A NOTE ON MINIMALITY AND INTERPOLATION OF HARMONIZABLE HILBERT SEQUENCES*

BY HABIB SALEHI

In this note we give sufficient conditions for a harmonizable Hilbert sequence to be non-minimal or interpolable. In [2] H. Cramer gave a sufficient condition for the determinism of a harmonizable Hilbert sequence. Later J. L. Abreu [I] showed that any harmonizable Hilbert sequence is a projection of a stationary Hilbert sequence taking values in a larger Hilbert space. As a corollary Abreu obtained the sufficiency condition of Cramer. Here we use Abreu's representation to prove our results, although a direct proof based on the original paper of H. Cramer [2] is possible.

 Z denotes the set of integers. \mathfrak{S} stands for closed linear span. Let \mathfrak{K} be a Hilbert space with inner product (,) and let $x_n \in \mathcal{R}$ for $n \in \mathbb{Z}$. Define $H_\infty(x) =$ $\mathfrak{S}\{x_n, n \in \mathbb{Z}\}\$, $H_n(x) = \mathfrak{S}\{x_k, k \in \mathbb{Z}, k \neq n\}$. The Hilbert sequence $\{x_n\}$ is said to be non-minimal if $H_n(x) = H_\infty(x)$ for each $n \in \mathbb{Z}$. The covariance of a Hilbert sequence $\{x_n\}$ is defined by $r(m, n) = (x_m, x_n)$ for $m, n \in \mathbb{Z}$. The Hilbert sequence ${x_n}$ is said to be stationary if its covariance depends only on *m-n.* **A** Hilbert sequence $\{x_n\}$ is called harmonizable [1], [2] if for some complex valued Borel measure *f* on $[0, 2\pi] \times [0, 2\pi]$

$$
r(m, n) = \frac{1}{4}\pi^2 \int_0^{2\pi} \int_0^{2\pi} e^{i(mx - ny)} df(e^{ix}, e^{iy}).
$$

f is called the spectral measure of $\{x_n\}$. A Hilbert sequence $\{x_n\}$ is stationary if and only if it is harmonizable and its spectral measure is concentrated on the diagonal of $[0, 2\pi] \times [0, 2\pi]$.

THEOREM 1. Let ${x_n}$ be a harmonizable Hilbert sequence with the spectral *measure f. Let* $g(e^{i\theta}) = \frac{1}{2}^{\pi} \int_{a}^{\theta} \int_{a}^{2\pi} d|f(e^{ix}, e^{iy})|$. If $\int_{a}^{2\pi} (1/g'(e^{i\theta})) d\theta = \infty$, then { *x11) is non-minimal.*

For the proof of this theorem we need the following lemma whose proof is similar to the proof of a proposition in [1] and hence is omitted.

LEMMA. Let \mathcal{R} and \mathcal{R} be two Hilbert spaces and $A: \mathcal{R} \to \mathcal{R}$ be a bounded linear *operator. Let* $\{x_n\} \subseteq \mathcal{X}$ *be a non-minimal Hilbert sequence. Then* $\{Ax_n\} \subseteq \mathcal{X}$ *is also a non-minimal Hilbert sequence.*

Proof of Theorem I. By the representation theorem in [I]

$$
x_n = Py_n, n \in Z,
$$

where $\{y_n\}$ is a stationary sequence in a Hilbert space $\mathcal{K} \supseteq \mathcal{K}$, P is the orthogonal projection of *K* onto *K* and the spectral measure of $\{y_n\}$ is given by g. A wellknown result for stationary sequences [3], [4] says $\int_0^{2\pi} (1/g' (e^{i\theta})) d\theta = \infty$ if and only if $\{y_n\}$ is non-minimal. We use the above lemma to complete the proof.

^{*} Supported in part by NSF GP-28658.

The rest of this note is devoted to establishing a sufficient condition for interpolability of a harmonizable Hilbert sequence. Let *J* be a finite subset of *Z.* Following [5] we say that the Hilbert sequence $\{x_n\}$ is interpolable if for each finite subset $J, \mathfrak{S} \{x_n, n \in \mathbb{Z}/J\} = H_{\infty}(x)$. We remark that in the setting of our lemma ${Ax_n}$ is interpolable whenever ${x_n}$ is interpolable. Also there is a well-known characterization for interpolability of stationary Hilbert sequence in terms of its spectral density [5]. Because of these facts, arguments similar to the ones in the proof of Theorem **1** can be given to establish the following theorem.

THEOREM 2. Let $\{x_n\}$ be a harmonizable Hilbert sequence with the spectral *measure f. Let* $g(e^{i\theta}) = \frac{1}{2}\pi \int_0^{\theta} \int_0^{2\pi} d \, | f(e^{ix}, e^{iy}) |$. *If* $\int_0^{2\pi} (| p(e^{i\theta}) |^2 / g(e^{i\theta})) d\theta = \infty$ *for each non-zero trigonometric polynomial p, then* $\{x_n\}$ *is interpolable.*

MICHIGAN STATE UNIVERSITY

REFERENCES

- [1) **J.** L. ABREU, *A note on harmonizable and stationary sequences,* Bol. Soc. Mat. Mexicana, **15(1970),** 48-51.
- [2] H. CRAMER, On the structure of non-stationary stochastic processes, Proc. IV Berkeley Sym. Math. Stat. Prob., 2, 57-78, Univ. Calif. Press, 1961.
- (3) A. N. KoLMOGOROV, *Stationary sequences in Hilbert space,* Bull. Math. Univ. Moscow, $2(1941)$ 1-40.
- (4) P.R. MAsANI, *The prediction theory of multivariate stochastic processes* III, Acta Math. 104(1960), 142-62.
- [5) H. SALEHI, *Application of the Hellinger integrals to q-variate stationary stochastic processes,* Ark. Mat. 7(1967), 305-11.