ON THE SINGULAR POINTS OF A GRAPH

By Victor NEUMANN-LARA

0. Introduction

In this paper we introduce the concept of singular point of a graph and prove
that any non trivial, bridgeless connected graph contains at least two singular
points. This result enables us to characterize cycle-trees as the only graphs with-
out acyelic points that have no singular points.

1. Notation

We shall use Harary’s notation [1].

Let G be a graph. V (G) and E (G) are the sets of points and edges of G respec-
tively. Cycles, paths and subsets of V(@) will be considered as subgraphs of G.
A point is adjacent to a subgraph « of G if it is adjacent to some point of «. It
is a-cyclic if there is a cycle in « containing it, otherwise it is a-acyclic. An edge of
@ not belonging to « is a chord of a whenever both its endpoints belong to a.
We denote by G — « the induced subgraph of ¢ whose point-set is V(G) — V («).
A bridgeless component of G is a maximal bridgeless connected-subgraph of G. A
set A C© V(@) is a point-cycle if there exists a cycle a such that V(a) = 4.A
point w € V(@) is singular if there exists a point-cycle A not containing « and
having a non empty intersection with every point-cycle containing .

For any two subgraphs « and 8 of G, a 4 ¢B is the subgraph of G satisfying:
V(e + o8) = V(a) UV (8) and E(a+ o8) = E(a) U E(B) U M where M is
the set of all edges of G having one endpoint in « and the other in 8. Two differ-
ent points z and y of a cycle v determine two paths joining x and y: the arcs zy
of «. '

If «, S and 8 are subgraphs of G, we will say that S separates « from g8, with
symbols {(«, S, 8)¢, if each path of G joining a point in « to another point in 8
has at least one point in S.

G is a cycle-tree if it is connected and everyone of its points is contained in
exactly one point-cycle.

| C' | denotes the cardinality of C.

2. Preliminaries

In this paper it will be useful to refer to the next two lemmas together with
corollary 1. The proofs of lemmas 1 and 2 are easy and we shall not give them
here.

Lemma 1. Let G be a two-connected graph, a a two-connected subgraph of G and
K any connected component of @ — «. Then a + oK is also two-connected.

Levmma 2. Let G be a two-connected graph, o a connected subgraph of G and K
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a connected component of G — a. Then a + ¢K s two-connected provided each end-
block of a contains some point adjacent to K which is not a cut-point of a.

CoroLLARY. Let G be a two-connected graph, L a non triwial path in G, and K
any connected component of G — L. If both endpoints of L are adjacent to K, then
L + &K is two-connected.

3. Principal results

Tueorem 1. Let G be a two-connected graph, C a point-cycle of G different from
V(@) and K a component of @ — C. Then there exists a (singular) point u € K
and a point-cycle Co of G such that:

1) u ¢ Co and C, intersects all point-cycles of G containing u.
ii) <u, Co, C)g .

Proof. The proof is by induction on N (G) = | E(G) | 4+ | V(@) |. The simplest
case is obtained when N (G) = 9. In this case, G = K, — z and therefore theorem
1 is true.

Suppose that theorem 1 is true for all two-connected graphs @’ with N (¢') < n
and let @ be a two-connected graph with N (@) = n, C a point-cycle of G dif-
ferent from V(@) and v a cycle of @ such that V (y) = C. The proof is divided
into two cases:

Case 1. G—+ is not connected.

Let K;, K;, -, K, be the connected components of G — v and suppose
K = K;. The graph G4 = v 4+ ¢K is two-connected by lemma 1. Furthermore
N (G1) < n. By the induction hypothesis, there exists a point # € K and a point-
cycle Cy of Gy such that:

i) u ¢ Co and C, intersects all point-cycles of Gy containing u.
i) (u, Co, C)e, .

Tirst of all we shall see that « and C, satisfy ii). Let £ = (uo, w1, - -, us) be a

path in G such that o = u, u, € C. Put m = min {¢ | u; € C}. The path ¢ =

(wo, w1, *** , Um) has only one point in C. Recalling that (K;, C, K;)¢ whenever
i # 7, one concludes that ¢’ is contained in Gy and, by ii’), that it contains some
point of Cp.

Now let A be a point-cycle of G containing u. If A is a point-cycle in Gy, A
intersects Co by 7”). If this is not the case, let a be a cycle in G such that V (a) = A.
Then « contains some chord of v or some point in K; with j # 1. Because of
(K, C, Kj)¢,j # 1;in both cases, a contains some point w € C. Both uw arcs of
a intersect Co by ii). This proves i.)

Case 2. G — ~ is connected.

If K contains some K-acyclic point p, take Co = C, u = p. Suppose now that
all points in K are K-cyclic. Let L be an arc of v with endpoints z and y, of min-
imal length such that all points of v adjacent to K are contained in L. Let 2’
and ' be points of K adjacent to 2 and y respectively and r a path in K joining
z" and y’ which can be assumed to be non hamiltonian (If 7 = (uo, %1, - - , Ug),



SINGULAR POINTS OF A GRAPH 73

o = &', uqg = y were hamiltonian, there would be an edge (us, ;) withs + 1 < j
because K contains some cycle, and the path v = (uo, -+, us, u;, -+ , Uq)
would be non hamiltonian). Define G; = L 4+ ¢K. By corollary 1, G, is two-
connected. Furthermore N (G2) < n. Let v; be the cycle formed by L,  and the
edges (2, ') and (y, ') and put Ci = V(y1). By the induction hypothesis,
there exists a point 4 € K and a point-cycle Cy of G, such that
i”) u & C, and C, intersects all point-cycles of G, containing u.

i-i”) <u7 007 Cl>02

We shall prove that u and Co also satisfy ii). Let ¢ = (uo, -, %s) be any
‘path in G such that u, = u, u. € C. Define ¢ asin case 1. It is easy to see that ¢’
is contained in G,. Since (K, L, C)¢, t contains some point of L and by ii”) it
contains also a point of Cy.

Now let 4 be a point-cycle of G containing u. If A is a point-cycle of G: ;
then byii”) A intersects Cy . Otherwise A contains some point w € C. Let a be a
cycle of G such that V(o) = A. By ii) both of the uw-arcs of a intersect Cj .

TurorEM 2. Let G be a two-connected graph that is not a cycle. Then G contains
at least two singulgr points.

Progf. Choose a point-cycle A of G with maximum | 4 | and let « be a cycle
of G such that V(o) = A.

Casel. A = V(Q).

Since @ is not a cycle, @ has a chord A whose endpoints z; and . divide «
into two ares oy and ap. Clearly V(a;) and V (a:) are themselves point-cycles
of G. If we take C = V (au) in theorem 1, we obtain one singular point % of G
that is an interior point of as . Likewise one obtains another singular point of G
that is an interior point of o .

Case 2. A = V(G) and G — A is not connected.
This case is trivial from case 1 in the proof of theorem 1.

Case 3. A # V(G) and G — A is connected.

Put K = G — A and let L be an arc of « as chosen for v in case 2 of theorem 1.

Let L' be the other arc of o with endpoints z and y; 2’ and y’ points of K ad-
jacent to z and y respectively and r any path from z’ to 3’ in K.

L’ has a length greater than one because otherwise the cycle v, formed with
L, 7 and the edges (z, z') and (y, y') would have a length greater than | 4 |.
Thus, L has interior points. Taking C = V (y1) as in the proof of theorem 1,
one obtains a singular point of @ that is an interior point of L. Furthermore,
by theorem 1, K contains another singular point of G.

4. Generalizations and applications

TueoreMm 1’. Theorem 1 remains valid if we replace “two-connected graph”
by “bridgeless connected graph”.
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Proof. Suppose that @ is not two-connected and let By be the block of G con-
taining C.

Case 1. K C By.

K contains no cutpoint of G because if ¢ € B, were such a point, K would
contain all blocks of G different from By and containing c.

Taking G = B, in theorem 1, one obtains a point w € K and a point cycle
Cy of B, satisfying properties i) and ii.) Since u is not a cutpoint of G, all point-
cycles of G containing u are contained in B, and theorem 1’ follows.

Case 2. K € By.

K contains points of at least one endblock B, of @ different from B,. Let B’
be the block of @ preceding B; in the unique path joining B, and B; in the block-
cutpoint tree of G. Moreover let ¢ be the cutpoint contained in both B’ and B, .
If B, is a cycle, take C, to be any point-cycle contained in B’ and containing c,
and u any point in B, different from c¢. If B, is not a cycle, take a point-cycle
¢’ # V (B,) of B, containing ¢. Taking G = B,,C = €’ in theorem 1 one, obtains
a point v € V(B:), u # ¢, and a point-cycle Cy of B, satisfying properties i)
and ii). Since all point-cycles of G containing u are included in B, , they intersect
C» . Furthermore we have obviously (C, Cy, %) . This finishes the proof.

LemMa 3. Each endblock of any bridgeless connected graph contains at least one
singular point.

Proof. Let B, be an endblock of @, ¢ the cutpoint contained in B, and B’
another block containing ¢. If B, is a cycle, all points of B; different from ¢ are
singular. If B, is not a cycle, let « be a singular point of B, different from ¢. Ob-
viously u is a singular point of G.

From theorem 1 and lemma 3 we obtain directly the next result.

TraeoreM 2'. If G is a non trivial bridgeless connected graph that is not a cycle,
then it contains at least two singular points.

Graphs of figure 1 are examples of bridgeless connected graph with exactly
two singular points. .
In any graph without acyclic points, a point « is singular if and only if it is
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singular in the bridgeless component to which it belongs. We obtain then the
next theorem.

TuEOREM 3. A graph G without acyclic points has no singular points ¢f and
only if it 7s a cycle-tree.

It is also clear that if G has no acyclic points and has a singular point, then it
has at least one more.
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