NOTE ON THE GENERALIZED VECTOR FIELD PROBLEM

BY DUANE RANDALL

I. Introduction

Let ξ_k , η_k , and γ_k denote the Hopf real, complex, and quaternionic line bundles over RP^k , \mathbb{CP}^k , and QP^k respectively. To determine the real geometric dimensions of $m\xi_k$, $m\eta_k$, and $m\gamma_k$ for $m > k$ is the generalized vector field problem. In this note we apply complex K -theory following the procedure of $[1]$ to produce elementary proofs for the following theorems.

THEOREM A. Suppose $2m\eta_k$ has real geometric dimension $\leq 2t + \epsilon$ where $\epsilon = 0$ or 1. Then $c_{t+j}(2m\eta_k)$ is divisible by 2^j .

 THEOREM B. *Suppose m* γ_k has real geometric dimension $\leq 4t + \epsilon$ or $4t + 2 + \epsilon$ where $\epsilon = 0$ or 1. Then $e_{t+j}(m\gamma_k)$ is divisible by 2^{2j} in the first case and by 2^{2j-1} in *the second case.* \cdot . \cdot :

A strong generalization of Theorem A and a weaker version of Theorem B were communicated to me by S. Gitler and M. Mahowald.

2. Preliminaries

Let KU denote the complex K-theory functor. Let ξ^c denote the complexification of a vector bundle ξ . Then $\eta_k^c = \eta_k \oplus \bar{\eta}_k$ where $\eta_k \otimes \bar{\eta}_k = 1$ and $\gamma_k^c = 2\gamma_k$. *KU(CP^k) = <i>Z*[*y*]/(*y*^{k+1}¹) and *KU(QP*^k) = *Z*[*z*]/(*z*^{k+1}) where $y = \eta_k - 1$ and $z = \gamma_k - 2$ from [3]. Note in $\tilde{K}U(CP^k)$ that

(2.1)
$$
\bar{y} = \bar{\eta}_k - 1 = \frac{-y}{1+y}.
$$

Let λ^i denote the extension of the *i*-th exterior power on complex vector bundles to *KU*. For arbitrary *x* in $KU(X)$ we define $\lambda_t(x) = \sum_{i=0}^{\infty} \lambda^i(x)t^i$ where t is an indeterminate. Properties of exterior powers imply that

$$
\lambda_t(x+y) = \lambda_t(x)\lambda_t(y).
$$

Let $R\text{Spin}(n)$ denote the complex representation ring of the spinor group Spin *(n).* $R\text{Spin}(2n) = Z[\lambda^1, \dots, \lambda^{n-2}, \Delta_{2n}^+, \Delta_{2n}]$ and $R\text{Spin}(2n + 1) =$ $Z[\lambda^1, \cdots, \lambda^{n-1}, \Delta_{2n+1}]$ from [2]. Further,

(2.3)
$$
i^*\Delta_{2n}^+ = i^*\Delta_{2n}^- = 2^{n-t-1}(\Delta_{2t}^+ + \Delta_{2t}^-) = 2^{n-t-1}\Delta_{2t+1}
$$

where $i:Spin(2t + \epsilon) \rightarrow Spin(2n)$ denotes the standard embedding for $\epsilon = 0$ or 1. We define $\lambda_1 = \sum_{i=0}^{2n} \lambda^i$ and $\lambda_{-1} = \sum_{i=0}^{2n} (-1)^i \lambda^i$. Then the equalities

(2.4)
$$
\lambda_{-1} = (\Delta_{2n}^+ - \Delta_{2n}^-)^2 \text{ and } \lambda_1 - \lambda_{-1} = 4\Delta_{2n}^+ \Delta_{2n}^-
$$

hold in $R\text{Spin}(2n)$ for even *n* by [1]. Applying the α construction gives relations in $KU(BSpin(2n))$ corresponding to (2.4) for *n* even. Let $C_{r,s}$ denote the binomial coefficient $\binom{r}{s}$.

PROPOSITION 2.5. $\lambda_t(n\eta_k^c) = ((1 + t)^2 + t\eta^2/(1 + y))^n$ and $\lambda_t(n\gamma_k^c)$ = $((1 + t)^2 + tz)^{2n}$.

Proof. $\lambda_i(m_n^c) = \lambda_i(m_n \oplus n\overline{\eta}_k) = (\lambda_i(m_k)\lambda_i(\overline{\eta}_k))^n = (1 + t(y + \overline{y} + 2) + t(z))$ $(t^{2})^{n} = ((1 + t)^{2} + ty^{2}/(1 + y))^{n}$ by (2.1) and (2.2). Similarly, $\lambda_{t}(n\gamma_{t})^{2} =$ $\lambda_t(2n\gamma_k) = \lambda_t(\gamma_k)^{2n} = (1 + \gamma_k t + t^2)^{2n} = ((1 + t)^2 + tz)^{2n}.$

3. Proofs.

Proof of A. Set $n = 2m$ and consider the following diagram where $\epsilon = 0$ or 1.

 $\int_{\ln\pi}^{g} B\mathrm{Spin}(2t+\epsilon) \frac{1}{\pi}$ $\overline{CP^k} \xrightarrow{\overbrace{nn_k}} B\overline{\text{Spin}(2n)}$

By hypothesis the classifying map for $n\eta_k$ has a lifting g. Let ρ_{2n} denote the universal bundle over BSpin(2n). Note that $\Delta_{2n}^+(n\eta_k) = \Delta_{2n}^-(n\eta_k)$ since $\pi^*\Delta_{2n}^+(\rho_{2n})$ $=\pi^*\Delta_{2n}^-(\rho_{2n})$ by (2.3). Thus $[2\Delta_{2n}^+(\eta\eta_k)]^2 = \lambda_1(n\eta_k)$ by (2.4) and $\Delta_{2n}^+(\eta\eta_k)$ $\begin{array}{l} \mathrm{if~divisible~by~} 2^{n-t-1}~\mathrm{by~} (2.3).~\mathrm{Since~} \lambda_1(n\eta_s^c)~\mathrm{~is~not~in}~\bar{K}U(CP^k), 2^{2m-t}~\mathrm{divides}\\ \sqrt{\lambda_1(n\eta_s^c)} ~=~ (2~+~y)^{2m}~\left(1~+~y\right)^{-m}~\mathrm{by~} (2.5) ~=~ \Sigma_{t=0}^k~s_iy^s~\mathrm{where}~s_i ~=~ \Sigma_{t=0}^k~\mathrm{and}~\bar{t}$ $(-1)^{i-l}2^{2m-l}$ $C_{2m,t}C_{m-t+i-1,i-l}$. Note that 2^{2m-t} divides s_{t+1} so 2 divides $C_{2m,t+1}$. Inductively we assume 2^{j-1} divides $C_{2m,t+j-1}$. Then 2^{2m-t} divides $2^{2m-(t+j)}C_{2m,t+j}$ so that 2^j divides $C_{2m,t+j}$. Since $c_{t+j}(2m\eta_k) = C_{2m,t+j}\beta^{t+j}$ where β generates $\bar{H}^*(CP^k)$, Theorem A is proved.

Proof of B. Assume first that $m\gamma_k$ lifts to BSpin($4t + \epsilon$) for $\epsilon = 0$ or 1. Then $\sqrt{\lambda_1(m\gamma_k^c)}$ is divisible by 2^{2m-2t} by the argument for Theorem *A*. By (2.5) $\sqrt{\lambda_1(m\gamma_k^c)} = (z + 4)^m = \sum_{i=0}^k C_{m,i} 2^{2m-2i} z^i$. It follows that $C_{m,i+j}$ and hence the symplectic Pontrjagin class $e_{t+j}(m\gamma_k)$ is divisible by 2^{2i} .

In the second case $m\gamma_k$ lifts to BSpin($4t + 2 + \epsilon$) with $\epsilon = 0$ or 1. Thus Δ_{4m} ⁺($m\gamma_k$) is divisible by $2^{2m-2t-2}$ by (2.3) so $\sqrt{\lambda_1(m\gamma_k^c)}$ is divisible by $2^{2m-2t-1}$. It follows that $C_{m,t+j}$ is divisible by 2^{2j-1} for $t+j \leq k$ so Theorem *B* is proved.

UNIVERSITY *OF* NOTRE DAME

(3.1)

REFERENCES

- [1] S. FEDER, *Non-immersion theorems for complex 1,1nd quaternionic projective spaces.* Bol. Soc. Mat. Mexicana (2) **11** (1966), 62-7.
- [2] D. HUSEMOLLER, Fiber bundles, McGraw-Hill, New York, 1966.
- [3] B. SANDERSON, *Immersions and embeddings of projective spaces,* Proc. London Math. Soc. (3) **14** (1964), 137-53.