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Introduction and an example 

Suppose that a certain variety of seed gives rise to a plant which produces a 
random number Z of new seeds and then dies; these seeds are blown away ran­
domly by the wind. Each one of these new seeds gives rise to a plant and each 
plant produces a random number Z of new seeds, then dies, and so on. Assume 
that the climatic conditions are constant throughout the time and that each seed 
is blown independently of the others and with the same distribution to a new 
position on the ground. 

For Galton-Watson process Harris [1] conjectured that the distributions of 
the spread of these plants properly normalized converge in mean square to a 
normal distribution. This conjecture was proved by P. Ney [2] for a similar model. 
We intend to show that mean square convergence can be replaced by almost 
everywhere convergence and moreover we have reason to believe that such 
convergence holds conditionally on the tree of the Galton-Watson process. This 
motivates the study of sums of random variables on non random trees, and in 
this paper we illustrate the idea of proof in the simplest situation of the binary 
tree; our purpose here is essentially methodological. 

Model.Given a "tree" {X(6162 • • • 6,.)},.=-1,2 .... and Ii= 0 or 1, of i.i.d. random 
variables with mean zero and variance one, defined on a probability space (0, ij, 
P), let 8(6162 • • • 6,.) be the sum of the r.v.'s being on the branch 6i62 • • • 6,., 
that is S(6i62 • • • 6,.) = X(61) + X(6162)+ • • • +X(6162 ••·Ii,.). We are inter­
ested in the study of the limiting behaviour of the sequence of random distribu­
tions which are determined for each n by the 2" random points 
{n- 1128(6162 • • • 6,.)}a1a2 ... a,., each of them weighing 2-". We have found (theorem) 
that in this particular tree the limiting distribution is normal with mean zero 
antl variance one. For each nits random distribution function can be expressed as 

71,.(x, w) = 2-:":2;,.V.,(n-1128(6162 • • • 6,., w)), 

where for each real number x, V,. is the real function defined by V,. (y) = 1 if 
y < x and = 0 if x :$ y, and the symbol 2:,. denotes summation over all the indices 
61, 62 , • •. • , a,. . We shall be consistent in the use of this notation for the rest of 
the paper. Its(random) characteristic function is 

if;,. (t, w) = 2-2:,. exp { itn -112 S (6162 • • • 6,. , w)} 

Lemmas 1 and 2 combine to prove (Lemma 3) that for each fixed number t 
a.s. (w) the sequence { if;,. (t, w)} converges to e-' 212, and by virtue of Lemma 4 we 
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conclude that a.s. (w) for almost all (Lebesgue) t we have convergence of Y'n (t, w) 
to e-1212, which proves the 

( ) 1 f"' -112/2 ( ) THEOREM. 'f/n x, • - V 2?1" _.,. e dy a.s. w when n - oo • 

In the following computations it may help to keep in mind the figure 

We shall denote by q, ( • ) the characteristic function of X (O) and by£ the lebesgue 
measure on the real line R. 

LEMMA 1. For each t, and e < r 1 an arbitrary positive number 

sup1::;p=,;n2-1-, / Y'n+p (t, •) - Vin (t, •) I - 0 a.s. (w) when n - oo. 

Proof. First observe that for p = 1, 2, • • • , [n2-1-•J, 

hence 

,J;n(t, •) = rn-p"Bn2p exp {itn-112S(ll102 • • • lln)} 
= 2-n-p"Bn+p exp { itn - 112 S (ll1ll2 • • • o,.)}, 

I Y'n+p(t, ") - ,J;,.(t, ·)IS rn-p"Bn+pl exp {it(n + p)- 112S(ll1ll2 '" On+p)} 
- exp {itn-1128(0102 • • • o,.)} I 

s 2-n-p"Bn+pl exp {it(n + pr 112S(o102 ••• lln+p) - itn- 1128(0102 ••• o,.)} - 11, 

and in view of the inequality / 1 - ei°' / s / a / which holds for any real number a, 

S T"-p"Bn+pt/ (n + P )- 112 

·{8(0102 .. • o,.) + X(ll11l2 • .. lln+1) + .. · + X(o11l2 • .. lln+p)} 
- n- 1128(0102 ···On)/ 

= 2-n-p"Bn+pt/ { (n + p r 112 - n- 1121 S (ll11l2 • • ' o,.) + (n + p r112 

• {X (ll11l2 • • • On+i) + ·' • + X(ll11l2 • • • On+p)} / S a,.+ bn, 

where 
( + )l/2 1/2 

a,.= tZ-n"Bn \112c: + ;1~ {I X(ll1) I+ I X(ll1ll2) + ''' + I X(ll11l2 ''·On)/}, 

b,. = trn-p"i,n+1.Cn + p)- 112{/ X(o102 ••• 0,.+1) I+ ... + I X(ll102 ••• On+p) /}. 

Now observe that 

a,. S tp2-n-ln- 312"Bn{/ X(ll1) / + · · · + / X(ll102 • • • lln) I} 
= tprn-ln- 312{2n-l(/X(O)/ + /X(l)I) + 2"- 2(/X(OO)/ + /X(Ol)/ 

+ IX(lO)I + IX(ll)/) 
+ ·" + 2n-n(/X(OO ·" 0) / + •" + /X(ll "· 1) I), 
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• where th(l inqictl8 o{ last term appear n times, 

= tpr 1n- 312{2-1 (IX(O)I + IX(l)I) 
+ ... + 2~(IX(OO ••• O)I + ... + IX(11. ••• 1)1)}. 

Similarly we can write 
• • 1/'I. • 1 • 

b,. = t (n + pr { 2-- :in+1I X (0102 • • • o,.+1) I 
• + • • • + 2-n-p}Jn+pl X (0102 • " On+p) I}• 

Let Y,. = 2-k:i,.1 X (010s • • • 0.1,) I for k = 1, 2, • • • ; then the r.v's. { Y1:} are 
independent with common mean E(Y1:) = EI Xo I = µ,, and variance, Var 
(Y1:) = 2-1:. 

In view of a well known theorem for series of independent random variables, 
:i1: Var (Y1:) < oo => :i:...1 (Y,. - µ,) converges a.s. (w), hence 

0 ::; a,. ::; tp2-1n-a12(Y1 + Y2 + · · · + Y,. - nµ,) + tp2- 1n-s12nµ. 

and O ::; b,. :::;;· t(n + p)- 1' 2 (Yn+1 + ... + Yn+p - pµ.) + t(n + pf 112pµ,. 

Now observe that the last terms of both inequalities coverge a.s. (w) to zero 
uniformly in p integer between 1 and nr 1-•. Q.e.d. 

Let a (n, k) = number of pairs of sequences of length n, 010s • • • o,. and 
01'02' • • • o,.', which have exactly the first k terms equal. It is easy to see that 

a(n k) = tn-lr,-l if k = 0 1 · · · n - 1 ' ' ' , 
= 2" . if k = n. 

LEMMA 2. For each t and, E an arbitrary positive number 

1/11,.i+•i (t, •) - e- 1112 a.s. (w) when n - oo. 

Proof. First observe that 

E(i/1,.(t, • )) = q,".(tn-112) - e- 1' 12 when n - oo 
and 

Var (1/1,.(t, •)) = Elt .. (t, •) - q,"(tn,-112)12 = El if,,.(t, •)12 - l,J,"(tn-112)12. 

Hence by Borel-Cantelli's lemma it is enough to show that Var (1/1,. (t, ·)) 
goes to zero with a speed of at least n- 1, because .then 1/11,.1+•1 (t, ·) -
q,"i+• (t[ni+T 112) - 0 a.s. (w) when n - oo, and this together with the first 
observation proves the lemma. 

El if,,. (t, • ) 12 

= E{2- 2":i,. exp (itn- 1128(0102 •• • o,.)):i,.' exp (-itn- 112S(oi'as' .. · o,.'))} 
= E{2- 2":i,.:i,.' exp itn- 112(8(0102 • • • o,.) - S(oi'o/ • • • o,.'))}, 

since q, (tn- 112) ~ 0 for n sufficiently large, 

.= 2-2":i:...oa(n, k)I .0 (tn-112) 12n-2k 
= 2- + 2-11.0 (tn- 112) 12"~:.:-l {21 f2f (tn- 112) l}-21:, 
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Hence 

• (·'· (t ·)) < rn + rl I A-.(t -1/2) 12n {1 + r" - 2 + I 0(tn- 112 1-2} 
var ,Yn ' - 'I-' n 1 - 2-1 I 0(tn-l/21-2 • 

and it suffices to show that I <t>(tn-112) 1-2 - 1 goes to zero with a speed of at 
least ( const. )n -l. 

The Taylor expansion of cf, ( • ) gives 

I <f,(tn-112) 12 = 1 - t2n- 1 (1 + e(n)), where e(n) - 0 when n - oo, 

hence 

COROLLARY. The sequence {fn(t, w)} converges in mean square to the charac­
teristic function of the normal 0, 1 distribution. 

LEMMA 3. For each t, f,. (t, •) - e-t' 12 a.s. (w) when n - oo. 

Proof. By Lemma 2 

( ) -t 2/2 ( ) 
1P[nl+ '] t, • - e a.s. w when n - oo, 

so this lemma will be proven once we show that 

SUP[nl+•J:C:v:".[(n+1)l+•1 I f,(t, • ) - 1P[nl+•] (t, • ) I - 0 a.s. (w) 

when n - oo , that is, the oscillations of f, (t, • ) on the intervals ([ni+'], 
[ (n + 1 )H']) tend to zero a.s. (w) when n - oo ; this follows from the easily 
verified fact 

for E > 0 small, n large enough and Lemma 1. 

LEMMA 4. £{t:fn(t, w) ++ e- 1212} = 0 for a.s. (w). 

Proof. By Lemma 3 we have for each t 

P{w:fn(t, w) -H e-t' 12} = 0. 

Let A = { (t, w): f n (t, w) ++ e-1'12}, and At , Aw be the t and w sections of A. 
Then by Fubini's theorem 

0 = JRJrdA 1 dPcl£ = JnJRIA~d£dP, 

hence a.s. (w) £(Aw) = 0. 
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