
WEAK EQUIVALENCE OF FIBRATIONS 

BY DAVID L. SMALLEN 

Introduction • 

In this note we introduce the notion of weakly equivalent fibrations which 
will beusedin the studyof the group of self equivalences of certain manifolds [2], 
in a subsequent paper. The main result of this paper is an extension of a theorem 
of Dold [1], p. 243. We work in the category of spaces of the homotopy type of a 
countable CW-complex. All fibrations will be assumed to be Serre fibrations and a 
fibration I; will be denoted by I;= (E(I;), P(I;), B(I;)) where E(I;) is the total 
space of I;, B(I;) the base space of I;, and P(I;) the projection of E(I;) onto B(I;). 
The author wishes to thank the referee for his helpful comments which resulted 
in a more readable and concise presentation of this paper. 

Definition 1.1 Let I; and ,,, be two fibrations. A pair of maps (J, g) is called an 
equivalence pair fr<Ym flo'll if f:E(I;) -E(,,,), g:B(I;) - B('ll) and the following 
diagram commutes, 

E(i;) -L+ E(t,) 

lp(I;) lp(,,) 

B(i;) __f!__.,. BC,,) 

FIG. 1 

where f and g are homotopy equivalences. 

Definition 1.2 Two fibrations I; and ,,, are called weakly equivalent if there exists 
equivalence pairs (J, g) and (/, g') from I; to '11 and from f1 to I; respectively, 
and homotopies H':E('ll) X I - E(,,,), H:E(I;) X I - E(I;), G':B(,,,) X 
1 .. 1-B('ll), G:B(I;) X 1-B(I;), such that: 

. (1) H'o = l•c•> Hi' = fof' 
Ho= l•m H1 = f'of 
Go' = lac,> Gi' = gog' 
Go = lace> Gi = g' 0 g 

and 

(2) the following diagrams commute: 

H' 
E(71) X I - E(,,) 

l p(71) X 11 l p(71) 

G' 
B(f/) X I - B('I) 

FIG.2 

38 

E(i;) X I _!!._ E(i;) 

l p(I;) X 11 l p(I;) 

G 
B(i;) X I --- B(i;) 
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Note that in the usual notion of "equivalence" of fibrations (fibre homotopy 
equivalence), g and g' are taken to be the identity map of the base space 
B ('q) = B Ct) and the maps H and H' just cover the identity map of the base 
spaces. 

LEMMA 1.3 If (f, g) is an equivalence pair from t to 'Y/, then for all homotopy in
verses g' tog there existsf':E('YI) - E(t) such that f' is a homotopy inverse to f and 
figure 3 commutes. 

E(~) _i_,, E(.,) __L_,, E(~) 

l p(~) l p(.,) l p(~) 

B(~) ~ B(.,) ~ BW 

FIG. 3 

Proof: Letf* be a homotopy inverse tof. (Note thatf* may not even be fibre 
preserving). Then p (t) of*~ g' o go p (t) of* = g' o p(r,) of of*~ g' o p(r,). By 
lifting this composite homotopy, we get f* ~ f such that figure 3 commutes. 
Since f* ~ f it follows that f is a homotopy inverse to f. 

We now get the extension of the Dold theorem. 

THEOREM 1.4 Let t and 'Y/ be fibrations. Then ~ and 'Y/ are weakly equivalent if 
and only if there exists an equivalence pair (f, g) from ~ to 'T/· 

Proof: The "only if" part of the theorem is immediate. 

Let (f, g) be an equivalence pair from ~ to r,. By Lemma 1.3 there exists an 
equivalence pair (f, g') from ri to ~ such that figure 3 commutes. Since 
g O g' ~ lB<"> we get a map h' ~ f O f by the covering homotopy property of 'Y/, 

By Dold [1] there exists a map g":E(ri) - E('TJ) with g" a homotopy inverse to 
h' and h' 0 g" ~ he,> , with this homotopy covering hc,,i . 

Now let f* = f O g". Then f O f* ~ h' 0 g" ~ hc,,J , with this homotopy covering 
that of he~> and g O g'. We must show that f* 0 f ~ lam with the homotopy cover 
one between g' 0 g and hm . Repeating the above procedure we find 
f**:E(~) - E(ri), such that f*·f** ~ hm. 

Then following through the chain of homotopies we have 

f* of' ~ f* of o (f*of**) ~ f* o (f oj*) of** ~ f* of** ~ lE(~), 

It is easily checked that the homotopy thus arrived at covers a homotopy of 
g' o g and lam . Thus the result is complete. 

From this theorem we get the following useful properties of weak equivalence, 
and its relation to fibre homotopy equivalence. 

COROLLARY 1.5. If ~ is a jwration, h a homotopy equivalence from B' to B (~) 
then 'Y/ = h*(O, the inducedfibrationfrom ~ by h, is weakly equivalent to~-
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· Proof: Since '1/ is a "pullback" of E under the map h, we have the natural map 
h' from E(71) to E(E). The map h' is easily seen to be a homotopy equivalence, 
hence (h', h) will be an equivalence pair from '1/ to E-Therefore by Theorem 1.4, 
it gives rise to a weak equivalence of fibrations . 

. COROLLARY 1.6. Let E and 71 be two jibrations which are weakly equivalent by the 
equivalence pair (f, g) from E to 71. Then E is fibre homotopically equivalent to g * ( 71). 

FIG.4 

Proof: Let g* (71) = 11. Consider figure 4 where f" is the "natural map" from 
E(v) to E(71) (j" is a homotopy equivalence as in Corollary 1.5). By Theorem 
1.4 there exists an equivalence pair (J', g') from 71 to E such that (f, g) and (J', g') 
give rise to a weak equivalence of E and 71. 

We have p(E) o (j' of') = g' o go p (11) and g' 0 g ~ lBm so there exists 
h:E(v)-. E(E), with h ~f 0 /' andp(E) 0 h = p(11), by the covering homotopy 
property of e. Since h ~ f O f', h is a homotopy equivalence and hence a fibre 
homotopy equivalence by Dold ([1] Theorem 6.1) . 

. We· briefly show that in fact weak equivalence of fibrations is a notion 
''weaker" than the usual notion of fibre homotopy equivalence.We recall that a 
spa,ce B II is called a classifying space, for fibrations with fibre F if the two functors 
from a category of topological spaces (for example, CW complexes), [., BIi], 
and LF( .) are naturally equivalent, where [., BIi] stands for the fibre homotopy 
equivalence classes of fibrations with fibre F over the given space. Classifying 
spaces are constructed for example by Stasheff [3]. 

We have the following proposition for classifying spaces. 

PROPOSITI9N 1.7 Let BIi be a classifying space for jibrations with fibre F. Let 
~ and 71. be two :fibrations over B = B (71) = B (E) • induced by maps f, g into B II , 

respectively. Then E and '1/ are weakly equivalent if and only if there exists a homotopy 
equivalence h: B -. B such that f O h ~ g. • 

Proof: "if" Suppose there exists h such that f O h ~ g, h a homotopy equiva
lence of B; then 71 is fibre homotopically equivalent to h*W. But h*W is 
weakly eq~valent· to E by Corollary 1.5 so E is weakly equivalent to 71. 
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"only if" If I; is weakly equivalent to 11, then 11 is fibre homotopically equivalent 
to h*(I;) where (h', h) is an equivalence pair from 11 to 1;' by Corollary 1.6. 
Using the defining property of classifying spaces we get f oh ~ g and the result 
follows. 

Proposition 1. 7 indicates a one to one correspondence between weak equivalence 
classes of fibrations with fibre F over Band [B, B,J/Aut (B), where Aut (B) 
denotes the group of self-equivalences of B. 
With this in mind we give a specific example of :6.brations weakly equivalent 

over the same base space which are not fibre homotopically equivalent. 

Example: Consider BB• the classifying space for spherical :6.brations with 
fibre 8' (k > 1). Now consider 8° :6.brations over the base space 81. These are in 
one to one correspondence with [81, BB-'] ~ Il1+(k-l) (Sib) = n.cs·) ~ z (see 
Stasheff [31). 

So taking h:8 1 --+ 81 of degree -1 we have that for any non-trivial fibration 
I; with fibre 8' over 81, h* (I;) and I; are weakly equivalent, but not fibre homo
topically equivalent, since if f induces I; then f O h induces h * (I;) and f O h ~ f. 
In fact the weak equivalence classes are gotten from the usual fibre homotopy 
equivalence classes in this case by identifying :6.brations that correspond to 
±n E Z ~ [81, BB•]. This may be more succinctly put by saying that the weak 
equivalence classes are gotten from the fibre homotopy equivalence classes by 
dividing out by the action of Eq (S 1 ) ~ Z2 , the group of self equivalences of 81 

(see [2] for some properties of self-equivalences). 
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