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BY o. C. GARCIA* 

Introduction and Notation 

In this paper we consider the categories PTop of all Partially Ordered Topo­
logical Spaces with continuous, isotone functions as their morphisms, and sub­
categories thereof. 

We use the same notation as in [2], namely Top is the category of topological 
spaces, H of Hausdorff spaces, KPTop the full subcategory of PTop consisting of 
all the objects whose underlying topological space belongs to K. We denote 
further by POTS the full subcategory of PTop having a semi-continuous partial 
order, by HOTS the (full) subcategory of continuously partially ordered spaces 
[10}, by KPOTS the intersection of KPTop and POTS, and by KOTS the inter­
section of KPTop and HOTS. 

Section 1, deals with the colimits in these categories. Although final structures 
do not seem to exist for arbitrary families of maps, we find and characterize co­
products and coequalizers concluding that PTop, HPTop, HPOTS and HOTS are 
cocomplete. 

Section 2, concerns itself with coreflective subcategories. In order to use 
13.1.2 of [3], we recall from [2], that PTop is locally and colocally small, and we 
show that so is HPTop. The subcategories HPOTS and HOTS are also locally 
small. Moreover every nonempty object of PTop is a generator. 

This leads to conclude that the subcategories KOTS which are coreflective in 
HOTS are exactly those for which K is coreflective in H. Similarly for KPTop as 
subcategories of HPTop and for KPOTS as subcategories of HPOTS. 

Finally section 3 introduces left adjoints of the Inclusion and Forgetful func­
tors to relate Top and PTop, giving thus more insight into reflective and core­
flective subcategories of PTop. The Inclusion functor is left-adjoint to the 
Forgetful functor. If K is a subcategory of H, K is coreflective in KOTS. There­
fore if K is coreflective in H, K is coreflective in HOTS. A similar result is ob­
tained for some reflective subcategories K of H. A left adjoint of the Inclusion 
functor is obtained for epireflective subcategories of H. Finally we find an ad­
joint situation of functors KOTS P HOTS for K coreflective subcategory of H, 
and a similar result for the reflective case. 

* The author wishes to thank Professor T. H. Choe for the suggestions and encourage­
ment he received during the development of this paper. He also wants to acknowledge that 
his stay at the Centro de Investigaci6n del JPN was made possible thanks to the financial 
support that he received from the Consej o N acional de Ciencia y Tecnologia (CON ACYT, 
Mexico, Subvenci6n 083). 
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1. Colimits 

Let (X,, ::::; ,),er be a family of objects in PTop. On the underlying set of-the 
topological space II,e1X, we define the following partial order: (x, i) ::::; (y, j) 
if and only if i = j and x ::::; , y. Let (s,),e1 be the family of natural injections 
s;:X; ---+ II,e1X, such that s;(x): = (x,,j). As we know from [2] (II,e1X,, ::::; ) 
together with (s,),er is the coproduct 11.:er(X,, ::::; ,) .in PTop and if each ::::; , had 
been continuous or semicontinuous so would have been the partial order ::::; . Ac­
cordingly POTS and HOTS have coproducts. 

Remark: As is well known, every equivalence relation 1r in a topological space 
X determines a quotient space in Top. 

The corresponding situation Ptop is not as simple. 

LEMMA 1: Let (X, Tz, ::::; ) E PTop, and R be an equivalence relation on X. If 
a parti,a/, order ::::; B on X/R is well defined by ail~ B bB if and only if aB = 'i>B or 
a ::::; b, then the natural map VB is a morphism and the quotient topological space 
with this parti,a/, order has the final structure with respect to VB• 

Proof: By the hypothesis on Rand ::::; B, a ::::; b implies aB::::; B bB and consequently, 
"B in addition to being continuous is isotone. Let Z E PTop be arbitrary. If 
g:X/R ---+ Z is a PTop morphism g o IIB is continuous and isotone. Since X/R 
has the final topological structure with respect to "B, g is continuous. By using 
the definition of ::::; B one easily sees that g is also isotone. 

Remark: Let f,:X---+ Y. be a family of PTop-morphisms indexed by I. wt R 
betheintersection of all ker f,, iEI. Define ::::;Bin X/R as follows: aB::::;B bB if and 
only if /,(a) ::::; f.(b) for all i E /. Then ::::; Bis a well defined partial order on K. 

We recall from [2] that PTop is colocally small and accordingly for X the elass 
of epimorphisms f :X ---+ Y can be represented by a set. 

Definition 1: Let X E PTop. For every equivalence relation 7r on the ·under­
lying set of X, let S(1r) be a representative set of those epimorphismsf:X ---+ Y 
such that 1r c ker f, and let R( 7r) denote the intersection of all the kernels of 
maps in S(1r). We call an epimorphism f:X ---+ Yin PTop a special quoti,ent if 
there exist an equivalence relation 1r on X such that f:X ---+ Y is equivalent to 
v:X ---+ X/ R(7r) as an epimorphism, where" is the natural map and the order 
on X/R(r) is the one induced by the set of PTop-epimorphisms, S(1r). 

LEMMA 2: The category PTop has coequalizers. 

Proof: Let f, g:X ---+ Y be given in PTop. 

Let 1r = {(f(x), g(x)) Ix EX} U {(g(x),/(x)) Ix EX} U ~y. The -set 
S( 1r) of the above definition-is nonempty as one map of the type Y ---+ { p} be­
longs to it. We denote by (1/1,).er the family of PTop-epimorphisms in S(,r).'Let 
R = n,erker1/,, and let (Y/R, ::::;R) be the special quotient induced by the 
family (1/t,),er. We now show that v:Y---+ Y/R is the coequalizer off and g. Let 
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x E X. By definition of 1r,f(x)1rg(x). Since 1r c R, f(x)Rg(x) which we can 
write as 11 o f(x) = 11 o g(x). Therefore 11 of = 11 o g. 

Suppose h:Y ---+ Z has been given such that ho f = hog. Then 1r c ker h 
and we obtain R c ker h. Without loss of generality, let h be an epimorphism 
of (1//i)ier, Define k:Y/R---+ Z by k(11(y)) = h(y). It is easy to see that k is a 
well defined continuous and isotone map which makes the following diagram 
commutative: 

· f 11 
X--+Y--+Y/R 

g l~ 
z 

Since 11 is surjective, k is unique. 

Remark: It should be noted that the underlying topological space of Y/R may 
not be the coequalizer of the underlying topological spaces of X and Y, with the 
maps/, g. 

THEOREM 1: The coequalizers in PTop are exactly the s-pecial quotients. 

Proof: From the proof of Lemma 2 we have seen that every coequalizer is an 
special quotient. Without loss of generality let 11:X ---+ Xix be an special quo­
tient where K = ker 11, 11 is the natural map, and the order on X/K is the one 
induced by the family of all types of PTop-epimorphisms m with domain X and 
K c ker m. Let i:K---+ XITX be the inclusion map. It is obvious now that 11 
is the coequalizer of P1 ° i and p2 ° i where p1, P2 are respectively the first and 
second projections. 

THEOREM 2: An epimorphism f:X ---+ Y is an s-pecial quotient in PTop if and 
only if for every PTop-morphism g:X ---+ Z such that ker f C ker g, there exists a 
unique PTop-morphism h:Y---+ Z which makes the following diagram commuta­
tive: 

f 
X----+Y 

{;' 
z 

Proof: The necessity is obvious. Let S be a representative family of all PTop­
epimorphisms m with domain X and ker f c ker m and let 11 :X ---+ X/R be the 
special quotient induced by S. By hypothesis there is a unique PTop-rriorphism 
h:Y---+ X/R such that ho f = 11. We apply the first part of this proposition to 
the special quotient 11:X---+ X/R and f and obtain a unique map k:X/R---+ Y 
such that k O 11 = f. Since bothf and 11 are surjective and therefore epimorphisms, 
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from h o k o v = v and k o h of = f, h o k = lx;R and k o h = 1 y follow. 
We conclude that f is equivalent to v and is therefore a special quotient. 

Remark: If f:X _. Y is a surjective Prop-morphism where f( a) ;$ f(b) im­
plies a ;$ b, and if we define ~ in X/ker f by v1(a) ~ v1(b) if and only if 
f(a) ~ f(b), then v,:X _. X/ker f is a coequalizer. Indeed we know from [2] 
that there is an equalizer h of vi o p1 and v1 o p2. 

K _!!:__, XIIX ~ X ~ X/ker f 
P2 

One checks that v1 is now coequalizer of p1 oh and p2 oh. 
In order to use 13.1.2 of [3] in Section 2, we conclude now: 

COROLLARY 1: The category Prop is cocomplete. 

Proof: We have recalled from [2] that PTop has coproducts and we have shown 
in Lemma 2 that it has coequalizers. The result follows from a well known theo­
rem of category theory. See for example [5], [7]. 

THEOREM 3: The categories HPTop, HPOTS and HOTS are complete, cocom­
plete and locally small. 

Proof: From the proof of [2]-Theorem 1, one sees that these categories are 
complete. The same argument of [2]-Lemma 4, yields that the monomorphisms 
are injective and proves that these categories are locally small. We have already 
remarked that they are closed with respect to coproducts. All we need to show 
then, is that they are closed with respect to coequalizers. For convenience let us 
denote any one of the categories HPI'op, HPOTS and HOTS by SC. 

Let f, g:X _. Y be two different SC-morphisms. Let h:Y _. Z be their 
PTop-coequalizer. Since Z may not be Hausdorff or may not have semicon~ir1.uous 
( continuous) partial order, using [2]-Theorem 1, we take the SC-reflection rZ of 
Z. Let r:Z _. rZ be the reflection map. The map r oh is the coequalizer of 
f, gin SC. Indeed, consider the following diagram: • 

f h r 
X---+Y---+Z---+rZ 

·i~ 
Z' 

Since h is PTop-coequalizer of f, g, ho f = hog. Therefore (r o h) of = 

(r oh) o g. Suppose k:Y _. z' has been given such that k of= k o g. Since 
k E PTop and his a Prop-coequalizer, there exists a unique continuous isotone 
map m such that m o h = k. Since r is the SC-reflection, there exists a unique 
m:rZ _. z' in SC, such that m' or = m. Therefore m' o (r oh) = k. The 
uniqueness of m' is clear. 
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2. Corefl.ective subcategories 

THEOREM 4: The category HPTop is colocally small. 

Proof: We first show that if Y E HPTop, every proper closed subspace U of 
Y is an equalizer. Given one such U C Y E HPTop, define: R = { ( ( u, 1), 
( u, 2)) I u E U} U { ( ( u, 2), ( u, 1)) I uE U} U Llmy. R is clearly an equiva­
lence relation in YIIY and the relation ~R defined by (x, i)R~R(Y,J°)R if and 
only if (x, i) ~ (y,j) or there exists u E U such that x ~ u and u ~ y is a 
partialorderin (YII Y)/R. WecallZ: =((YIIY)/R, ~R) and show that it is 
Hausdorff. Let (x, i)R, (y,j)R be two distinct points of Z. If x = y, then i ;= j 
and x, y belong to the complement of U, CU. We obtain then two disjoint satu­
rated neighborhoods CUX{i} and CUX{j} of (x, i) and (y,j) respectively. 

If x ;= y, there exist V, W disjoint open neighborhoods of x and y respec­
tively, since Y is Hausdorff, and we obtain with them the disjoint saturated 
open sets VX{i,j} and WX{i,j} which are neighborhoods of (x, i) and (y, j) 
respectively. From [1] Chapter 1 it follows that Z is Hausdorff. 

"d i y O'l y y JJR d Cons1 er U - - II - Z, and callf = VR o u1 an g = VR o u2. 
0'2 

It is clear that i is equalizer off and g. 
Having shown that every proper closed subspace of an space in HPTop is an 

equalizer, the closure of the image of an epimorphism e:X -► Y can not be a 
= x proper subset of Y. Therefore Y ~ 22 • See [8] 

Remark: For the proof of out next lemma we shall use the well-known fact 
that for a category C closed with respect to coproducts, an object G is a generator 
if and only if for each object A in C there is an epimorphism e0 :II;e1G -► A, 
where Il;EIG denotes the coproduct of as many copies of G as I has elements. 

LEMMA 3: Every nonempty object of PTop is a generator. 

Proof: Let G be a nonempty object of PTop and A E PTop arbitrary. Let I 
be the set of PTop-morphisms G -► A. We define ea:II;e1G -► A by e0 (v, x) = 
v(x) for every v E I, x E G. This map is clearly continuous and isotone. Let 
a E A. If a:G -► A is the constant map with value a, a E I and ea(a x) = 
a(x) = a for any x E G which is nonempty. It follows that ea is surjective and 
accordingly an epimorphism. 

Remark: Since HPTop, HPOTS and HOTS are cocomplete and therefore have 
coproducts, the argument of Lemma 3 applies and shows that every nonempty 
object in these categories is a generator. 

LEMMA 4: If K is a subcategory of Top, KPTop is closed with respect to limits 
in PTop if and only if K is closed with respect to limits in Top. M orover KPTop is 
closed with respect td colimits in PTop if and only if K is closed with respect to co­
limits in Top. 

Proof: The proof of the first statement follows directly from the construction 
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of prod1,1ets and equalizers in [2], and the observation that K is a subcategory of 
KPTop and Top of PTop. The converse of the second statement is also easy using 
the argument of Theorem 1, but one needs to be aware that the forgetful functor 
do not preserve coequalizers, as we have remarked before. 

THEOREM 5: If K is a subcategory of H (Top), the following statements are 
equivalent: 

1) K is coreflective in H 
2) KPTop is coreflecti:ve inHPTop 
3) KPOTS is coreflective inHPOTS 
4) KOTS is coreflective in HOTS. 

Proof: By a direct application of 13.1.2 of [3], theorem 3, theorem 4, lemma 3 
and lemma 4 yield that 1) and 2) are equivalent. Suppose KPTop is coreflective 
in HPTop. Let (X, ~) E HPOTS and cx:c(X, ~1) -+ (X, ~1) be its KPTop­
coreflection. We shall show that c(X, ~1) has a semicontinuous partial order. 
Let dx:dX -+ X be the K-coreflection of X. 

Since the coreflections in Hare bijective, we can assume without loss of gener­
ality that the underlying sets of X, dX, c( X, ~ 1) are all the same, and that the 
graph of the maps ex and dx is the diagonal. Since ( dX, ~ 1) E KPTop, and the 
map dx: ( dX, ~ 1) -+ ( X, ~ 1) is in HPTop, there exists a unique continuous and 
isotone map f which makes the following diagram commutative: 

Let a$ bin c(X, ~1). If cx(a) ~1 cx(b), then d~ 1cx(a) ~ dx- 1cx(b) and 
a = fdx- 1cx(a) ~ fdx- 1cx(b) = bwhichisacontradiction. Thereforecx(a) $ 
ex( b). Since ~ 1 is semicontinuous in ( X, ~ 1), we find two open neighborhoods, 
U of cx(a) and V of cx(b) such that cx(a) $ v and u $ cx(b) for all u E U 
and v E V. This shows that U = cx-1 U and V = ex -l V are two open neighbor­
hoods in c(X, $1) such that a $ v and u $ b for all u E U and v E V. 
Accordingly the partial order of c(X, ~ 1) is semicontinuous. 

We have shown that if (X, ~1) E HPOTS, given an arbitrary j:Y-+ (X, 
~ 1) inHPTop such that Y E KPTop, there exists c(X, ~1) E KPOTS, cx:c(X, 
~ 1) -+ ( X, ~ 1) in HPOTS and J continuous and isotone such that ex o J = f. 
This will be true in particular whenever Y E KPOTS C KPTop. 

The same argument shows that 2) implies 4). 
Let KPOTS be coreflective inHPOTS. If X E HPOTS has the discrete order, 

it is clear that its KPOTS-coreflection has the discrete order. (The coreflection 
map is bijective.) Therefore K is coreflective inH. Similarly 4) implies 1). 
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CoROLLARY 2: Let K be a subcategory to Top. The following statements are 
equivalent: 

I) K is corefiective in Top 
2) KPTop is corefiective in PTop 
3) KPOTS is corefiective in POTS 
4) KOTS is corefiective in HOTS. 

Proof: The proof is verbatim as in Theorem 5. In the proof of our next theo­
rem we shall use the following obvious lemma: 

LEMMA 5: Let S be a subcategory of Band A a subcategory of S. If A is core­
fiective in B, A is corefiective in S. 

THEOREM 6: Let K be a subcategory ofTop(H). Then K is corefiective in PTop 
(HPTop) if and only if K is corefiective in Top(H). 

Proof: The necessity follows from Lemma 5. Conversely if we consider K as 
a subcategory of PTop the coproducts and coequalizers of Kin PTop will have 
the discrete order and therefore belong to K. Similarly for HPTop. 

3. Leftadjoints of the inclusion and forgetful functors 

Let K be a subcategory ofH, and X E K, by associating to X the PTop space 
(X, d) where dis the discrete partial order (no two elements are comparable), 
we introduce the inclusion functor U :K - KOTS. 

THEOREM 6: Let K be a subcategory of H, F:KOTS - K the order-forgetful 
functor, U:K - KOTS the inclusion functor. Then U is left-adjoint of F. 

Proof: Letf:A - Bin Kand g:C - Din KOTS be given. Define 7/B.a:KOTS­
( UB, C) - K(B, FC) by 7/B,a(h)(b) = h(b). Since 7/B,a is clearly a bijection, 
we only need to show that the following diagram commutes: 

KOTS(UB, C) 

KOTS(Uf, g) l 
KOTS(UA, D) 

7/B,0 

7/A,D 

K(B, FC) 

l K(f, Fg) 

K(A,FD) 

Let h E KOTS( UB, C) and a E A be arbitrary. 
Then (K(f,Fg) o 7/B,a) (h)(a) = K(f,Fg) (7/B,a(h)) (a) 

= (Fg o 7/B,a(h) 0 f)(a) = Fg(7/B,a(h)(f(a)) 

Fg(h(f(a))) = g(h(f(a))) = (go ho Uf)(a) 

= 7/A,D(g0 h 0 Uf)(a) = (7/A,n°KOTS(Uf,g))(h)(a) 
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Since a and h are arbitrary the diagram commutes and T/ is a natural equiva­
lence as required. 

COROLLARY 3: Every subcategory K of H is coreflective in KOTS. 

Proof: Follows directly from [3], 8.1 

COROLLARY 4: If K is coreflective i"n H, K is coreflective in HOTS. 

Proof: Let X E HOTS, let (X1, c1) be the KOTS-corefiection of X and 
(X2, 1:2) the K-corefiection of (X1, c1), It is an easy matter to check that (X2, 1:2) 
is the K-coreflection of X. 

It is easy to find an example to show that the Forgetful functor Fis not a left­
adjoint of U. However we have the following 

LEMMA 6: The inclusion functor U :K. ---+ KOTS has a kit-adjoint for the fol-
lowing subcategories K of H: 

1) Hausdorff 4) real compact 
2) completely regular 5) zero dimensional 
3) compact 6) boolean spaces. 

Proof: Since all these subcategories ofH are productive and closed hereditary, 
they have equalizers and products and are therefore complete. AB an embedding, 
U preserve limits. By [7] Theorem 2 page 110, we need only show that for every 
D E KOTS, there exists a set Sn of K-objects, which is a solution set of D with 
respect to U. Choose a set D' such that ff = z,.B, Define Sn ={ (S, t) IS c D' 

and tis a topology on S}. We shall show that Sn is a solution set. Let D A. UC 
be given. Then r I mh =::;; D'. (We mean by r A the closure of the set A.) Choose 
a subset S,. of D' such that S,. = F'imh, find a bijection b:S,. ---+ rlmh and 
induce on S,. the topological structure from rlmh. We obtain in this way that 
s,. E SD and bis an homeomorphism. Call h' the map D ---+ U(rlmh) defined 
by h' ( d) = h( d), i the inclusion r I mh ---+ G, and define k, f so that, k = 
U(b-1)oh'andf =iob,NowUfok = U(iob)ok = U(iob) o U(b-1)o 
h = U(i) 0 h' = h, S,. E Sn and the following diagram commutes: 

Therefore Sn is a solution set as required. 

COROLLARY 5: For the subcategories K of H listed in Lemma 6, K is reflective 
inKOTS. 

Proof: See [3], 8.1. 
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Let Y E KOTS. Define in Y, a ,...., b if and only if { a, b} has an upper bound 
or a lower bound, and a 1ryb if and only if there exists a1, • • ·, a,, E Y such that 
a ,...., a1, • • •, a,, ,...., b. Then 1ry is an equivalence relation on Y. 

If K is an epirefiective subcategory of H and Y E KOTS, let tY denote the 
topological space Y/1ry and h:Top - Hand k:H - K the epirefieotors. We see 
that the natural map Y - Y / 1ry is isotone as tY has been obtained by identifying 
all the points which can be compared or are extrema of chains c1, • • ·, c,. where 
c, can be compared to c,+1. Let GY denote khtY. We define so a functor G:K.OTS -
K as will be shown in the next Theorem. 

THEOREM 7: Let K be an epirefl,ective 8'1.lhcategory of H. Then G can be constructed 
into the left-adjoint of U. 

Proof: G is certainly a functor. Given A L Bin KOTS, we consider: 

A __!___.B ~ tB ~ htB~ GB 

tAj/ 

tA 

huj 
htA 

k.ul 
GA 

For ta O f and tA, f is unique. For h,a O f and h,A, f is unique and for k,.,a O /' 

and k,.u, G(f) is well defined. It is an easy routine to check all the functor proper­
ties of G. For every Y E KOTS, call gy = k,.,y o h,y o ty. Let X E K and 
Y E KOTS and define Ay,z as follows: Ay,.r:K.(GY, X) - KOTS(Y, UX) and 
Ay,z(f) =fogy. Since ty is a natural map and h and k are epireflections, gy 
is continuous and isotone. Therefore f O gy E KOTS( Y, UX). We claim that X 
is a natural equivalence. 

Let Ay,.r(a) = Ay,.r(b). Then a o gy = b o gy. Since ty is surjective and h, k 
epirefiections, we obtain that a = b. Therefore Ay,z is injective. Letf:Y - UX. 
To show that 1ry c ker f, let a, b E Y and a1ryb. If a ,...., b since UX has dis­
crete order, f( a) = f( b). If a ,...., a1, a1 ,...., "2, • • ·, a,, ,...., b, similarly f( a) = 
f(b). Therefore there exists Ji such that the following diagram commutes: 

Y~UX~X 

iL/4 
tY 
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Moreover, since hand k are epireflectors, there exist f2 and f3 such that h o h = Ji 
and fa O k = f2. Therefore fa o k o h o t = f2 o h o t = f1 o t = f, which can be 
rewrittenasf = fa 0 gr = Ar,x(fs),andshowsthat'Jl.r,xissurjective. 

To show that X is natural, let A ~ B in K and C i D in KOTS. Consider 
the following diagrams: 

K(GD,A) hD,A KOTS(D, UA) at-aogD 

I l 
K(Gi, c) l l KOTS (i, Uc) UcoaogDoi 

K(GC,B) Ae,B KOTS(C, UB) c o a o Gi 1- co a o Gi o ge 

By the definition of Gi, we know that Gi o ge YD o i. 
Since Uc is the same map as c, we obtain Uc o a o gD o i = co a o Gi o ge. 

CoROLLARY 6: Let K be a corejf,ective subcategory ofH, C :H - K the correjf,ector 
and E-K - H the indusion functor. Then UEG is left-adjoint to UCF. 

Proof: Consider the adjoint situations 

G E U 
KOTS . K H HOTS. 

U C F 

A similar result holds for the reflective subcategories K ofH. 

CENTRO DE lNVESTIGACI6N DEL IPN 
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