DIFFERENTIAL STRUCTURES AND TANGENT BUNDLES ON BANACH MANIFOLDS<*)

BY J. J. RIVAUD

1. **Introduction and Statement of Results**

A separable metrizable manifold modeled on an infinite dimensional separable Banach space *B* will be called a B-manifold.

A Banach space *B* such that $B \times B$ is isomorphic with *B* will be called a stable Banach space and a B-bundle $\xi: E \to X$ over any space X will be called stable if the Whitney sum $\xi \oplus 1_x$ is equivalent to ξ . Here 1_x is the trivial B-bundle $\overline{\text{over }X}$.

Note that $\xi \oplus 1_x$ is always stable and that if one of two equivalent B-bundles is stable then both are stable.

Henderson $[6]$ has shown that every topological B-manifold is homeomorphic to an open subset of B, for which reason it has a differentiable structure with trivial tangent bundle. This particular fact led us to the following:

Problem. Determine the B-bundles over a B-manifold *M* which are tangent bundles of *M* for some smooth structure.

Note that if the general linear group of B is contractible the problem is trivial. We found that for stable Banach spaces B with a C^{∞} -norm essentially all bundles over a B -manifold M with fiber B are tangent bundles. To be more explicit: let $Vect_B(X)$ be the set of equivalence classes of B-bundles over X; let $\text{St}_{\mathcal{B}}(X)$ be the subset of those elements of $\text{Vect}_{\mathcal{B}}(X)$ which contain stable B-bundles and let $\text{Tan}(M)$ be the subset of $\text{Vect}_B(M)$ consisting of classes which contain a B-bundle which is the tangent bundle of *M* for some smooth structure. We obtain the following results:

THEOREM 1.1 Let B be a stable Banach space with a C^{∞} -norm and let M be a *topological B-manifold. Then*

$$
\mathbf{St}_B(M)\subset \mathrm{Tan}(M).
$$

In· other words, any stable B-bundle over *M* is equivalent to the tangent bundle of *M* for some smooth structure.

In the case of the stable Banach space $B = c_0 \times l^2$ for which the general linear group is not contractible, as shown by Douady [5], we prove

THEOREM 1.2 *If* $B = c_0 \times l^2$ and X is a paracompact space then $\text{St}_B(X) =$ $Vect_B(X).$

 $(*)$ The results in this note are part of the author's Ph.D. thesis written under Professor R. Welland whose help the author is glad to acknowledge. After this thesis was written a part of the results has been obtained by K. D. Elworthy, and it appeared in *Compositio Mathematica,* Vol. **24,** 2 (1972), 175-226.

These theorems solve the problem completely for the case $B = c_0 \times t^2$, namely, every $c_0 \times \ell^2$ -bundle over a $c_0 \times \ell^2$ -manifold M is equivalent to the tangent bundle of *M* for some smooth structure. It would be interesting to know whether Theorem 1.2 holds in general. Also, when do we have $\text{St}_{B}(M) = \text{Tan}(M)$?

2. **Proof of Theorem 1.1**

To prove Theorem Ll we first need some lemmas.

Let $K(\text{Vect}_B(X))$ denote the Grothendieck group associated to $\text{Vect}_B(X)$.

LEMMA 2.1 Let X be a paracompact space and B a stable Banach space. Then, $\operatorname{St}_{\mathcal{B}}(X)$ *is a group under the Whitney sum. Moreover,*

$$
K(\mathrm{Vect}_B(X)) = \mathrm{St}_B(X)
$$

Proof. Given a B-bundle $\xi: E \to X$, the existence of $\xi': E' \to X$ such that $\xi \oplus \xi' = 1_x$ follows using standard techniques and the fact that *B* is stable. It follows from the definition of $\text{St}_{B}(X)$ that 1_{X} is the identity element. The last part follows from the definition of *K.*

LEMMA 2.2. Let B be a stable Banach space with a C^{∞} -norm. Let M be a C^{∞} -B*manifold. Then, given any class* $[\pi] \in \mathrm{Vect}_B(M)$, there exists π' , a C^{∞} -B-bundle *over* M , *such that* $[\pi'] = [\pi]$.

Proof. Let G_B be the set of all closed subspaces of *B*, isomorphic to *B*, and admitting a closed complement isomorphic with B . On G_B consider the following metric:

$$
d(B', B'') = \theta(B', B'') + \theta(B'', B')
$$

where

$$
\theta(B', B'') = \sup_{\begin{array}{l}x \in B'\\ \|x\| \leq 1\end{array}} \left(\inf_{\begin{array}{l}y \in B''\\ \|y\| \leq 1\end{array}} \|x - y\|\right)
$$

for $B', B'' \in G_B$.

Douady [4] has proved that G_B admits an analytic atlas.

Let $p:G_B \times B \to G_B$ be the projection on the first factor, and $E = \{(X, y) \in$ $G_B \times B \mid y \in X$, then $p \mid E: E \to G_B$ is a C^{∞} -B-bundle.

Since π has a complementary *B*-bundle, the existence of an exact sequence $0 \to \pi \stackrel{h}{\to} M \times B$ follows. Let $p:M \times B \to B$ be the projection on the second factor. Define $f: M \to G_B$ by $f(x) = ph(\pi^{-1}(x))$. It is continuous and the pull back of f is equivalent with π .

Since *B* has a C^{∞} -norm there exist C^{∞} -partitions of 1. By the usual argument with the C^{∞} -partitions of 1 we can find a C^{∞} -function $g: M \to G_B$ homotopic to *f.* We let π' be the pullback of g.

Proof of theorem 1.1 Consider in *M* a parallelizable C^{∞} -structure and apply Lemma 2.2 to get a C^{∞} -bundle $\pi': E \to M$ in the class of $[\pi]$.

The bundle atlas introduces in E a C^{∞} -B-manifold structure.

Since E has the same homotopy type as M (the zero section is a deformation retract of E and is homeomorphic with M), we have that E is homeomorphic with M (see Burghelea and Kuiper [2]). We claim this C^{∞} -structure on E is the one we are looking for. To check this, it is enough to look at the zero section of π' . The tangent bundle to E restricted to the zero section is $\pi' \oplus 1_B$ where π' is given by the derivative in the direction of the fiber and 1_B comes from the derivative in the direction of the manifold *M* with respect to the parallelizable structure we chose. By Lemma 2.1 the theorem follows.

3. The Case
$$
B = c_0 \times l^2
$$

Let $GL(B)$ denote the general linear group of B. If $GL(B)$ is contractible to a point, as in the case of ℓ^2 or c_0 (see Kuiper [7] and Arlt [1], we have that

$$
\mathrm{Vect}_B(X) = \mathrm{St}_B(X) = \{1_x\}
$$

for all *X* paracompact. Therefore, the theorem is trivial in this case.

Nevertheless, this is not the general case. Douady [5] has shown that $GL(c_0 \times$ ℓ^2) has the same homotopy type as $Z \times BO$, hence

$$
\mathrm{Vect}_{c_o}\times\ell^2\neq\{1_X\}
$$

in general.

Since it was shown by Kuiper that c_0 has a C^{∞} -norm (see Boric and Framton [3]) it follows that $c_0 \times \ell^2$ has a C^{∞} -norm. It is clear that $c_0 \times \ell^2$ is stable.

Proof of theorem 1.2 Let $G = \{ T \in GL(B \times B) \mid T(x, y) = (T'(x), y), T' \in$ $GL(B)$. Since both G and $GL(B \times B)$ are isomorphic to $GL(B)$ we have an inclusion of the group $GL(B)$ in itself, which we must now prove to be a homotopy equivalence. The theorem will then follow from the results of Milnor [8].

Since $GL(B)$ has the homotopy type of a CW -complex (Milnor [9]) weak homotopy equivalence implies homotopy equivalence (Milnor, *op. cit.*).

Observe that if

given by $(f, id)(x)$

given by

$$
T\!:\!\ell^2\times\ell^2\!\rightarrow\ell^2
$$

is an isomorphism, and

$$
f: X \to \mathfrak{F}(\ell^2)
$$

is a continuous map from a compact space X into the space of Fredholm operators in ℓ^2 then the maps

$$
(f, id): X \to \mathfrak{F}(\ell^2 \times \ell^2)
$$

= $(f(x), x): \ell^2 \times \ell^2 \to \ell^2 \times \ell^2$ and $T^*f: X \to \mathfrak{F}(\ell^2 \times \ell^2)$

$$
T^*f(x) = Tf(x)T^{-1}
$$

have the same Jänich Index.

It now follows from Douady [5] that the inclusion map $G \subset GL(B \times B)$ induces isomorphisms of the homotopy groups, *i.e.* is a weak homotopy equivalence. This concludes the proof of Theorem 1.2.

Observe that, in particular, $S^1 \times (c_0 \times \ell^2)$ admits countably many distinct differentiable structures with distinct tangent bundles.

CENTRO DE INVESTIGACI6N DEL IPN, MEXICO.

REFERENCES

- [1] D. ARLT, *Zusammensiehbarkeit der Allgemeinen Linearen gruppe des Raumes c₀ der Nullfolgen, Invent. Math. 1 (1966), 36-44.*
- [2) D. BuRGHELEA, AND H. H. KUIPER, *Hilbert manifolds,* Ann. of Math. **90** (1969), 379-417.
- [3) R. BoNIC, AND J. FRAMTON, *Smooth functions on Banach manifolds,* J. Math. Mech. **15** (1966), 877-98.
- [4] A. DOUADY, *Le problème des modules pour les sous-espaces analytiques compacts d'un espace analytique donne,* Ann. Inst. Fourier, Grenoble **16, 1** (1966), 1-95.
- [5] ---, Un espace de Banach dont le groupe lineaire n'est pas connexe, Nederl. Akad. Wetensch. Proc. Ser. A 68 (1965), 787-89.
- [6) D. W. HENDERSON, *Infinite dimensional manifolds are open subsets of Hilbert space,* Bull. Amer. Math. Soc. 75 (1969), 759-62.
- [71 N. H. KUIPER, *The homotopy type of the unitary group of Hilbert space,* Topology 3 (1965), 19-30.
- (8) J. MILNOR, *Construction of universal bundles: II,* Ann. of Math. (2) **63** (1956), 430-36.
- [9] ---, *On spaces having the homotopy type of a CW-complex*, Trans. Amer. Math. Soc. 90 (1959), 272--80.