ON THE SINGULAR POINTS OF A GRAPH

BY VicToR NEUMANN-LARA

0. Introduction

In this paper we introduce the concept of *singular point of a graph* and prove that any non trivial, bridgeless connected graph contains at least two singular points. This result enables us to characterize cycle-trees as the only graphs without acyclic points that have no singular points.

I. **Notation**

We shall use Harary's notation [1].

Let G be a graph. $V(G)$ and $E(G)$ are the sets of points and edges of G respectively. Cycles, paths and subsets of $V(G)$ will be considered as subgraphs of G. A point is *adjacent* to a subgraph α of *G* if it is adjacent to some point of α . It is α -cyclic if there is a cycle in α containing it, otherwise it is α -acyclic. An edge of *G* not belonging to α is a *chord* of α whenever both its endpoints belong to α . We denote by $G - \alpha$ the induced subgraph of G whose point-set is $V(G) - V(\alpha)$. A *bridgeless component* of *G* is a maximal bridgeless connected-subgraph of *G.* **A** set $A \subseteq V(G)$ is a *point-cycle* if there exists a cycle α such that $V(\alpha) = A \cdot A$ point $u \in V(G)$ is *singular* if there exists a point-cycle A not containing u and having a non empty intersection with every point-cycle containing *u*.

For any two subgraphs α and β of G , $\alpha + \beta \beta$ is the subgraph of G satisfying: $V(\alpha + \alpha\beta) = V(\alpha) \cup V(\beta)$ and $E(\alpha + \alpha\beta) = E(\alpha) \cup E(\beta) \cup M$ where M is the set of all edges of G having one endpoint in α and the other in β . Two different points x and y of a cycle γ determine two paths joining x and y: the *arcs xy* of γ .

If α , *S* and β are subgraphs of *G*, we will say that *S separates* α from β , with symbols $\langle \alpha, S, \beta \rangle_{\mathcal{G}}$, if each path of G joining a point in α to another point in β has at least one point in S.

G is a *cycle-tree* if it is connected and everyone of its points is contained **in** exactly one point-cycle.

 $|C|$ denotes the cardinality of C.

2. Preliminaries

In this paper it will be useful to refer to the next two lemmas together with corollary 1. The proofs of lemmas 1 and 2 are easy and we shall not give them here.

LEMMA 1. *Let G be a two-connected graph, a a two-connected subgraph of G and K* any connected component of $G - \alpha$. Then $\alpha + \beta K$ is also two-connected.

LEMMA 2. *Let G be a two-connected graph, a a connected subgraph of G and K*

72 V. NEUMANN-LARA

a connected component of $G - \alpha$. Then $\alpha + {}_6K$ is two-connected provided each endblock of α contains some point adjacent to K which is not a cut-point of α .

COROLLARY. *Let G be a two-connected graph, La non trivial path in G, and K* any connected component of $G - L$. If both endpoints of L are adjacent to K , then $L + gK$ is two-connected.

3. Principal results

THEOREM 1. *Let G be a two-connected graph, C a point-cycle of G different from* $V(G)$ and K a component of $G - C$. Then there exists a (singular) point $u \in K$ *and a point-cycle Co of G such that:*

i) $u \notin C_0$ and C_0 intersects all point-cycles of G containing u.

ii) $\langle u, C_0, C \rangle_a$.

Proof. The proof is by induction on $N(G) = |E(G)| + |V(G)|$. The simplest case is obtained when $N(G) = 9$. In this case, $G = K_4 - x$ and therefore theorem 1 is true.

Suppose that theorem 1 is true for all two-connected graphs G' with $N(G') < n$ and let *G* be a two-connected graph with $N(G) = n$, *C* a point-cycle of *G* different from $V(G)$ and γ a cycle of G such that $V(\gamma) = C$. The proof is divided into two cases:

Case 1. $G - \gamma$ is not connected.

Let K_1, K_2, \cdots, K_r be the connected components of $G - \gamma$ and suppose $K = K_1$. The graph $G_1 = \gamma + {}_{g}K$ is two-connected by lemma 1. Furthermore $N(G_1) < n$. By the induction hypothesis, there exists a point $u \in K$ and a pointcycle C_0 of G_1 such that:

i') $u \notin C_0$ and C_0 intersects all point-cycles of G_1 containing u .

ii') $\langle u, C_0, C \rangle_{a_1}$.

First of all we shall see that *u* and C_0 satisfy ii). Let $t = (u_0, u_1, \dots, u_s)$ be a path in *G* such that $u_0 = u$, $u_s \in C$. Put $m = \min \{i \mid u_i \in C\}$. The path $t' =$ (u_0, u_1, \dots, u_m) has only one point in *C*. Recalling that $\langle K_i, C, K_j \rangle$ whenever $i \neq j$, one concludes that *t'* is contained in G_1 and, by ii'), that it contains some point of C_0 .

Now let *A* be a point-cycle of *G* containing *u*. If *A* is a point-cycle in G_1 , *A* intersects C_0 by i'). If this is not the case, let α be a cycle in *G* such that $V(\alpha) = A$. Then α contains some chord of γ or some point in K_j with $j \neq 1$. Because of $\langle K, C, K_i \rangle_{\sigma}, j \neq 1$; in both cases, α contains some point $w \in C$. Both *uw* arcs of α intersect C_0 by ii). This proves i.)

Case 2. $G - \gamma$ *is connected.*

If *K* contains some *K*-acyclic point *p*, take $C_0 = C$, $u = p$. Suppose now that all points in K are K-cyclic. Let L be an arc of γ with endpoints x and y, of minimal length such that all points of γ adjacent to *K* are contained in *L*. Let *x'* and y' be points of *K* adjacent to *x* and *y* respectively and τ a path in *K* joining *x'* and *y'* which can be assumed to be non hamiltonian (If $\tau = (u_0, u_1, \cdots, u_q)$),

 $u_0 = x', u_q = y'$ were hamiltonian, there would be an edge (u_i, u_j) with $i + 1 < j'$ because *K* contains some cycle, and the path $\tau' = (u_0, \dots, u_i, u_j, \dots, u_q)$ would be non hamiltonian). Define $G_2 = L + {}_{g}K$. By corollary 1, G_2 is twoconnected. Furthermore $N(G_2) < n$. Let γ_1 be the cycle formed by L, τ and the edges (x, x') and (y, y') and put $C_1 = V(\gamma_1)$. By the induction hypothesis, there exists a point $u \in K$ and a point-cycle C_0 of G_2 such that

 i'') $u \notin C_0$ and C_0 intersects all point-cycles of G_2 containing u . ii") $\langle u, C_0, C_1 \rangle_{\mathcal{G}_2}$

We shall prove that *u* and C_0 also satisfy ii). Let $t = (u_0, \dots, u_s)$ be any path in *G* such that $u_0 = u$, $u_s \in C$. Define *t'* as in case 1. It is easy to see that *t'* is contained in G_2 . Since $\langle K, L, C \rangle_q$, t' contains some point of *L* and by ii'') it contains also a point of *Co* .

Now let *A* be a point-cycle of *G* containing *u.* If *A* is a point-cycle of *G2* ; then by ii'') *A* intersects C_0 . Otherwise *A* contains some point $w \in C$. Let α be a cycle of *G* such that $V(\alpha) = A$. By ii) both of the uw-arcs of α intersect C_0 .

THEOREM 2. Let G be a two-connected graph that is not a cycle. Then G contains at *least two singular points.*

Proof. Choose a point-cycle *A* of *G* with maximum | A | and let α be a cycle of *G* such that $V(\alpha) = A$.

Case 1. $A = V(G)$.

Since *G* is not a cycle, α has a chord λ whose endpoints x_1 and x_2 divide α into two arcs α_1 and α_2 . Clearly $V(\alpha_1)$ and $V(\alpha_2)$ are themselves point-cycles of *G*. If we take $C = V(\alpha_1)$ in theorem 1, we obtain one singular point *u* of *G* that is an interior point of α_2 . Likewise one obtains another singular point of G that is an interior point of α_1 .

Case 2. $A \neq V(G)$ and $G - A$ is not connected. This case is trivial from case 1 in the proof of theorem **1.**

Case 3. $A \neq V(G)$ and $G - A$ is connected.

Put $K = G - A$ and let *L* be an arc of α as chosen for γ in case 2 of theorem 1. Let *L'* be the other arc of α with endpoints *x* and *y*; *x'* and *y'* points of *K* adjacent to *x* and *y* respectively and τ any path from *x'* to *y'* in \tilde{K} .

 L' has a length greater than one because otherwise the cycle γ_1 formed with L, τ and the edges (x, x') and (y, y') would have a length greater than | *A* |. Thus, L' has interior points. Taking $C = V(\gamma_1)$ as in the proof of theorem 1, one obtains a singular point of *G* that is an interior point of *L'.* Furthermore, by theorem 1, *K* contains another singular point of *G.*

4. Generalizations and applications

THEOREM 1'. Theorem 1 remains valid if we replace "two-connected graph" by "bridgeless connected graph".

74 V. NEUMANN-LARA

Proof. Suppose that *G* is not two-connected and let *Bo* be the block of *G* containing C.

Case 1. $K \subseteq B_0$.

K contains no cutpoint of *G* because if $c \in B_0$ were such a point, *K* would contain all blocks of *G* different from *Bo* and containing *c.*

Taking $G = B_0$ in theorem 1, one obtains a point $u \in K$ and a point cycle C_0 of B_0 satisfying properties i) and ii.) Since *u* is not a cutpoint of G , all pointcycles of *G* containing *u* are contained in *Bo* and theorem 1' follows.

Case 2. $K \nsubseteq B_0$.

K contains points of at least one end block B_t of *G* different from B_0 . Let B' be the block of *G* preceding B_t in the unique path joining B_0 and B_t in the blockcutpoint tree of *G*. Moreover let *c* be the cutpoint contained in both B' and B_t . If B_t is a cycle, take C_0 to be any point-cycle contained in B' and containing c , and u any point in B_t different from c . If B_t is not a cycle, take a point-cycle $C' \neq V(B_t)$ of B_t containing *c*. Taking $G = B_t$, $C = C'$ in theorem 1 one, obtains a point $u \in V(B_t)$, $u \neq c$, and a point-cycle C_0 of B_t satisfying properties i) and ii). Since all point-cycles of G containing u are included in B_t , they intersect C_0 . Furthermore we have obviously $\langle C, C_0, u \rangle_{\sigma}$. This finishes the proof.

LEMMA 3. Each endblock of any bridgeless connected graph contains at least one *singular point.*

Proof. Let B_t be an endblock of G , c the cutpoint contained in B_t and B' another block containing c. If B_t is a cycle, all points of B_t different from c are singular. If B_t is not a cycle, let *u* be a singular point of B_t different from *c*. Obviously *u* is a singular point of *G.*

From theorem 1 and lemma 3 we obtain directly the next result.

THEOREM 2'. *If G is a non trivial bridgeless connected graph that is not a cycle, then it contains at least two singular points.*

Graphs of figure 1 are examples of bridgeless connected graph with exactly two singular points.

In any graph without acyclic points, a point *u* is singular if and only if it is

singular in the bridgeless component to which it belongs. We obtain then the next theorem.

THEOREM 3. *A graph G without acyclic points has no singular points if and only if it* is *a cycle-tree.*

It is also clear that if *G* has no acyclic points and has a singular point, then it has at least one more.

FACULTAD DE CIENCIAS Y CIMASS UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

REFERENCES

[1] F. HARARY, Graph Theory, Addison Wesley, **1971.**