ON AXIAL MAPS OF A CERTAIN TYPE

BY J. ADEM, S. GITLER, AND I. M. JAMES

1. Introduction

Let P^{n} $(n = 1, 2, \cdots)$ denote real projective *n*-space, with the usual embeddings $P^1 \subset P^2 \subset \cdots$. A map $u: P^n \to P^{n+k}$ $(k \geq 1)$ is either homotopic to the constant map or to the inclusion. We describe *u* as *trivial* in the first case, *nontrivial* in the second. By an *axial map of type* (n, k) we mean a map of $P^n \times P^n$ into P^{n+k} which is non-trivial on both axes. Note that an axial map of type (n, k) determines, by restriction, an axial map of type $(n - 1, k + 1)$, and so forth. Hopf [5] has given necessary conditions for the existence of axial maps, including

PROPOSITION 1.1. *If there exists an axial map of type* (n, k) , *where* $n = 2^r$, *then* $k \geq 2^r - 1$.

Sanderson [7] has shown, somewhat indirectly, that an axial map of type (n, k) exists if P^n can be immersed in R^{n+k} . This can be established by direct construction as follows (see §3 for a discussion of the principles concerned). Let X , Y be (smooth) manifolds with tangent bundles $T(X)$, $T(Y)$. An immersion $f: X \to Y$ determines a monomorphism $T(f): T(X) \to T(Y)$. We take the direct sum with a trivial line bundle and then pass to the associated projective space bundles. Note that the fibre-preserving map

$$
f' = P(T(f) \oplus 1) \colon P(T(X) \oplus 1) \to P(T(Y) \oplus 1),
$$

also respects the canonical cross-sections. In our case $X = P^n$ and a trivialization

$$
\theta \colon P \left(T(X) \oplus 1 \right) \to P^n \times P^n
$$

can be chosen which transforms the canonical cross-section into the diagonal. Also $Y = R^{n+k}$ and a retraction

$$
\rho \colon P \left(T \left(R^{n+k} \right) \oplus 1 \right) \to P^{n+k}
$$

can be chosen which transforms the canonical cross-section into the constant map.Write

$$
\tilde{f} = \rho f' \theta^{-1} \colon P^n \times P^n \to P^{n+k}.
$$

Then \tilde{f} is non-trivial on one axis and trivial on the diagonal. Hence it follows by elementary homology that \tilde{f} is non-trivial, on the other axis as well, and so \tilde{f} is an axial map. It would be interesting to know under what conditions \hat{f} has the property that $\tilde{f} \simeq \tilde{f}T$, where $T: P^n \times P^n \to P^n \times P^n$ denotes the switching map. In particular, does \tilde{f} have this property when f is an embedding? We have not been able to settle this question.

The construction we have given determines a function from the set of regular

homotopy classes of immersions of P^n in R^{n+k} to the set of homotopy classes of axial maps of type (n, k) . It follows from theorem of Haefliger and Hirsch [4] that this function is surjective when $n < 2k$, and so we obtain

PROPOSITION 1.3. If there exists an axial map of type (n, k) , where $n < 2k$, *then there exists an immersion of* P^n *in* R^{n+k} .

This result is also due to Sanderson **[7].** The main purpose of this note is to show that (1.3) is still true when $n \geq 2k$, and thereby establish

THEOREM 1.4. *There exists an immersion of* P^n *in* R^{n+k} ($k > 1$) *if and only if there exists an axial map of type* (n, k) .

2. **Proof of** (1.4)

The first step is to establish

LEMMA 2.1. *Suppose that there exists an axial map of type* (n, k) , *where* $n \geq 2k$. *Then* $n<15$.

For suppose that $n \geq 16$. Then we can choose r, where $r \geq 4$, so that $2^r \leq n \leq 2^{r+1}$. We distinguish four cases and, under the hypothesis of (2.1), obtain a contradiction in each case. First suppose that $2^r \leq n \leq 2^r + 3$. Then the lemma follows at once from (1.1). Secondly suppose that $n = 2^{r+1} - 1$. By (1.1) of [6] there exists no immersion of P^n in R^{n+t} , where $f = 2^r$. By (1.3), therefore, there exists no axial map of type (n, ℓ) , contrary to hypothesis. Thirdly suppose that $2^r + 4 \leq n \leq 2^r + 2^{r-1} + 1$. Choose *s*, where $1 \leq s \leq r-2$, so that $2^{r} + 2^{s} + 2 \le n \le 2^{r} + 2^{s+1} + 1$. By (3.7) of [2], there exists no immersion of P^m in R^{m+l} , where $(m, \ell) = (2^r + 2^s + 2, 2^{r-1} + 2^{s+1} - 1)$. By (1.3), therefore, there exists no axial map of type (m, ℓ) , contrary to hypothesis. Finally, suppose that $2^r + 2^{r-1} + 2 \le n \le 2^{r+1} - 2$. By (3.7) of [2] there exists no immersion of P^m in $R^{m+\ell}$, where $(m, \ell) = (2^r + 2^{r-1} + 2, 2^r + 2^{r-1} - 5)$. By (1.3), therefore, there exists no axial map of type (m, ℓ) , contrary to hypothesis. Thus we obtain a contradiction in any case when $n \geq 16$, and (2.1) is established.

Next we recall (see [3]) that P^n can be immersed in R^{n+1} when $n \leq 3$ and when $n = 6, 7$, also that P^n can be immersed in R^{n+k} when (n, k) is one of the ten pairs $(4, 3)$, $(5, 2)$, $(8, 7)$, $(9, 6)$, $(10, 6)$, $(11, 5)$, $(12, 6)$, $(13, 9)$, $(14, 8)$, $(15, 7)$. Thus the proof of (1.4) will be complete when we have established

LEMMA 2.2. There exists no axial map of type (n, k) if (n, k) is one of the five *pairs*

 $(4, 2), (8, 6), (10, 5), (12, 5), (13, 8).$

The first two cases are given at once by (1.1) above. To deal with the third case we recall, from (9.5) of [1], that P^{15} does not admit 9 linearly independent vector fields over P^{10} . By (4.1) of [6], therefore, there exists no axial map of $P^{10} \times P^{8}$ into P^{15} , hence no axial map of type (10, 5). To deal with the fourth case

we recall, from (2.5) of [2], that $P¹⁷$ does not admit 13 linearly independent vector fields over P^9 . Hence P^{17} does not admit 10 linearly independent vector fields over P^{12} , by (3.3) of [2]. By (4.1) of [6], therefore, there exists no axial map of $P^{12} \times P^9$ into P^{17} , hence no axial map of type (12, 5). To dispose of the fifth case we observe that an axial map of type $(13, 8)$ would determine an immersion of P^{13} in R^{21} , by (1.3), and this would be contrary to (3.8) of [2]. Thus (2.2) is established, and the proof of (1.4) is complete.

[N. B: the following errata concern (2.5) of [2], on which (3.8) of [2] is based. On page 49 of [2], at the end of the enunciation of (2.5) , replace $2^r - 4$ by $2^r + 2^s - 4$. On page 50 of [2], at the end of the first sentence of the proof of (2.5), replace $2^r + 2^s - 1$ by $2^r + 2^s$.]

3. Appendix

We restrict our attention to real vector bundles, although the complex case can be treated similarly. If V is a vector bundle then $P(V)$ denotes the associated projective space bundle and $H(V)$ the canonical line bundle over $P(V)$. If L is a line bundle, over the same base as V , then $P(V)$ is naturally equivalent to $P(V \otimes L)$. Hence a trivialization of $V \otimes L$ determines a trivialization of $P(V)$. If $V \otimes L$ is trivial then we describe *V* as *L-trivial*, in what follows, and note

PROPOSITION 3.1. The projective space bundle $P(V)$ is trivial if and only if *there exists a line bundle L such that V is L-trivial.*

We identify $P(1)$ with X under the projection $\rho: P(1) \to X$. We denote the canonical line bundle of P^n $(n \geq 1)$ by H_n . Let E be an *n*-plane bundle over X. We have that $\xi \circ P(u) = P(v) \circ \xi$, as shown below, where ξ is given by tensoring with *L* and *u*, *v* are the obvious monomorphisms at the vector bundle level.

$$
P(1) \xrightarrow{P(u)} P(E \oplus 1)
$$

\n
$$
\xi \downarrow \qquad \qquad \downarrow \xi
$$

\n
$$
P(L) \xrightarrow{P(v)} P((E \oplus 1) \otimes L)
$$

Suppose that $E \oplus 1$ is *L*-trivial. Choose a trivialization α , say, of $(E \oplus 1) \otimes L$ and consider the composition

$$
X \xrightarrow{s} P(E \oplus 1) \xrightarrow{\theta} P^n \times X,
$$

where $s = \rho^{-1} \circ P(u)$ and $\theta = P(\alpha) \circ \xi$. By naturality the canonical line bundle $H_n \otimes 1$ over $P^n \times X$ pulls back under $P(\alpha \circ v)$ to the canonical line bundle $H(L)$ over $P(L)$. But $P(\alpha \circ v) = P(\alpha) \circ P(v)$ and $P(\alpha) \circ P(v) \circ \xi = P(\alpha) \circ \xi \circ P(v) =$ $\mathcal{E} \circ P(u) \circ P(v)$. Since $\mathcal{E}^*H(L) \approx \rho^*L$ we conclude that

$$
(3.2) \t\t s^*\theta^*(H_n\otimes 1)\approx L.
$$

Now suppose that X is a (smooth) *n*-manifold with tangent bundle $T(X)$,

such that $T(X) \oplus 1$ is *L*-trivial. Let Y be an $(n + k)$ -manifold $(k \ge 1)$ such that $T(Y) \oplus 1$ is trivial. An immersion $f: X \to Y$ determines a monomorphism $T(f): T(X) \to T(Y)$. We write $f' = P(T(f) \oplus 1)$, $g = \varphi f' \theta^{-1}$, as shown in the following diagram, where θ is given by an *L*-trivialization of $T(X) \oplus 1$ and φ by a trivialization of $T(Y) \oplus 1$.

$$
X \xrightarrow{s} P(T(X) \oplus 1) \xrightarrow{\theta} P^{n} \times X
$$

$$
f \downarrow \qquad \qquad \downarrow f' \qquad \qquad \downarrow g
$$

$$
Y \xrightarrow{t} P(T(Y) \oplus 1) \xrightarrow{\varphi} P^{n+k} \times Y.
$$

Here *s,* t are the canonical cross-section. Applying (3.2) we have at once that $s^*\theta^*(H_n \otimes 1) \approx L$, $t^*\varphi^*(H_{n+k} \otimes 1) \approx 1$. Since the diagram is commutative it follows from these relations that

$$
(3.3) \t\t g^*(H_{n+k} \otimes 1) \approx H_n \otimes 1 \oplus 1 \otimes L.
$$

In particular take $X = P^n$, $Y = S^{n+k}$ (the case of R^{n+k} is similar). Recall that $T(P^n) \oplus 1$ is *H*-trivial, while $T(S^{n+k}) \oplus 1$ is trivial. Thus an immersion $f: P^n \longrightarrow S^{n+k}$ determines a map

$$
q: P^n \times P^n \to P^{n+k} \times P^n
$$

such that

$$
g^*(H_{n+k}\otimes 1)\approx H_n\otimes 1\oplus 1\otimes H_n.
$$

By projecting g onto the left-hand factor we obtain a map of type (n, k) , as required.

CENTRO DE lNVESTIGACI6N DEL **I.P.N.,** MEXICO D. F. MATHEMATICAL INSTITUTE, OXFORD

REFERENCES

- [1] P. F. BAUM AND W. BROWDER, *The cohomology of quotients of classical groups*, Topology **3** (1965), 305-36.
- [2] S. G1TLER, *The projective Stiefel manifolds II-Applications,* Topology 7 (1968), 47-53.
- [3] S. G1TLER, *Immersion and embeddings of manifolds,* Algebraic Topology (Proc. Sympos. Pure Math., Vol. XXII, Madison, Wis., 1970), 87-96, Amer. Math. Soc., Providence, R.I. 1971.
- [4] A. HAEFLIGER AND M. HIRSCH, *Immersions in the stable range,* Ann. of Math. **75** (1962), 231-41.
- [5] H. HoPF, *Ein topologischer Beitrag zur reellen Algebra,* Comment. Math. **Helv.13** (1940- 41), 219-39.
- [6] I. M. JAMES, *On the immersion problem for real projective spaces,* Bull. Amer. Math. Soc. 69 (1963), 231-38.
- [7) B. J. SANDERSON, *A non-immersion theorem for real projective space,* Topology 2 (1963), 209-11.