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Introduction 

We continue our attempts to get a unified theory for both ordinary differential 
equations and functional differential equations of retarded type. Given a re
tarded functional differential equation we construct an ordinary differential 
equation in LP, p ~ 1, such that solutions (in the sense of Caratheodory) of 
the first equation, with Lebesgue integrable initial function, correspond to solu
tions of the second equation. The construction is the same as in [1], but the con
dition of Riemann integrability in [1] is replaced by Lebesgue integrability. The 
proofs, as one should expect, differ considerably. The functional equations con
sidered are as in [2] so that, in particular, equations studied in [3) are included 
as a special case. 

The idea of associating a generalized (in the sense of [4]) ordinary differential 
equation to functional retarded equations was first pointed out by Kurzweil and 
studied in [5] and [6]. The step from generalized to classical ordinary equations 
is made possible by working in Lp instead of spaces of continuous functions. 

Somewhat similar results have been obtained in [7] in the case of boundary 
value problems for linear functional equations. 

Notation 
Let a and h be positive numbers, p E [1, oo) and let Lp([-h, a], R") denote, 

as usual, the set of equivalence classes of functions x from [-h, a] into R" such 
that Ix JP is Lebesgue integrable. With A c Lp([-h, a], R") we denote the set 
of equivalence classes [x] such that the class of restrictions [z]io;aJ of [x] to the 
interval [0, a] contains an absolutely continuous function. As usual we shall not 
distinguish between a class [x] or its elements x unless there is danger of con
fusion. For example, given a function x:[-h, a] -+ R", the symbol Xi denotes 
the function from [-h, a]-+ R" defined by x,(s) = x(s) if -h::; s < t and 
x,(s) = x(t) if t::; s ~ a; thatisxi is the truncation of x at the point t. It is now 
clear that no confusion arises between [x,] and Xi if [x] E A, t ~ 0, and we are 
always taking a representative continuous in [0, a]. 

The theorems 

Let BC A c Lp([-h, a], R") be a subset with the property that x E B-+ 
x, E B for every t E [0, a]. Consider now the functional differential equation 

(1) d~~t) = J(x,, t); 

where f:BX[0, a]-+ R". A function x:[-h, a]-+ R" is called a solution to (1) 

64 



FUNCTIONAL DIFFERENTIAL EQUATIONS 65 

with initial condition Xo E B if x E B and 

x(t) = x(O) + Jif(x,, s) ds for O $ t $ a 
(2) 

x(t) = Xo(t) for -h $ t < 0. 

Observe that this type of functional equations are more general than those con
sidered, for example, in [3]. 

Our aim is to construct an ordinary differential equation in L 11([-h, a], R") 
equivalent to (1) under the assumption that f(x., ·) E L 11([0, a], R") for all 
fixed x E B. In order to do this we define a function G:BX[O, a] ---+ L 11 ([ -h, a], 
R") as follows : 

(3) G(x, t)(T) = -lo for -h < T < t 

f(xt, t) for t $ T $ a. 

In other words given x E B, t E [O, a], G(x, t) is a representative of the class in 
L 11([-h, a], R") that contains the step function with values O on [-h, t) and 
f(x1, t) on [t, a]. 

We now consider the ordinary differential equation 

(4) 
dy 
dt = G(y, t). 

Let [yo] be a class in B that contains a representative Yo whose restriction to 
[O, a] is constant, that is, Yo(s) = Yo(O) for s E [O, a]. Then a solution of (4) with 
initial condition Yo is a function y: [0, a] ---+ B such that 

y(t) = Yo+ Ji G[y(s), s] ds, for 0 $ t $ a . 

. Here the integral is taken in the sense of Bochner [8]. 
We can now summarize our results in the following two theorems. 

THEOREM 1. Letf(x., ·) E L 11([0, a], R") for eve:ry x E B. Let x be a solution 
of (1) with initial condition Xo E B, the restriction of Xo of [0, a] being a constant 
function. Then the function y: [O, a] - B define,d by y (t) = x,for t E [O, a] is a 
solution of (4) in [0, a] with initial condition y (0) = xo. 

THEOREM 2. Letf(x., ·) E L 11([0, a], R") for every x E B. Let y be a solution 
of (4) in [0, a] with initial condition y(O) = Yo• Then there exists x E B such, that 
y (t) = x,Jor t E [0, a] and such xis a solution of (1) in [0,' a] with initial condi
tion Xo = Yo• 

Note. Since the function y(t) of Theorem 2 is a class in B, We can select a 
representative that is continuous in [0, a]. Therefore, the existence of x E B such 
that x1 = y(t) implies, for the continuous representative, that y (t)(s) = y (t)(t) 
in.O $ t $ s $ a and y(s)(t) = y(t)(t) = x(t) in 0 $ t $ s $a.This, of 
coqrse, is due to the special way of constructing G fromf. 

Theorems 1 and 2 will be proved by means of the following 5 Lemp1as. 
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Lemmas 

~MMA 1. Let X and Y be Banach spaces and let f: [0, a] - X and T: [0, a] -
.C (X, Y) be functions such that, f E Lp ([O, a], X) and T is a continuous function 
with values in the Banach space of bounded linear operators from X to Y, then 
g: [O,a]-Ydefinedbyg(s) = T(s)(f(s))belongstoLp([O,a], Y). 

Proof. By hypothesis there exists a sequence {f,.} :=1 of continuous functions 
such thatf,.:[0, a]-X,f,.-fa.e. andf,.-finLp, 

Now, for each n we define a function g,.:[0, a] - Y by the formula g,.(s) = 
T ( s) (f,. ( s)); then g,. is continuous, moreover g,. - g a.e. 

Now we will show that {g,.} is a Cauchy sequence inLp([0, a], Y). 
As T is bounded 

Joa I g,.(s) - Um(s) I Pds 5 Joa I T(s) IP jf,.(s) - f,,.(s) I Pds 

5 k Joa If,. (s) - fm(s) I Pds 

converges to zero if n, m - oo. As Lp[[0, a], Y] is complete, { g,.} converges to 
some g E Lp[[O, a], Y], but since { g,.} converges tog a.e., g = g a.e. 

COROLLARY. Let x E B be fixed and suppose f(x., ·) E Lp([O, a], R"). Let 
G (x, •) be given by (3 ). Then 

g(x, ·) ELLp([O,a],Lp([-h,a],R")). 

Proof. Define the family T(t), t E [O, a] of operators T(t):R" - Lp([-h, a] 
R") by 

for ally E R". 

l 0 for - h 5 T < t 
[T(t)y](T) 

y for t 5 T 5 a 

LEMMA 2. Let H E Lp([O, a], Lp([-h, a], R")) and let I = [n, T2] C [-h, a]. 
Then for any t E [O, a] we have that J~ [H (s )l,ds exists and is equal to [f~ H (s )ds]r 
wh(';fe [ l, indicates restriction to I. 

Proof. Consider now the operator T from Lp([-h, a], R") into Lp[l, R"], 
defined by T[x] = [x]r. Obviously this is a linear bounded operator and the lemma 
follqws from a well known result [8]. 

LEMMA 3. Let G be defined by (3) and let y: [O, a] - B be such that f: G[y(s), 
s]ds exists. Lett E [O, a], T E [t, a] and let I be a subinterval of [O, t]. Then 

(5) [f8 G[y(s), s]ds]r = [f~ G[y(s), s]ds]r, and the restriction [f~ G[y(s), s]dslci,aJ 
is a constant junction. 

Proof. By Lemma 2 [f~ G[y(s), s]ds]r ~ J~ [G[y(s), sl,ds. By (3) G[y(s), 
s] ( T) = 0 if s > T, which proves (5). On the other hand, since the restriction 
[G[y(s), s]lct.a1 is a constant function with values in R" for 0 5 s 5 t, so will be 
its integral and the last part of the Lemma follows from Lemma 2. 
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LEMMA 4. Let [g] E Lp([-h, a], R) and let a be a continuous function from 
{ -h, a] into R. Then a is an element of the class [g] if and only if for every E > 0 
there exists a o > 0 such that for some g E [g], and for every to E [ -h, a] we have 
j g(t) - a (to) I < Efor almost every t E Ito - o •to+ o] n [ -h, a]. 

Proof. If a belongs to [g] the result follows from the uniform continuity of a. 

On the other hand assume the relation satisfied for some function g represent
ing the class. Consider the rationals in [-h, a] numbered in some way hi, 
i = 1, 2, 3, • • · ; and consider a sequence { Ek) of positive numbers converging to 
zero as k - oo • From the hypothesis, to each Ek there corresponds a Ok and to 
each rational ri a set E/ C [ -h, a] such that the Lebesque measure of E/' is 
zero and 

(6) I g(t) - a(ri) I < Ek 

for all t E [r, - Ok, r; + Ok] n [-h, a] - E/. 
Denote E = U~k E/', which has measure zero. To finish the proof it is enough 

to show that g = a on the complement of E. Assume there is at E [-h, a] - E 
such that I g(t) - a(t) I > 2e,. for some k sufficiently large. Leto be the mini
mum between Ok and a o' corresponding to Ek in the uniform continuity of a (t); 
choose ri such that It - r, I < o; then I a (t) - a(r,) I < Ek and I g(t) 
a(r;) I = / g(t) - a(t) + a(t) - a(r.:) I~/ g(t) - a(t) / - / a(t) -
a(r;) I> 2ek - Ek= Ek, in contradiction with (6). 

LEMMA 5. Let x EB andf(x., ·) E Lp([O, a], Rn). Then for all t E [O, a], 
Ji G[x, s]ds exists and its class contains a continuous function. Moreover 

ui G (x, S )ds] (T) = Jgf(x., s)ds, for T E [O, a] where 

(3 = min (T, t). 

Proof. In order to simplify the details, we will prove the Lemma in the case 
Rn = R. The general case follows using projection operators. Now, by Lemma 4, 
it is sufficient to prove that for t E [0, a], E > 0 there exists a o > 0 such that 
for To E [O, a] 

(7) I en G(x, s)ds)(T) - f~f(x., s)ds)I < E 

for almost every T E [ To - o, To + o] n [O, a]. Given e > 0 choose o > 0 such 
that J:! I f(x., s) Ids < e/2 if I t1 - ~ I < 2o and O ~ t1 ~ t2 ~ a. Let I = 
I To - o, To+ o] n [O, a]. We consider two cases, t ~ To - o and t > To - o. 
In the first case we know by Lemma 3 that [ft G (x, s )ds]r = Ji G (x, s )ids is a 
dassthat contains the constant function with value fJf(x., s)ds, and (7) fol
lows. In the case t > To - o, the relation (7) is reduced to 

(8) I (J;0-a G(x, s)rds)(T) - f~ 0-af(x., s)ds I < e, 

:since by a similar argument as before the integrals between O and To - o cancel 
each other. 
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Now in order to prove (8) we have to consider two cases 
a) t ~ To+ 8 
b)t<-ro+B 

In case a), (8) reduces to 

(9) I (J;:::: G(x, s)ids)(-r) - J; 0--1f(x,, s)ds I < E. 

To prove (9) it is enough to show that 

I <f~:::: G (x, s)ids)(-r) I < E/2 

almost everywhere in I. By (3) we have that 

IJ(x,, s) I - G(x, s)r(-r) ~ 0 

almost everywhere in I. Therefore, approximating the function 'P(s)(-r) = 
If (x,, s) I - G (x, s )r (-r ), -r E I, by means of simple functions whose values are 
nonnegative functions (of -r E I), we deduce 

(J;:::: G(x, s)ids)(-r) $; J;:::: IJ(x., s) Ids< E/2. 

In a similar way one proves 

(J;:!1G(x, s)zds)(-r) > -e/2, 

proving case a). Caee b) is proved similarly. 

Proofs of the theorems 

Proof of Theorem 1. By hypothesis 

x(t) = xo(0) + Hf(x., s)ds, 

for 0 $; t $; a, since X1 (-r) = x (t) for 0 $; t $; -r $; a and x, (-r) = x (-r) for 
0 $; -r < t $; a, we have x1(-r) = Xo(0) + Jgf(x,, s)ds, where P = min (t, -r), 
0 $; t $; a and 0 $; -r $; a. By Lemma 5 

x1(-r) = Xo(0) + [J~ G(x, s)ds](-r) 

for0 $; -r $; aand0 $; t $;a.By (3) G(x, s) = G(x., s) and therefore 

y(t)(-r) =Yo+ [f~G(y(s), s)ds](-r) 

proving the theorem. 

Proof of Theorem 2. By hypothesis 

(12) y(t) = Xo + H G(y(s), s)ds 

fort E [0, a] where y (t) E B. From the properties of B there follows the existence 
of a function x E B such that x(-r) = Xo(-r) for all -r E [-h, 0) and x(r) = 
y(-r) (-r) if -r E [0, a]. Moreover X1 EB for all t E [0, a]. 

We now prove that X1 = y(t) for all t E [0, a]. Fix t E [0, a], then if -r E 
[0, t], (12) and Lemma 2 imply 

[y(t)]co,TJ = (Xo)ro,TJ + H G[y(s), s]co,TJ ds. 
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By (3) 

f~ G[y(s), s]ro,,1ds = f~ G[y(s), s]ro,,1ds. 

Therefore y (t) ( r) = y ( r )( r) = x ( r) = Xt ( r) if - h ~ r < t. 
When r E [t, a], (12) and Lemma 3 imply y(t) (r) = y(t) (t) = x(t) = Xt(r) 

and the relation Xt = y (t) is proved. 
By (3) we can substitute x for y(s) in (12) and by Lemma 5 we get y(t)(t) 

x(t) = Xo(O) + f5f(x,, s)ds, proving the theorem. 
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