
MAPPINGS_ OF QUATERNIONIC PROJECTIVE SPACES -

BY s. FEDER AND s. GITLER 

1. Introduction 

Recall that for QPn, the quaternionic projective space of real dimension 4n, 
we have H*(QPn; Z) '.::: Z[y]/ (y"+1) where y E F(QPn; Z) is a generator. Tb 
every mapping f: QPn ➔ Qr we can associate an integer >. (f), the degree of f by 

J*y = A(f)y. 

We say that an integer >. is n-realizable if there exists. a mapping J: Qr ➔ QPn 
such that >. is the degree off. It is clear from the cellular approximation theorem 
that n-realizable implies m-realizable for all m, 1 ~ m ~ n. It is very natural 
then to consider the following: 

Problem. Describe the set of n-realizable integers. 

We obtain the following results: 

THEOREM 1.1. If Xis n-realizable then 

rrk-1 - .2) _- - { (2k) ! ifk is even 
i-o (>. - i = 0 mod (2k) !/2 if k is orld 

for all k, 1 ~ k ~ n. _ 
The results of D. Sullivan [3], together with (1.1) imply 

THEOREM 1.2. The set of oo -realizable integers consists precisely of the odd squares, 
and zero. 

In [3], Sullivan attributes the necessary condition for oo -realizability to I. 
Berstein, R. Stong, L. Smith and G. Cooke. 

To our knowledge, none of the proofs appeared in print. We decided to publish 
this note, because we strongly believe that (1.1) is a characterization of the set 
of n-realizable integers. 

2. Natural endomorphisms 

The rings KU(QPn) are quotient rings of KU(QP"') which is the ring of power 
series Z[[z]], with z = H - 1, where His the Hopf bundle. On KU (QP"') we have 
the Adams operations l which are ring endomorphisms and these restrict to 
KU ( QP") = Z[z ]/ (zn+i) in the usual way. _ 

If R is the field of real numbers, the operations l have a natural extension to 
ring homomorphisms of R[[z]]. 

DEFINITION 2.1. A ring homomorphism cp of R[[z]] wi1.l be called a natural endo'­
morphism if vlcp = w" for all k. 

Let us denote by fil the set of natural endomorphisms of R[[z]]. Itis clear how 
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to define natural endomorphisms of R[z]/z"+i-these we denote by m.,. and we 
have the "restriction" maps m - m. ... 

An element cp of m is completely determined by its action on the generator z, 
i.e. by the powerseries cp(z) = ~.a,(q,)i. If q, E filn, then q,(z) is just a poly­
nomial, which we call the characteristic. polynomial of q,. 

In general, q,(z) is called the characteristic series of q,. Let us consider the fol­
iowing1map:between sets 

m~ R 

where deg q, - a1 (q,). We now prove the following lemma. 

LEMMA 2.2. The mapping 

deg:m-R 

is an isomorphism of sets. 

Proof. Because q, is a natural homomorphism, "'--must commute with ..J,2 and 
1/13• This implies that ao (q,) = O. Note also that the. composition of two natural 
endomorphisms q,, q,1 is a natural endomorphism denoted by q, o q,1 whose power 
series is the power series obtained by substitution (as power series) of <p1 in q,. 

Suppose deg"' = a1 E R. Then"' (z) = a1z + a,.l" + · · · . Recall that lz = 
4z + z2. Since q,,J,2 = l'P, we have: 

(2.3) L,>Oai(4z + z2)i = 4 I: /;>oa.zi + (u.i) 2 

This equality between the two power series determines all the a; , j > 1 induc­
tively in terms of a1 . This shows that the map deg is injective. 

On the other hand, given a number a1 , the equation (2.3) determines uniquely 
a power series <p (z) = a1z + · · · , and hence a homomorphism <p which commutes 
with "12. Now since q, commutes with 1/i, both 'P'/11:; and i/1""' commute with 1/12, 

but a1 ('P'f;") = a1 (l''P ), and since a1 determines a; uniquely for all j > 1, it follows 
_ that 'Pl = ,//' "'· 

COROLLARY 2.4. If ~ E m. is not the trivial end,omorphism, then ,p is in fact an 
automorphism. 

Proof. Let 0 denote the trivial endomorphism, then 

deg lui-e:m. - 0 - R - 0 

is a 1-1 correspondence, but deg (<pq,1
) = degq, degq,', i.e. it is in fact an isomor­

phism of groups, so that each cp is invertible, i.e., it is an automorphism. 
Note that the arguments would not have changed had we used m,. instead of m.. 

This means that the restriction maps m; - m;,. are l-1 and onto. For this reason, 
it suffices to study m; alone. It is clear that a map f: QP" - QP" induces a natural 
endomorphism of KU(QP") ® R = R[z]/ (z"+1) that is, f* E m,.. It is therefore 
necessary for n-realizability of an integer k, that deg-1 (k) E m,., have charac­
teristic polynomial with integral coefficients. 
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It is rather thankless to determine the coefficients ai (<p) from the recursion rela­
tion (2.3) and we propose to construct all elements of m: directly. 

Recall that to find the operations vl on KU(QP«J) one sets x + x = z = -xx 
(in particular (x + l)(x + 1) = 1) and theni/l(z) = (1 + x)1' + (1 + xi' - 2. 

Letµ, be any real or purely imaginary number. Consider the power series ob­
tained by setting 

'Pp(z) = (I+ xY + (I+ x)I' - 2. 

Since the coefficients of 'PP (z) are polynomials in µ. and 'P-P (z) = 'PP (z), these 
polynomials are actually polynomials in µ,2, and hence are real numbers. The 
power series <P,i (z) has a nonzero radius of convergence and since 

[ (1 + x )" - l]( (1 + x )1' - 1) = - [ (1 + x Y + (1 + x )" - 2] 

we have: 

LEMMA 2.5. Forµ, v real or purely imaginary numbers, 

Proof. Consider 

<Pv('PP(z)) = 'Pv((l + x)" + (I+ x)P - 2) 

= [(1 + x)" - 1 + 1]" + [(1 + x)" - 1 + l}' - 2 

= (1 + x )"' + (I + x)"v - 2 

= l{)p, (z) = 'P,,(<Pv (z) ). 

When k is an integer, 'Pk(z) = ·.Jf (z). Then (2.5) implies that to cp,,(z) cor­
responds a unique element in m: with <p,, (z) as characteristic series. It is easy to 
check that degcp,. = µ,2, and so every element of m: has characteristic series q;,. 
for some µ a real or purely imaginary number. 

We will now describe 'Pp (z). From the relations 

X + X = z = -xx 

we have formally, 

and so 

x = ½[z + (4z + z2)1'2] 

x = ½[z - (4z + z2)112] 
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= L•>O 2-• (:) L;;,::o za--i[((4z + z2)1/2) + (-(4z + z2)1/2)'] 

= L,>o L;;,::o :i-•+l (:) (;j) z..-;(4 + z)' 

= La>O L;;,::o Lr;,::o tr-•+l (:) (;j) (!) z•-r. 

Let us denote the coefficient of zm in cp,. (z) by a,,.(µ). 
We have 

(2.6) am(µ) =. L,;,::m L;;,::o 2•~lm+l (:) (;j) (s ~ m) · 
Since ip,.(z) = ip_,.(z), it follows that a,,.(µ) is an even polynomial inµ, i.e. 

a,,.{µ) = am(-µ). 

Let 

(2.7) Pm(µ) = {2!)! Il,.:01 (µ2 - i2) = (" dm, ~ ~ 1) ~ 
LEMMA 2.8. We have: 

a,,.{µ) = P,;.(µ). 

Proof. The terms(~) in the expression of a,,.(µ) indicate thatµ = 0, 1, • • • , 
m - l are roots of a...(µ), since the summation over s extends over s ~ m only. 
Since a,,.{µ) is an even polynomial in µ_of degree 2m, we have the roots ±1, • • • , 
± (m - 1) and the double root 0. These are the same as the roots of Pm(µ). 
l¼oreo1i'er .• 

"'°' ;-,m+l (m) · = £..Jj;?::O 2 2j = l, 

Also, clearly, P,,.(m) = 1. This establishes (2.8). 

COROLLARY 2.9. The polynqmials ,fl" (z) are given by 

1/l"(z) = E!-1e tm ~ ~ 1)! zm. 

This describes the action of the Adams operations in KU (QP"). Special cases 
were considered in {1] and [2]. 

3. Proof of the theorems 

Recall that KSp (QP"") -+ KU (QP"°) is a monomorphism and the image is the 
submodule generated by ,w.-i and 2z21,, k = l, 2, • • • . By naturality of this 
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monomorphism (and its restrictions to QP") it follows that if f is a map, 
J:QP"" - QP"", then J*z E KU(QP"") must lie in the submodule of sympletic 
elements. If degf = X, then /*z = ,p,.(z), with ,,.2 = X. It follows that P,..(p.) 
must be an integer if m is odd, and an even integer if m is even. For finite dimen­
sional quatemionic projective spaces, this gives theorem (1.1). 

For QP"", we obtain the conditions 

,-o i\ - i = 0 mo. (2m)!/2 if mis odd 
(3.1) 

{II ... ~1 ( .2) _ d { (2m) ! if m is even 

for all integers m;;:: 1. 

We wish to. show that (3.1) implies that X must be the square of an odd in~ger 
or 0. 

If we fix the integer X, then 

2 II~1 (i\ - i2 ) < 2>."' < (2m)1 

for largem. 

We conclude that (3.1) implies>. = ,,.2 for some integerµ. This immediately 
implies that the corresponding characteristic series is in fact a polynomial (in 
fact if/' (z) ). This means that the coefficients are given by P,.. (µ),with µ an integer. 
From (2.7), we see that if µ were even, and taking m = µ, we would 
have P,,.(m) = 1, which is not an even integer. It is therefore necessary thatµ 
be odd. 

On the other hand, because ,p,. = if/' ifµ is an int~, P,..(µ) is an integer and. 

P,..(µ) = ("' + m - 1) ~ = ~ ("' + m) !!.. 
µ-m m µ-m 2m m 

= µ ~ m ("' im m) • 

Therefore, if m is even, µ - m is odd and P,,. (µ) is even. This shows that no 
more restrictions are imposed onµ. This establishes (1.2). 

CENTRO DE INVESTIGAOI6N DEL JPN 
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