THE CARDINALITY OF ORDINAL EXPONENTIATION

BY ALEXANDER ABIAN

The cardinality of the ordinal sum of a sequence $(r_i)_{i\in\omega}$ of ordinal type w of ordinals r_i is equal to the cardinal sum of the sequence $(\bar{r}_i)_{i\in\omega}$ of cardinals \bar{r}_i . The reason for this is the fact that in ordinal arithmetic [1, p. 50] the ordinal sum $\sum_{i \in \mathbf{w}} r_i$ of ordinals r_i is defined as the unique ordinal which is similar to the well ordered set obtained by well ordering (in an obvious way) a disjoint union of well ordered sets each similar to *r;.* Thus,

$$
\overline{\sum_{i\in w} r_i} = \sum_{i\in w} \overline{r}_i
$$

Therefore, if $r_i > 0$ for every $i \in w$ and if $\sum_{i \in w} r_i$ is infinite then (cf. [2]), we have:

$$
\sum_{i \in w} \overline{r}_i = \overline{\overline{w}} \, \text{sup}_{i \in w} \, \overline{\overline{r}}_i
$$

Since the ordinal product $u \cdot v$ of ordinals *u* and *v* is defined [1, p. 51] based on the notion of repeated addition (namely, adding v copies of u), from (1) we have

$$
\overline{\overline{u} \cdot \overline{v}} = \overline{\overline{u}} \cdot \overline{\overline{v}}
$$

Therefore, if $u \cdot v$ is infinite then from (3) it follows

(4)
$$
\overline{\overline{u} \cdot \overline{v}} = \overline{\overline{u}} \cdot \overline{\overline{v}} = \overline{\overline{u}} + \overline{\overline{v}} = \max \{\overline{\overline{u}}, \overline{\overline{v}}\}
$$

In sharp contrast to (1) and (3), the cardinality of an infinite ordinal product $\prod_{i\in w} r_i$ of ordinals r_i is not equal, in general, to the infinite cardinal product of the corresponding cardinals \bar{r}_i . The reason for this is the fact that in ordinal arithmetic the ordinal product $\prod_{i \in w} r_i$ is defined by:

(5)
$$
\prod_{i \in w} r_i = \lim_{v \in w} (\prod_{i \in v+1} r_i) = \bigcup_{v \in w} (\prod_{i \in v+1} r_i)
$$

whereas in cardinal arithmetic the cardinal product $\prod_{i \in w} \bar{r}_i$ of cardinals \bar{r}_i is defined as the cardinality of the cartesian product of the family $(\bar{\bar{r}}_i)_{i\in w}$.

In this paper we evaluate the cardinality of infinite ordinal product of ordinals. Also, as a Corollary to Theorem 2 and as a contrast to the cardinal arithmetic, we show that the cardinality of the ordinal product of a nonempty sequence of in*finite ordinals is equal to the cardinality of the ordinal sum of that sequence of O'fdinals.*

In what follows any arithmetical operation among ordinals is performed in the sense of ordinal arithmetic. Thus, if u and v are ordinals u^v is the ordinal exponentiation of u by v and is given by (5) with $w = v$ and $r_i = u$ for every $i \in w$. As usual ω denotes the smallest infinite ordinal.

LEMMA 1. *For every infinite ordinal v,*

$$
\overline{\overline{\omega}^v} = \overline{v}
$$

Proof. Assume on the contrary and let s be the smallest ordinal for which (6) fails.

Since ω^* is a denumerable ordinal we see that $s > \omega$.

Case 1. Let $s = u + 1$ for some infinite ordinal *u*. But then

$$
\omega^s = \omega^{u+1} = \omega^u \cdot \omega
$$

and therefore, by virtue of the choice of *s* and (4),

$$
\overline{\overline{\widetilde{\omega}}}^s = \overline{\overline{\widetilde{\omega}}}^u \cdot \omega = \overline{\overline{u}} \cdot \omega = \overline{\overline{u}} = \overline{\overline{s}}
$$

which contradicts our assumption.

Case 2. Let *s* be a limit ordinal. But then again by virtue of the choice of *s* and (4),

$$
\overline{\overline{s}} \leq \overline{\omega}^* = \overline{\lim_{\omega < v < s} \omega^v} \leq {}_sU_{\omega < v < s} \overline{v} \leq \overline{s} \cdot \overline{s} = \overline{s}
$$

which again contradicts our assumption.

From the above two cases we see that our assumption is false and the Lemma is proved.

LEMMA 2. For every infinite ordinal u

$$
\overline{u^u} = \overline{u}
$$

Proof. Let

$$
(8) \t u = v + m
$$

where v is a limit ordinal and m is a finite ordinal. But then by (4) we have

 $\overline{\overline{u}^u} = \overline{\overline{u^{v+m}}} = \overline{\overline{u}^v} \cdot \overline{\overline{u}^m} = \overline{\overline{u}^v}$ (9)

Let

$$
(10) \t u = \omega^e n + \cdots + m = v + m
$$

where the right side of the first equality represents the normal expansion of u . Since v is a limit ordinal by $[1, p. 61]$ we have

$$
u^v = \omega^{ev}
$$
 and therefore $\overline{u^v} = \overline{\omega^{ev}}$

which by Lemma l implies \prime

$$
\overline{u^v} = \overline{\overline{e} \cdot v}
$$

But then from (10) we obtain

$$
\overline{\overline{e}} < \overline{\overline{\omega} \overline{n}} < \overline{\overline{v}} \quad \text{and} \quad \overline{\overline{u}} = \overline{\overline{v}}
$$

which in view of (11) , (4) and (9) implies (7) , as desired.

THEOREM 1. If the product uv of ordinals u and v is infinite and if $u > 1$ then (12) $\overline{\overline{u}^v} = \max{\{\overline{\overline{u}}, \overline{\overline{v}}\}}$

Proof. Without loss of generality we may assume that both *u* and *v* are'infinite ordinals.

If $u \leq v$ then $u \leq u^v \leq v^v$ which by (7) implies (12).

If $v \leq u$ then $v \leq u^v \leq u^u$ which by (7) implies (12).

Thus, the theorem is proved.

Below we give rather significant consequences of Theorem 1.

We recall that for every ordinal k , the ordinal ω_k is a cardinal number. Thus, $u \in \omega_k$ if and only if $u < \omega_k$ and if and only if $\overline{\overline{u}} < \omega_k$ for every ordinal *u*.

THEOREM 2. *For every positive ordinal k,*

$$
\omega^{\omega_k} = \omega_k
$$

Proof. Clearly, $\omega_k \leq \omega^{\omega_k}$ and therefore $\omega_k \subseteq \omega^{\omega_k}$. Thus, to prove (13) it is enough to show that if $u \in \omega^{w_k}$ then $u \in \omega_k$. In other words, it is enough to show that if $u < \omega^{w_k}$ then $u < \omega_k$.

Let
$$
u < \omega^{\omega_k}
$$
 and let

$$
(14) \t u = \omega^e n + \cdots + m
$$

denote the normal expansion of *u*. Since $u < \omega^{w_k}$ we see that $e < \omega_k$ and since ω_k is a cardinal we have

$$
(15) \t\t e < \omega_k
$$

Moreover, since there are finitely many summands in (14) and since the coefficients of powers of ω in (14) are finite, we have $\overline{\overline{u}} = \overline{\overline{\widetilde{\omega}}}$, where without loss of generality we may assume $e \geq \omega$. But then from (12) and (15) it follows

$$
\overline{\overline{u}} = \overline{\omega}^{\overline{e}} = \overline{\overline{e}} < \omega_k
$$

Thus, $u \in \omega_k$, as desired.

Remark. Since $2^{\omega} = n^{\omega} = \omega$ for every finite ordinal $n > 1$, in view of (13), we see that κ^{ω} is an ϵ -number (cf. [1, p. 72]). Consequently, for every ordinal k and every ordinal *u,* we have

$$
u^{\omega_k} = \omega_k \quad provided \quad 1 < u < \omega_k
$$

Since every ϵ -number is also a δ -number and a γ -number (cf. [1, p. 72]), for every ordinal *k* and every ordinal *u* we have

(16)
$$
u + \omega_k = u \cdot \omega_k = u^{\omega_k} = \omega_k \text{ provided } 1 < u < \omega_k
$$

We observe however, that in contrast with (16), we have

$$
\omega_k + 1 > \omega_k
$$
 and $\omega_k \cdot 2 > \omega_k$ and $\omega_k^2 > \omega_k$

Equalities (16) are quite helpful in ordinal arithmetic. For instance (in view of the above observation) they immediately imply that for every· ordinal *h* and k

$$
h < k \quad \text{if and only if} \quad \omega_h + \omega_k = \omega_h \cdot \omega_k = \omega_h^{\omega_k} = \omega_k
$$

Finally, we give a generalization of Theorem 1.

THEOREM 2. If the product $\prod_{i \in w} r_i$ of a sequence $(r_i)_{i \in w}$ of ordinal type w of *ordinals* r_i *is infinite and if* $r_i > 1$ *for every i* \in *w then*

(17)
$$
\overline{\prod_{i \in w} r_i} = \max \{ \overline{\overline{w}}, \sup_{i \in w} \overline{\overline{r_i}} \} = \overline{\sum_{i \in w} r_i}
$$

Proof. In view of the hypothesis of the theorem we have

$$
\max \{w, \sup_{i \in w} r_i\} \leq \prod_{i \in w} r_i \leq (\sup_{i \in w} r_i)^w
$$

which, in view of (12) , implies

$$
\overline{\prod_{i \in w} r_i} = \max \left\{ \overline{\overline{w}}, \overline{\overline{\sup_{i \in w} r_i}} \right\}
$$

However, $\frac{1}{\sup_{i \in w} r_i} \leq \overline{w} \cdot \sup_{i \in w} \overline{r_i}$ which in view of the above and (1) and (2) implies (17), as desired.

COROLLARY. Let $(r_i)_{i \in w}$ be a nonempty sequence of ordinal type w of infinite *ordinals r;. Then*

$$
\overline{\overline{\prod_{i\in w} r_i}} = \overline{\overline{\sum_{i\in w} r_i}} = \overline{\overline{w}} \operatorname{sup}_{i\in w} \overline{\overline{r_i}}.
$$

IOWA STATE UNIVERSITY, AMES, IOWA.

REFERENCES

[l] H. BACHMANN, Transfinite Zahlen, Springer Verlag, Berlin, 1967. (2] A. ABIAN, *On the exponentiation of transfinite cardinals* (to appear).