalive random variables that are jointly
independent of {+;, ¢ > 1} and such that T < H a.s. Then for every integer m > 0

E(NH) — N(T)H" < EQ1+ NH — T))™
Proof. We will first show that for all k > 0
E(N(H) — N(T) — 1)"" < EN(H — T)".
For each ¢ > 0, denoting (a¢) = smallest integer > a,
PIN(H) = N(T) —12>2a]
= Y PIN(H) > r+ 1+ (@), 8, < T < Spui]
?=0‘P[Sr%1+(a) <H S8 LT < 84]
< DA PIER ri < H — T, N(T) = 1;
using the independence hypothesis,
PIYLE ri<H — T,N(T) = 1]
= [PI2ENY 7o <H — 4, N(t) = v | T = uc(de)
= [ PlSw < H — t| T = (PIN(t) = rlur(dt);

[
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hence, by the monotone convergence theorem,
PIN(H) — N(T) —12>a] < [P[Swy < H — 1| T = tlus(dt)

=P[Sey <H—T|=PNH —-T) = al,
which implies the desired result.

Now,
E(N(H) — N(T))" < E[(N(H) — N(T) - 1)" 4+ 1]"
= 2k (ME(NH) — N(T) — DT,

which together with the above inequality yields the conclusion.

The next proposition is the first assertion of Lemma 4.6 of [5], where the proof
of the lemma appears.

ProrosiTiON 8. Lel t and h be real numbers such that 0 < 1 < h, T, and H,
nonnegative random variables that are jointly independent of {r., 1 > 1} and

a.s. a.s.
such that T, < H,as.,T,— tand H, —— h as n — «, and for a positive
integer m and some & > 0, sup, EH,"™ < «, and let by, by, - - - be a sequence
of positive real numbers converging to infinity. Then

E N<ann) __N(bnTn) _h_t
bﬂ ETl

An immediate consequence of this proposition is the following generalization
of the elementary renewal theorem.

= 0.

limy,» e

CoroLLARY 4. For any real numbers a and B such that 0 < o < 8, and any
6> 0,

{ En

The following result is contained in the proof of Lemma 4.7 of [5].

lim,.. & (N(Bt) - N(at>>‘s _ (ﬁ — a)‘_

ProrositioN 9. If Ery < o, if for p > 1 a measurable function f:R™" — R
satisfies B| f(71, -+, tmt1) |7 < ® and sup; E| f(rx@wy—m, "+, o) |© < =,
and if oy and B, t > 0, are real numbers such that lim inf,,, o > 0, lim
SUDsuw B: < © and lim inf,., (8: — a;) > 0, then

limw E | E[f(tx@m—m, - s ™8@0) | Farel — Ef(re, =+, Tmpr) [ = 0
(Fa,: s as defined above Proposition 2).

Since this statement holds for all bounded continuous functions f, it can be
interpreted, in a loose way, by saying that if the difference between a future
epoch and the present epoch tends to infinity about linearly, then, conditioned
to present epoch, interarrival times attached and prior to the future epoch
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jointly converge weakly to the product distribution of the measure p with it-
self. It follows in particular from Proposition 9 that

(rv@w—m> 5 mvw) — (71, *** , Tmp1) 88 ¢ — ®,

which implies that the highly dependent random variables 7x¢y-m, -+, 7o
are asymptotically independent as ¢ — .

CenTRO DE INvEsTIGACION DEL IPN, MExico
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