A NOTE ON MINIMALITY AND INTERPOLATION OF HARMONIZABLE HILBERT SEQUENCES*

By HABIB SALEHI

In this note we give sufficient conditions for a harmonizable Hilbert sequence to be non-minimal or interpolable. In [2] H. Cramér gave a sufficient condition for the determinism of a harmonizable Hilbert sequence. Later J. L. Abreu [1] showed that any harmonizable Hilbert sequence is a projection of a stationary Hilbert sequence taking values in a larger Hilbert space. As a corollary Abreu obtained the sufficiency condition of Cramér. Here we use Abreu's representation to prove our results, although a direct proof based on the original paper of H. Cramér [2] is possible.

Z denotes the set of integers. S stands for closed linear span. Let 3C be a Hilbert space with inner product (,) and let $x_n \in 3C$ for $n \in Z$. Define $H_{\infty}(x) =$ S $\{x_n, n \in Z\}$, $H_n(x) = \mathbb{S}\{x_k, k \in Z, k \neq n\}$. The Hilbert sequence $\{x_n\}$ is said to be non-minimal if $H_n(x) = H_{\infty}(x)$ for each $n \in Z$. The covariance of a Hilbert sequence $\{x_n\}$ is defined by $r(m, n) = (x_m, x_n)$ for $m, n \in Z$. The Hilbert sequence $\{x_n\}$ is said to be stationary if its covariance depends only on m-n. A Hilbert sequence $\{x_n\}$ is called harmonizable [1], [2] if for some complex valued Borel measure f on $[0, 2\pi] \times [0, 2\pi]$

$$r(m, n) = \frac{1}{4}\pi^2 \int_{o}^{2\pi} \int_{o}^{2\pi} e^{i(mx-ny)} df(e^{ix}, e^{iy}).$$

f is called the spectral measure of $\{x_n\}$. A Hilbert sequence $\{x_n\}$ is stationary if and only if it is harmonizable and its spectral measure is concentrated on the diagonal of $[0, 2\pi] \times [0, 2\pi]$.

THEOREM 1. Let $\{x_n\}$ be a harmonizable Hilbert sequence with the spectral measure f. Let $g(e^{i\theta}) = \frac{1}{2}^{\pi} \int_{0}^{\theta} \int_{0}^{2\pi} d |f(e^{ix}, e^{iy})|$. If $\int_{0}^{2\pi} (1/g'(e^{i\theta}))d\theta = \infty$, then $\{x_n\}$ is non-minimal.

For the proof of this theorem we need the following lemma whose proof is similar to the proof of a proposition in [1] and hence is omitted.

LEMMA. Let \mathfrak{K} and \mathfrak{K} be two Hilbert spaces and $A:\mathfrak{K} \to \mathfrak{K}$ be a bounded linear operator. Let $\{x_n\} \subseteq \mathfrak{K}$ be a non-minimal Hilbert sequence. Then $\{Ax_n\} \subseteq \mathfrak{K}$ is also a non-minimal Hilbert sequence.

Proof of Theorem 1. By the representation theorem in [1]

$$x_n = Py_n, n \in \mathbb{Z},$$

where $\{y_n\}$ is a stationary sequence in a Hilbert space $\mathfrak{K} \supseteq \mathfrak{K}$, P is the orthogonal projection of \mathfrak{K} onto \mathfrak{K} and the spectral measure of $\{y_n\}$ is given by g. A well-known result for stationary sequences [3], [4] says $\int_0^{2\pi} (1/g'(e^{i\theta}))d\theta = \infty$ if and only if $\{y_n\}$ is non-minimal. We use the above lemma to complete the proof.

^{*} Supported in part by NSF GP-28658.

The rest of this note is devoted to establishing a sufficient condition for interpolability of a harmonizable Hilbert sequence. Let J be a finite subset of Z. Following [5] we say that the Hilbert sequence $\{x_n\}$ is interpolable if for each finite subset $J, \mathfrak{S} \{x_n, n \in Z/J\} = H_{\infty}(x)$. We remark that in the setting of our lemma $\{Ax_n\}$ is interpolable whenever $\{x_n\}$ is interpolable. Also there is a well-known characterization for interpolability of stationary Hilbert sequence in terms of its spectral density [5]. Because of these facts, arguments similar to the ones in the proof of Theorem 1 can be given to establish the following theorem.

THEOREM 2. Let $\{x_n\}$ be a harmonizable Hilbert sequence with the spectral measure f. Let $g(e^{i\theta}) = \frac{1}{2\pi} \int_0^\theta \int_0^{2\pi} d |f(e^{ix}, e^{iy})|$. If $\int_0^{2\pi} (|p(e^{i\theta})|^2/g(e^{i\theta})) d\theta = \infty$ for each non-zero trigonometric polynomial p, then $\{x_n\}$ is interpolable.

MICHIGAN STATE UNIVERSITY

References

- J. L. ABREU, A note on harmonizable and stationary sequences, Bol. Soc. Mat. Mexicana, 15(1970), 48-51.
- [2] H. CRAMÍR, On the structure of non-stationary stochastic processes, Proc. IV Berkeley Sym. Math. Stat. Prob., 2, 57-78, Univ. Calif. Press, 1961.
- [3] A. N. KOLMOGOROV, Stationary sequences in Hilbert space, Bull. Math. Univ. Moscow, 2(1941) 1-40.
- [4] P. R. MASANI, The prediction theory of multivariate stochastic processes III, Acta Math. 104(1960), 142-62.
- [5] H. SALEHI, Application of the Hellinger integrals to q-variate stationary stochastic processes, Ark. Mat. 7(1967), 305-11.