NOTE ON THE GENERALIZED VECTOR FIELD PROBLEM
By DuAaNE RANDALL
1. Introduction

Let & , me , and v, denote the Hopf real, complex, and quaternionic line bundles
over RP*, CP*, and QP* respectively. To determine the real geometric dimensions
of m&, , mne, and my; for m > k is the generalized vector field problem. In this
note we apply complex K-theory following the procedure of [1] to produce ele-
mentary proofs for the following theorems.

THEOREM A. Suppose 2mn;, has real geometric dzmenswn = 2 + e where
e=0 or 1. Then Cirs (2mnk) is divisible by 2. ;

TrEOREM B. Suppose mye has real geometrw dzmenswn S4t+ecordt+2 + €
where e = 0 or 1. Then e, ;(myy) 1s divisible by 2% in the first case and by 2% 4
the second case.

A strong generalization of Theorem -A and a weaker version of Theorem B were
communicated to me by S. Gitler and M. Mahowald.

2. Preliminaries
Let KU denote the complex K-theory functor. Let £ denote the complexifica-
tion of a vector bundle £. Then n:° = n @ 7 where ;. @ 7, = 1 and v* = 2%
KU(CP*) = Z[yl/ /**" and KU QP*) = Z[z]/ (Z**") where y = m — 1 and
= v — 2 from [3]. Note in KU (CP*) that '

o -y
2.1 =5 — 1 = .
( ) Yy Nk 1 I

Let )\* denote the extension of the i-th exterior power on complex vector
bundles to KU. For arbitrary z in KU (X) we define \;(z) = o N @)
where ¢ is an indeterminate. Properties of exterior powers imply that

(2.2) M@+ y) = M@ (Y).

Let RSpin (n) denote the complex representation ring of the spinor group
Spin (n). RSpin(2n) = Z[\', -+, \" %, A", Az, | and RSpin 2n + 1) =
ZIN, -+, N7}, Agnpa] from [2]. Further,

B0t = e = 27T (e + M)
(2'3) n—t—1
=2 A2t+l

where 7:Spin (2¢ + ¢) — Spin(2n) denotes the stqﬁdamd embedding for ¢ = 0
or 1. We define \; = =i\ and Ay = 232, (— 1)°A". Then the equalities

(24) Aa = (Aea™ — Asn ) and M — Aoy = 445 A0
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hold in RSpin (2n) for even n by [1]. Applying the & construction gives relations
in KU (BSpin(2n)) corresponding to (2.4) for n even. Let C,, denote the bi-
nomial coefficient (;).

ProposITION 2.5. )\,(m;k")v = (L4 )"+ #'/A+y)" and M(ny’) =
((1+ 8+ &)™ "

Proof. Ne(nm’) = N(nme ® nm) = (\@m)h@m)" = A +tly + 7+ 2) +
)™ = (A + t)* 4+ &°/ (1 + y))" by (2.1) and (2.2). Similatly, A (ny:’) =
MEm) = M) = (0t + 6 = (A + 0"+ )™ '

3. Proofs,
Proof of A. Set n = 2m and consider the following diagram where e = 0 or 1.
' o _ BSpin(2t4-¢)
31 g - l7r

n
CP* SN BSpin(2n)

By hypothesis the classifying map for nyy has a lifting g. Let ps, denote the uni-
versal bundle over BSpin(2n). Note that As,(nm) = Aw (nin) since 7 *Asn (p2n)
= 7 A5u(p2) by (2.3). Thus [245,. () = M(nm®) by (2.4) and s, (nmk)
is divisible by 2" "™ by (2.3). Since M (nm’) is not in KU (CP*), 2" divides
Vi) = @+ )™ L4+ 9™ by (2.5) = Zis sy’ where s; = Zig
(—=1)"2"* Com 1Cm_tri-1,ie. Note that 2 divides s,z so 2 divides
Com,i41 . Inductively we assume 27 divides Com,ipj—1. Then 2% divides
oy i so that 27 divides Com,ey;. Since ci;(@mui) = Com, B
where 8 generates H*(CP"), Theorem A4 is proved.

Proof of B. Assume first that my; lifts to BSpin (4t + ¢) for e = 0 or 1. Then
VvV N(mye) is divisible by 2" by the argument for Theorem 4. By (2.5)
VM) = (2 + 4)" = 250 Cn, 2" "%, It follows that Cn,.; and hence
the symplectlc Pontrjagin class ey (mys) is divisible by 24,

In the second case my; lifts to BSpin (4¢ + 2 4 ¢) withe = 0 or 1. Thus
Asy (myy) is divisible by 277 by (2.3) s0 v/ \(my?) is divisible by 2%,
It follows that C, . is divisible by 2°* for ¢ + j £ k so Theorem B is proved.

UniversiTy OF NoTRE Damg
REFERENCES

[1] 8. FEpEr, Non-immersion theorems for complex and quaternionic projective spaces. Bol.
Soc. Mat. Mexicana (2) 11 (1966), 62-7.

[2] D. HusemorLer, Fiber bundles, McGraw-Hill, New York, 1966.

[3] B. SanpERrsoN, Immersions and embeddings of projective spaces, Proc. London Math.
Soc. (3) 14 (1964, 137-53.





