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Introduction 

We continue our attempts to get a unified theory for both ordinary differential 
equations and functional differential equations of retarded type. Given a re­
tarded functional differential equation we construct an ordinary differential 
equation in LP, p ~ 1, such that solutions (in the sense of Caratheodory) of 
the first equation, with Lebesgue integrable initial function, correspond to solu­
tions of the second equation. The construction is the same as in [1], but the con­
dition of Riemann integrability in [1] is replaced by Lebesgue integrability. The 
proofs, as one should expect, differ considerably. The functional equations con­
sidered are as in [2] so that, in particular, equations studied in [3) are included 
as a special case. 

The idea of associating a generalized (in the sense of [4]) ordinary differential 
equation to functional retarded equations was first pointed out by Kurzweil and 
studied in [5] and [6]. The step from generalized to classical ordinary equations 
is made possible by working in Lp instead of spaces of continuous functions. 

Somewhat similar results have been obtained in [7] in the case of boundary 
value problems for linear functional equations. 

Notation 
Let a and h be positive numbers, p E [1, oo) and let Lp([-h, a], R") denote, 

as usual, the set of equivalence classes of functions x from [-h, a] into R" such 
that Ix JP is Lebesgue integrable. With A c Lp([-h, a], R") we denote the set 
of equivalence classes [x] such that the class of restrictions [z]io;aJ of [x] to the 
interval [0, a] contains an absolutely continuous function. As usual we shall not 
distinguish between a class [x] or its elements x unless there is danger of con­
fusion. For example, given a function x:[-h, a] -+ R", the symbol Xi denotes 
the function from [-h, a]-+ R" defined by x,(s) = x(s) if -h::; s < t and 
x,(s) = x(t) if t::; s ~ a; thatisxi is the truncation of x at the point t. It is now 
clear that no confusion arises between [x,] and Xi if [x] E A, t ~ 0, and we are 
always taking a representative continuous in [0, a]. 

The theorems 

Let BC A c Lp([-h, a], R") be a subset with the property that x E B-+ 
x, E B for every t E [0, a]. Consider now the functional differential equation 

(1) d~~t) = J(x,, t); 

where f:BX[0, a]-+ R". A function x:[-h, a]-+ R" is called a solution to (1) 
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with initial condition Xo E B if x E B and 

x(t) = x(O) + Jif(x,, s) ds for O $ t $ a 
(2) 

x(t) = Xo(t) for -h $ t < 0. 

Observe that this type of functional equations are more general than those con­
sidered, for example, in [3]. 

Our aim is to construct an ordinary differential equation in L 11([-h, a], R") 
equivalent to (1) under the assumption that f(x., ·) E L 11([0, a], R") for all 
fixed x E B. In order to do this we define a function G:BX[O, a] ---+ L 11 ([ -h, a], 
R") as follows : 

(3) G(x, t)(T) = -lo for -h < T < t 

f(xt, t) for t $ T $ a. 

In other words given x E B, t E [O, a], G(x, t) is a representative of the class in 
L 11([-h, a], R") that contains the step function with values O on [-h, t) and 
f(x1, t) on [t, a]. 

We now consider the ordinary differential equation 

(4) 
dy 
dt = G(y, t). 

Let [yo] be a class in B that contains a representative Yo whose restriction to 
[O, a] is constant, that is, Yo(s) = Yo(O) for s E [O, a]. Then a solution of (4) with 
initial condition Yo is a function y: [0, a] ---+ B such that 

y(t) = Yo+ Ji G[y(s), s] ds, for 0 $ t $ a . 

. Here the integral is taken in the sense of Bochner [8]. 
We can now summarize our results in the following two theorems. 

THEOREM 1. Letf(x., ·) E L 11([0, a], R") for eve:ry x E B. Let x be a solution 
of (1) with initial condition Xo E B, the restriction of Xo of [0, a] being a constant 
function. Then the function y: [O, a] - B define,d by y (t) = x,for t E [O, a] is a 
solution of (4) in [0, a] with initial condition y (0) = xo. 

THEOREM 2. Letf(x., ·) E L 11([0, a], R") for every x E B. Let y be a solution 
of (4) in [0, a] with initial condition y(O) = Yo• Then there exists x E B such, that 
y (t) = x,Jor t E [0, a] and such xis a solution of (1) in [0,' a] with initial condi­
tion Xo = Yo• 

Note. Since the function y(t) of Theorem 2 is a class in B, We can select a 
representative that is continuous in [0, a]. Therefore, the existence of x E B such 
that x1 = y(t) implies, for the continuous representative, that y (t)(s) = y (t)(t) 
in.O $ t $ s $ a and y(s)(t) = y(t)(t) = x(t) in 0 $ t $ s $a.This, of 
coqrse, is due to the special way of constructing G fromf. 

Theorems 1 and 2 will be proved by means of the following 5 Lemp1as. 
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Lemmas 

~MMA 1. Let X and Y be Banach spaces and let f: [0, a] - X and T: [0, a] -
.C (X, Y) be functions such that, f E Lp ([O, a], X) and T is a continuous function 
with values in the Banach space of bounded linear operators from X to Y, then 
g: [O,a]-Ydefinedbyg(s) = T(s)(f(s))belongstoLp([O,a], Y). 

Proof. By hypothesis there exists a sequence {f,.} :=1 of continuous functions 
such thatf,.:[0, a]-X,f,.-fa.e. andf,.-finLp, 

Now, for each n we define a function g,.:[0, a] - Y by the formula g,.(s) = 
T ( s) (f,. ( s)); then g,. is continuous, moreover g,. - g a.e. 

Now we will show that {g,.} is a Cauchy sequence inLp([0, a], Y). 
As T is bounded 

Joa I g,.(s) - Um(s) I Pds 5 Joa I T(s) IP jf,.(s) - f,,.(s) I Pds 

5 k Joa If,. (s) - fm(s) I Pds 

converges to zero if n, m - oo. As Lp[[0, a], Y] is complete, { g,.} converges to 
some g E Lp[[O, a], Y], but since { g,.} converges tog a.e., g = g a.e. 

COROLLARY. Let x E B be fixed and suppose f(x., ·) E Lp([O, a], R"). Let 
G (x, •) be given by (3 ). Then 

g(x, ·) ELLp([O,a],Lp([-h,a],R")). 

Proof. Define the family T(t), t E [O, a] of operators T(t):R" - Lp([-h, a] 
R") by 

for ally E R". 

l 0 for - h 5 T < t 
[T(t)y](T) 

y for t 5 T 5 a 

LEMMA 2. Let H E Lp([O, a], Lp([-h, a], R")) and let I = [n, T2] C [-h, a]. 
Then for any t E [O, a] we have that J~ [H (s )l,ds exists and is equal to [f~ H (s )ds]r 
wh(';fe [ l, indicates restriction to I. 

Proof. Consider now the operator T from Lp([-h, a], R") into Lp[l, R"], 
defined by T[x] = [x]r. Obviously this is a linear bounded operator and the lemma 
follqws from a well known result [8]. 

LEMMA 3. Let G be defined by (3) and let y: [O, a] - B be such that f: G[y(s), 
s]ds exists. Lett E [O, a], T E [t, a] and let I be a subinterval of [O, t]. Then 

(5) [f8 G[y(s), s]ds]r = [f~ G[y(s), s]ds]r, and the restriction [f~ G[y(s), s]dslci,aJ 
is a constant junction. 

Proof. By Lemma 2 [f~ G[y(s), s]ds]r ~ J~ [G[y(s), sl,ds. By (3) G[y(s), 
s] ( T) = 0 if s > T, which proves (5). On the other hand, since the restriction 
[G[y(s), s]lct.a1 is a constant function with values in R" for 0 5 s 5 t, so will be 
its integral and the last part of the Lemma follows from Lemma 2. 
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LEMMA 4. Let [g] E Lp([-h, a], R) and let a be a continuous function from 
{ -h, a] into R. Then a is an element of the class [g] if and only if for every E > 0 
there exists a o > 0 such that for some g E [g], and for every to E [ -h, a] we have 
j g(t) - a (to) I < Efor almost every t E Ito - o •to+ o] n [ -h, a]. 

Proof. If a belongs to [g] the result follows from the uniform continuity of a. 

On the other hand assume the relation satisfied for some function g represent­
ing the class. Consider the rationals in [-h, a] numbered in some way hi, 
i = 1, 2, 3, • • · ; and consider a sequence { Ek) of positive numbers converging to 
zero as k - oo • From the hypothesis, to each Ek there corresponds a Ok and to 
each rational ri a set E/ C [ -h, a] such that the Lebesque measure of E/' is 
zero and 

(6) I g(t) - a(ri) I < Ek 

for all t E [r, - Ok, r; + Ok] n [-h, a] - E/. 
Denote E = U~k E/', which has measure zero. To finish the proof it is enough 

to show that g = a on the complement of E. Assume there is at E [-h, a] - E 
such that I g(t) - a(t) I > 2e,. for some k sufficiently large. Leto be the mini­
mum between Ok and a o' corresponding to Ek in the uniform continuity of a (t); 
choose ri such that It - r, I < o; then I a (t) - a(r,) I < Ek and I g(t) 
a(r;) I = / g(t) - a(t) + a(t) - a(r.:) I~/ g(t) - a(t) / - / a(t) -
a(r;) I> 2ek - Ek= Ek, in contradiction with (6). 

LEMMA 5. Let x EB andf(x., ·) E Lp([O, a], Rn). Then for all t E [O, a], 
Ji G[x, s]ds exists and its class contains a continuous function. Moreover 

ui G (x, S )ds] (T) = Jgf(x., s)ds, for T E [O, a] where 

(3 = min (T, t). 

Proof. In order to simplify the details, we will prove the Lemma in the case 
Rn = R. The general case follows using projection operators. Now, by Lemma 4, 
it is sufficient to prove that for t E [0, a], E > 0 there exists a o > 0 such that 
for To E [O, a] 

(7) I en G(x, s)ds)(T) - f~f(x., s)ds)I < E 

for almost every T E [ To - o, To + o] n [O, a]. Given e > 0 choose o > 0 such 
that J:! I f(x., s) Ids < e/2 if I t1 - ~ I < 2o and O ~ t1 ~ t2 ~ a. Let I = 
I To - o, To+ o] n [O, a]. We consider two cases, t ~ To - o and t > To - o. 
In the first case we know by Lemma 3 that [ft G (x, s )ds]r = Ji G (x, s )ids is a 
dassthat contains the constant function with value fJf(x., s)ds, and (7) fol­
lows. In the case t > To - o, the relation (7) is reduced to 

(8) I (J;0-a G(x, s)rds)(T) - f~ 0-af(x., s)ds I < e, 

:since by a similar argument as before the integrals between O and To - o cancel 
each other. 
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Now in order to prove (8) we have to consider two cases 
a) t ~ To+ 8 
b)t<-ro+B 

In case a), (8) reduces to 

(9) I (J;:::: G(x, s)ids)(-r) - J; 0--1f(x,, s)ds I < E. 

To prove (9) it is enough to show that 

I <f~:::: G (x, s)ids)(-r) I < E/2 

almost everywhere in I. By (3) we have that 

IJ(x,, s) I - G(x, s)r(-r) ~ 0 

almost everywhere in I. Therefore, approximating the function 'P(s)(-r) = 
If (x,, s) I - G (x, s )r (-r ), -r E I, by means of simple functions whose values are 
nonnegative functions (of -r E I), we deduce 

(J;:::: G(x, s)ids)(-r) $; J;:::: IJ(x., s) Ids< E/2. 

In a similar way one proves 

(J;:!1G(x, s)zds)(-r) > -e/2, 

proving case a). Caee b) is proved similarly. 

Proofs of the theorems 

Proof of Theorem 1. By hypothesis 

x(t) = xo(0) + Hf(x., s)ds, 

for 0 $; t $; a, since X1 (-r) = x (t) for 0 $; t $; -r $; a and x, (-r) = x (-r) for 
0 $; -r < t $; a, we have x1(-r) = Xo(0) + Jgf(x,, s)ds, where P = min (t, -r), 
0 $; t $; a and 0 $; -r $; a. By Lemma 5 

x1(-r) = Xo(0) + [J~ G(x, s)ds](-r) 

for0 $; -r $; aand0 $; t $;a.By (3) G(x, s) = G(x., s) and therefore 

y(t)(-r) =Yo+ [f~G(y(s), s)ds](-r) 

proving the theorem. 

Proof of Theorem 2. By hypothesis 

(12) y(t) = Xo + H G(y(s), s)ds 

fort E [0, a] where y (t) E B. From the properties of B there follows the existence 
of a function x E B such that x(-r) = Xo(-r) for all -r E [-h, 0) and x(r) = 
y(-r) (-r) if -r E [0, a]. Moreover X1 EB for all t E [0, a]. 

We now prove that X1 = y(t) for all t E [0, a]. Fix t E [0, a], then if -r E 
[0, t], (12) and Lemma 2 imply 

[y(t)]co,TJ = (Xo)ro,TJ + H G[y(s), s]co,TJ ds. 
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By (3) 

f~ G[y(s), s]ro,,1ds = f~ G[y(s), s]ro,,1ds. 

Therefore y (t) ( r) = y ( r )( r) = x ( r) = Xt ( r) if - h ~ r < t. 
When r E [t, a], (12) and Lemma 3 imply y(t) (r) = y(t) (t) = x(t) = Xt(r) 

and the relation Xt = y (t) is proved. 
By (3) we can substitute x for y(s) in (12) and by Lemma 5 we get y(t)(t) 

x(t) = Xo(O) + f5f(x,, s)ds, proving the theorem. 
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