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Introduction

We continue our attempts to get a unified theory for both ordinary differential
equations and functional differential equations of retarded type. Given a re-
tarded functional differential equation we construct an ordinary differential
equation in L,, p > 1, such that solutions (in the sense of Caratheodory) of
the first equation, with Lebesgue integrable initial function, correspond to solu-
tions of the second equation. The construction is the same as in [1], but the con-
dition of Riemann integrability in [1] is replaced by Lebesgue integrability. The
proofs, as one should expect, differ considerably. The functional equations con-
sidered are as in [2] so that, in particular, equations studied in [3] are included
as a special case.

The idea of associating a generalized (in the sense of [4]) ordinary differential
equation to functional retarded equations was first pointed out by Kurzweil and
studied in [5] and [6]. The step from generalized to classical ordinary equations
is made possible by working in L, instead of spaces of continuous functions.

Somewhat similar results have been obtained in [7] in the case of boundary
value problems for linear functional equations.

Notation

Let @ and h be positive numbers, p € [1, « ) and let L, ([—h, a], R") denote,
as usual, the set of equivalence classes of functions x from [—#, a] into R" such
that | z |” is Lebesgue integrable. With A < L,([—%, a], R") we denote the set
of equivalence classes [x] such that the class of restrictions [z]j, of [2] to the
interval [0, a] contains an absolutely continuous function. As usual we shall not
distinguish between a class [z] or its elements z unless there is danger of con-
fusion. For example, given a function z:[—h, @] — R”, the symbol z; denotes
the function from [—#, a] — R" defined by z:(s) = 2(s) if —h < s < { and
z:(s) = z(t) if t < s < a; thatisx, is the truncation of z at the point ¢. It is now
clear that no confusion arises between [z and z; if [x] € A, ¢ > 0, and we are
always taking a representative continuous in [0, a)].

The theorems
Let B A4 c L,((—*h, a], R™) be a subset with the property that z € B —
z; € B for every t € [0, a]. Consider now the functional differential equation
da(t) _
(1) T
where f:BX[0, a] — R". A function z:[—%, a] — R" is called a solution to (1)
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with initial condition 2o € B if 2 € B and

@) z@t) = 20) + [if(x, 8)ds for 0<t<a

o(t) = w(t) for —h<t<0. |
Observe that this type of functional equations are more general than those con-
sidered, for example, in [3].

Our aim is to construct an ordinary differential equation in L,([—h, a], R")
equivalent to (1) under the assumption that f(z., -) € L,([0, a], R") for all
fixed z € B. In order to do this we define a function G: BXI0, a] — L,(—4, a],
R") as follows:

0 for —A<7<t
f(x,, t) for t<7<a.

In other words given z € B, ¢ € [0, al, G (z, t) is a representative of the class in
L,((—h, a], R™) that contains the step function with values 0 on [—A, ¢) and

f(@:, t) on [t, al.
‘We now consider the ordinary differential equation

3) G, t)(r) =

(4) == = G(y, 1).

Let [yo] be a class in B that contains a representative y, whose restriction to
[0, a] is constant, that is, yo(s) = % (0) for s € [0, a]. Then a solution of (4) with
initial condition ¥, is a function y:[0, a] — B such that

y(t) = v+ [$Gly(s),slds, for 0<¢<a.

.Here the integral is taken in the sense of Bochner [8].
We can now summarize our results in the following two theorems.

TeeorEM 1. Let f(z., -) € L,([0, a], R™) for every x € B. Let x be a solution
of (1) with initial condition xy € B, the restriction of x of [0, a] being a constant
function. Then the function y:[0, a] — B defined by y(t) = x.for t € [0, a] is a
solution of (4) in [0, a] with initial condition y(0) = z,.

TaroreM 2. Let f(x., -) € L,([0, a], R™) for every x € B. Let y be a solution
of (&) in [0, a] with initial condition y(0) = yo. Then there exists x € B such that
y(@) = z,fort € [0, a] and such x is a solution of (1) in [0, a] with initial condi-
tion xy = Yo.

Note. Since the function y(¢) of Theorem 2 is a class in B, We can select a
representative that is continuous in [0, a]. Therefore, the existence of 2z € B such
that z; = y(¢) implies, for the continuous representative, that y (¢) (s) = y (¢) (¢)
n0<t<s<aandy(s)t) = yt)t) = (@) in 0 <t < s < a. This, of
course, is due to the special way of constructing G from f.

Theorems 1 and 2 will be proved by means of the following 5 Lemmas.
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Lemmas

Lemma 1. Let X and Y be Banach spaces and let £:[0, a] —» X and T:[0, a] —
£(X, Y) be functions such that, f € L, ([0, a], X) and T is a continuous function
with values in the Banach space of bounded linear operators from X to Y, then
9: [0, a] —> Y defined by g(s) = T'(s) (f(s)) belongs to L, ([0, a], ¥).

Proof. By hypothesis there exists a sequence {fa} m—1 of continuous functions
such that £,:[0, a] — X, f» — fa.e. and f, — fin L,.

Now, for each n we define a function g,:[0, a] — ¥ by the formula g,(s) =
T (s) (f»(s));then g, is continuous, moreover g, — ¢ a.e.

Now we will show that {g,} isa Cauchy sequence in L, ([0, a], Y).

As T is bounded

J& 1 u(s) = gn(s) | 7ds < J&* [ T(8) |7 [ fa() = fm(s) | "ds
Sk [& 1 fa(s) = fu(s) | 7ds

converges to zero if n, m — «. As L,[[0, a], Y] is complete, {g.} converges to
some § € L,[[0, a], Y], but since {g.} convergesto ga.e.,g = 7 a.e.

CoroLLARY. Let x € B be fized and suppose f(z., -) € L,([0, a], R™). Let
G (z, - ) be given by (3). Then
g(z, ) € Z L:P([O, a’]) L.‘P([—h, a’]) R”))'
Proof. Define the family T'(t), t € [0, a] of operators T (¢):R" — L,((—h, a]
R") by
for —h<7r<1t

(T (@)yl(r) Y for t<r<a

forally € R™.

-Lemma 2. Let H € L,([0, al, L,((—h, a], R")) and let I = [r1, 73] C [—h, al.
Then for any t € [0, a] we have that [§ [H (s)]ds exists and is equal to [ [¢ H (s)ds];
where [ 1 indicates restriction to I.

Proof. Consider now the operator T from L,([—%, a], R") into LI, R"],
defined by T'[z] = [];. Obviously this is a linear bounded operator and the lemma
follows from a well known result [8].

Lemma 3. Let G be defined by (3) and let y:[0, a] — B be such that [§ Gly(s),
slds exists. Lett € [0, al, 7 € [¢, a] and let I be a subinterval of [0, t]. Then

(6) [fsGly(s), sldsle = [[3 Gly(s), sldslz, and the restriction [ [o Gly (s), slds]ie.a
s a constant function.

Proof. By Lemma 2 [[;Gly(s), sldslr > [7[Gly(s), slds. By (3) Gly(s),
s](r) = 0if s > 7, which proves (5). On the other hand, since the restriction
[Gly (), s]lit.a1 is & constant function with values in R" for 0 < s < ¢, so will be

its integral and the last part of the Lemma follows from Lemma, 2.
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Lemma 4. Let [g] € L,(—h, al, R) and let « be a continuous function from
{—h, a] into R. Then « is an element of the class [g] if and only if for every ¢ > 0
there exists a & > 0 such that for some g € [g], and for every t, € [—h, a] we have
| g@) — a(t) | <efor almosteveryt € [ty — 8-ty + 8] N [—h, a].

Proof. If a belongs to [g] the result follows from the uniform continuity of e.

On the other hand assume the relation satisfied for some function g represent-
ing the class. Consider the rationals in [—A, a] numbered in some way {r},
2=1,2,3, --- ; and consider a sequence {e} of positive numbers converging to
zero as k — . From the hypothesis, to each ¢ there corresponds a & and to
each rational r; a set B < [—h, a] such that the Lebesque measure of E;* is
zero and

(6) [g@) —a()| < &

fOI‘ allt € [T,' —_ 61:, r; + 51,] ﬂ [—‘h, (1,] —_ E,‘k. .

Denote E = U7, E*, which has measure zero. To finish the proof it is enough
to show that ¢ = « on the complement of E. Assume thereisa i € [—h,a] — E
such that | g(¢) — a(t) | > 2e for some k sufficiently large. Let & be the mini-
mum between 8 and a & corresponding to e in the uniform continuity of «();
choose r; such that [{ — r;| < 8; then |« () — a(r;) | < & and | g(¢) —
a(m)| =1g@t) — a®t) + a@t) — a@:)|2]g@) — «@)| —[alt) —
a(ri) | > 2¢ — & = &, in contradiction with (6).

Lemma 5. Let x € B and f(x., -) € L,([0, a], R"). Then for all t € [0, al,
J¢ Gz, sds exists and its class contains a continuous function. Moreover

[[o G(z, s)ds](r) = % 7 (x,, s)ds, for + € [0, a] where
8 = min (7, £).

Proof. In order to simplify the details, we will prove the Lemma in the case
R" = R. The general case follows using projection operators. Now, by Lemma 4,
it is sufficient to prove that for ¢ € [0, a], ¢ > 0 there exists a § > 0 such that
for 7o € [0, a]

) | (J$@ (=, s)ds) (r) — [6f(z, s)ds)| < e

for almost every 7 € [ro — 6, 7o + 6] N [0, a]. Given ¢ > 0 choose 8§ > 0 such
that [32|f(z., s) |ds < ¢/2if [ — | < 20and0 < t < & < a. Let I =
{70 — 8, 70 + 6] N [0, a]. We consider two cases, ¢ < 7o — dand ¢ > 7 — 8.
In the first case we know by Lemma 3 that [ [¢ G (x, s)ds]; = [§ G (z, s)ds is a

class that contains the constant function with value [3 f(z., s)ds, and (7) fol-
lows. In the case { > 7o — 8, the relation (7) is reduced to

(8) I (I:O“‘; G(ﬂ?, S)[ds) (T) - eo-—ﬁf(xs, S)ds I < €,

since by a similar argument as before the integrals between 0 and r, — & cancel
each other.
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Now in order to prove (8) we have to consider two cases
a) t Z To + o
b) t<7+3é
In case a), (8) reduces to

9) | (J3353 G (x, 8)ids) (r) — [ro-sf (@, 8)ds | < e
To prove (9) it is enough to show that

| (S5 Gz, 9)uds) (7) | < ¢/2
almost everywhere in 1. By (3) we have that

| f(@sy 8) | — G, 8)1(r) 20

almost everywhere in I. Therefore, approximating the function ¢(s)(r) =
| f(zs, 8) | — Gz, 8)z(7), = € I, by means of simple functions whose values are
nonnegative functions (of + € I), we deduce

(J1R G (2, 8)rds) () < [T | (i, 8) | ds < /2.
In a similar way one proves
(75 G2, 9)eds) (1) > —e/2,
proving case a). Case b) is proved similarly.
Proofs of the theorems
Proof of Theorem 1. By hypothesis
() = 20(0) + [ (2, s)ds,

for 0 <t < a, since 2;(r) = z2(t) for 0 < ¢ < 7 < a and z:(r) = z(r) for
0 < t < a, we have z,(r) = 2,(0) + fgf(xg, 8)ds, where 8 = min (¢, 7),
0 <aand 0 < 7 < a. By Lemma 5

z(r) = 2(0) + [[o G (z, s)ds](7)
for0<r<aand0<i<a.By (3)G(z, 8) = G, s) and therefore
y(@) (r) = yo + [[s Gy (s), )ds] (r)

T

<
<t

proving the theorem.
Proof of Theorem 2. By hypothesis

12) y(@) = 2+ [1G(y(s), s)ds

fort € [0, a] where y(¢) € B. From the properties of B there follows the existence
of a function « € B such that 2(r) = x(7) for all + € [—h,0) and z(r) =
y(7)(r) if 7 € [0, a]. Moreover z;: € B forall ¢ € [0, a].

We now prove that z; = y(t) forall ¢ € [0, a]. Fix ¢t € [0, a], then if r €
[0, ¢], (12) and Lemma 2 imply

[y Olon = @)wn + [3Gly(s), sl ds.



FUNCTIONAL DIFFERENTIAL EQUATIONS 69

By (3)
JeGly(s), slonds = [5Gly(s), slo.nds.

Thereforey () (r) = y(r) () = z2(7) = w2, (r)if —h < 7 < L.

When = € [t, a], (12) and Lemma 3 imply y (&) () = y () (¢) = 2(@) = z.(7)
and the relation z; = y () is proved.

By (3) we can substitute « for y(s) in (12) and by Lemma 5 we get y (¢) t) =
z(t) = 2(0) + [ f(x,, s)ds, proving the theorem.
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