COLIMITS AND COREFLECTIVE SUBCATEGORIES IN PARTIALLY
ORDERED TOPOLOGICAL SPACES

By O. C. Garcra*

Intrqduction and Notation

In this paper we consider the categories PTop of all Partially Ordered Topo-
logical Spaces with continuous, isotone functions as their morphisms, and sub-
categories thereof.

We use the same notation as in [2], namely Top is the category of topological
spaces, H of Hausdorff spaces, KPTop the full subcategory of PTop consisting of
all the objects whose underlying topological space belongs to K. We denote
further by POTS the full subcategory of PTop having a semi-continuous partial
order, by HOTS the (full) subcategory of continuously partially ordered spaces
[10], by KPOTS the intersection of KPTop and POTS, and by KOTS the inter-
section of KPTop and HOTS.

Section 1, deals with the colimits in these categories. Although final structures
do not seem to exist for arbitrary families of maps, we find and characterize co-
products and coequalizers concluding that PTop, HPTop, HPOTS and HOTS are
cocomplete.

Section 2, concerns itself with coreflective subcategories. In order to use
13.1.2 of [3], we recall from [2], that PTop is locally and colocally small, and we
show that so is HPTop. The subcategories HPOTS and HOTS are also locally
small. Moreover every nonempty object of PTop is a generator.

This leads to conclude that the subcategories KOTS which are coreflective in
HOTS are exactly those for which K is coreflective in H. Similarly for KPTop as
subcategories of HPTop and for KPOTS as subcategories of HPOTS.

Finally section 3 introduces left adjoints of the Inclusion and Forgetful func-
tors to relate Top and PTop, giving thus more insight into reflective and core-
flective subcategories of PTop. The Inclusion functor is left-adjoint to the
Forgetful functor. If K is a subcategory of H, K is coreflective in KOTS. There-
fore if K is coreflective in H, K is coreflective in HOTS. A similar result is ob-
tained for some reflective subcategories K of H. A left adjoint of the Inclusion
functor is obtained for epireflective subcategories of H. Finally we find an ad-
joint situation of functors KOTS = HOTS for K coreflective subcategory of H,
and a similar result for the reflective case.

* The author wishes to thank Professor T. H. Choe for the suggestions and encourage-
ment he received during the development of this paper. He also wants to acknowledge that
his stay at the Centro de Investigacién del IPN was made possible thanks to the financial
support that he received from the Consejo Nacional de Ciencia y Tecnologia (CONACYT,
México, Subvencién 083).

72



SUBCATEGORIES IN PARTIALLY ORDERED SPACES 73

1. Colimits

Let (X, <i)ser be a family of objects in PTop. On the underlying set of the
topological space II:e;X; we define the following partial order: (z,7) < (¥,7)
if andonly if ¢ = jand z <; y. Let (8:)ier be the family of natural injections
8;:X; — IlierX; such that s;(z): =(x;,7). As we know from [2] (ILier X, <)
together with (s;)er is the coproduct I;e;(X;, <) in PTop and if each <;had
been continuous or semicontinuous so would have been the partial order <. Ac-
cordingly POTS and HOTS have coproducts.

Remark: As is well known, every equivalence relation 7 in a topological space

X determines a quotient space in Top.
The corresponding situation Ptop is not as simple.

LemMA 1: Let (X, Tx, <) € PTop, and R be an eqm'valencé relation on X. If
a partial order <z on X/R s well defined by ar <z be if and only if ar = bz or
a < b, then the natural map ve is a morphism and the quotient topological space
with this partial order has the final structure with respect to vg.

Proof: By the hypothesis on R and < z,a < bimplies az < » bz and consequently,
ve in addition to being continuous is isotone. Let Z € PTop be arbitrary. If
g:X/R — Z is a PTop morphism ¢ o g is continuous and isotone. Since X/R
has the final topological structure with respect to v, g is continuous. By using
the definition of < one easily sees that g is also isotone.

Remark: Let f;:X — Y, be a family of PTop-morphisms indexed by I. Let R
be the intersection of all ker f;, 7€ I. Define <z in X/R as follows: az < g bz if and
only if fi(a) < fi(b) for all 2 € I. Then <is a well defined partial order en X.

We recall from [2] that PTop is colocally small and accordingly for X the class
of epimorphisms f:X — Y can be represented by a set.

Definition 1: Let X € PTop. For every equivalence relation = on the under-
lying set of X, let S(#) be a representative set of those epimorphisms f:X — Y
such that # C kerf, and let B(w) denote the intersection of all the kernels of
maps in S(x). We call an epimorphism f:X — Y in PTop a special quotient if
there exist an equivalence relation 7 on X such that f:X — Y is equivalent to
»:X — X/ R(~) as an epimorphism, where » is the natural map and the order
on X/R(r) is the one induced by the set of PTop-epimorphisms, S(w).

LemMMA 2: The category PTop has coequalizers.
Proof: Let f, 9:X — Y be given in PTop.

Let = = {(f(2), g(z)) |z € X} U {(g(2),f(2)) |2 € X} U Ay. The set
S(=) of the above definition is nonempty as one map of the type ¥ — {p} be-
longs to it. We denote by (¥:)ier the family of PTop-epimorphisms in S(=). Let
R = Nierkery; and let (Y/R, <R) be the special quotient induced by the
family (¢:)sc:. We now show that »:¥ — Y/R is the coequalizer of f and g. Let
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z € X. By definition of =, f(z)wg(z). Since 7 C R, f(z)Rg(x) which we can
write as v o f(x) = wo g(z). Therefore vof = vog.

Suppose h:Y — Z has been given such that hof = hog. Then # C kerh
and we obtain B C ker h. Without loss of generality, let & be an epimorphism
of (¢:)ier. Define k:Y/R — Z by k(v(y)) = h(y). It is easy to see that kis a
well defined continuous and isotone map which makes the following diagram
commutative:

X—;—» Y —25Y/R
l%
VA

Since » is surjective, k is unique.

Remark: It should be noted that the underlying topological space of Y/R may
not be the coequalizer of the underlying topological spaces of X and Y, with the
maps f, g.

THEOREM 1: The coequalizers in PTop are exactly the special quotients.

Proof: From the proof of Lemma 2 we have seen that every coequalizer is an
special quotient. Without loss of generality let »:X — X/x be an special quo-
tient where K = ker », » is the natural map, and the order on X/K is the one
induced by the family of all types of PTop-epimorphisms m with domain X and
K C kerm. Let ::K — XIIX be the inclusion map. It is obvious now that »
is the coequalizer of p; o ¢ and p. o ¢ where pi, ps are respectively the first and
second projections. ‘

THEOREM 2: An epimorphism f:X — Y is an special quotient in PTop if and
only if for every PTop-morphism g:X — Z such that ker f C ker g, there exists a
unique PTop-morphism h:Y — Z which makes the following diagram commuta-
tive:

f
X—Y

%

Proof: The necessity is obvious. Let S be a representative family of all PTop-
epimorphisms m with domain X and ker f C ker m and let »:X — X/R be the
special quotient induced by S. By hypothesis there is a unique PTop-morphism
h:Y — X/R such that h o f = ». We apply the first part of this proposition to
the special quotient »:X — X/R and f and obtain a unique map k:X/R — ¥
such that ko » = f.Since both f and » are surjective and therefore epimorphisms,
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from hokoy = » and kehof = f, hok = 1z and koh = 1y follow.
We conclude that f is equivalent to » and is therefore a special quotient.

Remark: If f:X — Y is a surjective PTop-morphism where f(a) £ f(b) im-
plies @ £ b, and if we define < in X/ker f by »(a) < »(b) if and only if
fla) £ f(b), then »:X — X/ker f is a coequalizer. Indeed we know from [2]
that there is an equalizer & of »; o py and »; © ..

K-, xnx P x Y, X/kerf

D2 -

One checks that » is now coequalizer of py o h and p; o h.
In order to use 13.1.2 of [3] in Section 2, we conclude now:

CoroLLARY 1: The category PTop 7s cocomplete.

Proof: We have recalled from [2] that PTop has coproducts and we have shown
in Lemma 2 that it has coequalizers. The result follows from a well known theo-
rem of category theory. See for example [5], [7].

TreoREM 3: The categories HPTop, HPOTS and HOTS are complete, cocom-
plete and locally small.

Proof: From the proof of [2]-Theorem 1, one sees that these categories are
complete. The same argument of [2]-Lemma 4, yields that the monomorphisms
are injective and proves that these categories are locally small. We have already
remarked that they are closed with respect to coproducts. All we need to show
then, is that they are closed with respect to coequalizers. For convenience let us
denote any one of the categories HPTop, HPOTS and HOTS by SC.

Let f, g:X — Y be two different SC-morphisms. Let h:Y — Z be their
PTop-coequalizer. Since Z may not be Hausdorff or may not have semicontinuous
(continuous) partial order, using [2]-Theorem 1, we take the SC-reflection rZ of
Z. Let r:Z — rZ be the reflection map. The map r o h is the coequalizer of
f, g in SC. Indeed, consider the following diagram: -

X——*Y—>Z——>rZ

b

Since & is PTop-coequalizer of f, g, hof = hog. Therefore (r o h) of =
(r o h) o g. Suppose k:Y — Z' has been given such that ko f = ko g. Since
k € PTop and % is a PTop-coequalizer, there exists a unique continuous isotone
map m such that m o b = k. Since 7 is the SC-reflection, there exists a unique
maxZ — Z' in SC, such that m’ or = m. Therefore m’ o (roh) = k. The
uniqueness of m’ is clear. !
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2. Coreflective subcategories
TaeoreEM 4: The category HPTop s colocally small.

Proof: We first show that if ¥ € HPTop, every proper closed subspace U of
Y is an equalizer. Given one such U € Y € HPTop, define: R = {((u, 1),
(4,2)) |u € U} U{((%2), (u,1)) |ucU} U Arny. R is clearly an equiva-
lence relation in YIIY and the relation <z defined by (z, 2)e<z(¥,7)r of and
only if (x,7) < (y,7) or there exists w € U suchthatx < uandu £ yisa
partial orderin (YII Y)/R. Wecall Z: =((YIIY)/R, <r) and show that it is
Hausdorff. Let (z, )z, (y, )= be two distinct points of Z. If x = y, then s = 7
and z, y belong to the complement of U, CU. We obtain then two disjoint satu-
rated neighborhoods CUX{#} and CUX{j} of (,%) and (y, ) respectively.

If x £ y, there exist V, W disjoint open neighborhoods of = and y respec-
tively, since Y is Hausdorff, and we obtain with them the disjoint saturated
open sets V' X{7, 5} and WX {7, j} which are neighborhoods of (z, 7) and (y, j)
respectively. From [1] Chapter 1 it follows that Z is Hausdorff.

Consider U —— ¥ :1> yoy 22, Z,and call f = vz o o1and g = vz o oo

2

It is clear that < is equalizer of f and g.

Having shown that every proper closed subspace of an space in HPTop is an
equalizer, the closure of the image of an epimorphism ¢:X — Y can not be a

proper subset of Y. Therefore ¥ < 2% See [8]

Remark: For the proof of out next lemma we shall use the well-known fact
that for a category C closed with respect to coproducts, an object G is a generator
if and only if for each object A in C there is an epimorphism eg:Il;c;G — A4,
where IL;e /G denotes the coproduct of as many copies of G as I has elements.

LemMA 3: Every nonempty object of PTop is a generator.

Proof: Let G be a nonempty object of PTop and A € PTop arbitrary. Let I
be the set of PTop-morphisms @ — A. We define eq:Ilic;G — A by es(v, z) =
v(z) for every v € I,z € G. This map is clearly continuous and isotone. Let
a € A. If a:G — A is the constant map with value a, @ € I and eg(Gz) =
a(z) = aforanyz € @ which is nonempty. It follows that eq is surjective and
accordingly an epimorphism.

Remark: Since HPTop, HPOTS and HOTS are cocomplete and therefore have
coproducts, the argument of Lemma 3 applies and shows that every nonempty
object in these categories is a generator.

LemMa 4: If K is a subcategory of Top, KPTop <s closed with respect to limits
in PTop if and only if K is closed with respect to limits n Top. Morover KPTop s
closed with respect to colimits in PTop if and only if K s closed with respect to co-
limits in Top.

Proof: The proof of the first statement follows directly from the construction
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of products and equalizers in [2], and the observation that K is a subcategory of
KPTop and Top of PTop. The converse of the second statement is also easy using
the argument of Theorem 1, but one needs to be aware that the forgetful functor
do not preserve coequalizers, as we have remarked before.

=

TraroreEM 5: If K is a subcategory of H (Top), the following statements are
equivalent:

1) K ¢s coreflective in H

2) KPTop is coreflective in HPTop

3) KPOTS s coreflective in HPOTS

4) KOTS is coreflective tn HOTS.

Proof: By a direct application of 13.1.2 of [3], theorem 3, theorem 4, lemma 3
and lemma 4 yield that 1) and 2) are equivalent. Suppose KPTop is coreflective
in HPTop. Let (X, £) € HPOTS and cx:e(X, <1) — (X, <1) be its KPTop-
coreflection. We shall show that ¢(X, £1) has a semicontinuous partial order.
Let dx:dX — X be the K-coreflection of X.

Since the coreflections in H are bijective, we can assume without loss of gener-
ality that the underlying sets of X, dX, ¢(X, <1) are all the same, and that the
graph of the maps cx and dx is the diagonal. Since (dX, <1) € KPTop, and the
map dx:(dX, <1) — (X, <:) is in HPTop, there exists a unique continuous and
isotone map f which makes the following diagram commutative:

(@X, <)—2X (X, <)
\ o
X, <)

Let ax bin ¢(X, <1). If ex(a) <1 cx(b), then dx ‘cx(a) < dx ‘ex(b) and
a = fdx ‘cx(a) < fdx ‘cx(b) = bwhichis a contradiction. Therefore cx(a) £
¢x(b). Since £ is semicontinuous in (X, <1), we find two open neighborhoods,
U of cx(a) and V of cx(b) such that cx(a) £ vand u £ cx(b) forallu € U
andv € V.Thisshowsthat U = cx '"Uand V = cx 'V are two open neighbor-

hoods in ¢(X, £1) such that @ £ v and v £ bforallu € Uandv € V.
- Accordingly the partial order of ¢(X, 1) is semicontinuous.

We have shown that if (X, <1) € HPOTS, given an arbitrary f:¥Y — (X,
<1) inHPTop such that ¥ € KPTop, there exists ¢(X, <1) € KPOTS, cx:¢(X,
<1) = (X, 1) in HPOTS and f continuous and isotone such that cx o f = f.
This will be true in particular whenever ¥ € KPOTS — KPTop.

The same argument shows that 2) implies 4).

Let KPOTS be coreflective in HPOTS. If X € HPOTS has the discrete order,
it is clear that its KPOTS-coreflection has the discrete order. (The coreflection
map is bijective.) Therefore K is coreflective in H. Similarly 4) implies 1).
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CoRroLLARY 2: Let K be a subcategory to Top. The following statements are
equivalent:

1) K 4s coreflective in Top ‘

2) KPTop 1s coreflective in PTop

3) KPOTS is coreflective in POTS

4) KOTS s coreflective tn HOTS.

Proof: The proof is verbatim as in Theorem 5. In the proof of our next theo-
rem we shall use the following obvious lemma:

LemMA 5: Let S be a subcategory of B and A a subcategory of S. If A is core-
Slective in B, A is coreflective in S.

TaEOREM 6: Let K be a subcategory of Top(H ). Then K s coreflective in PTop
(HPTop) if and only if K is coreflective tn Top(H).

Proof: The necessity follows from Lemma 5. Conversely if we consider K as
a subcategory of PTop the coproducts and coequalizers of K in PTop will have
the discrete order and therefore belong to K. Similarly for HPTop.

3. Leftadjoints of the inclusion and forgetful functors

Let K be a subcategory of H, and X € K, by associating to X the PTop space
(X, d) where d is the discrete partial order (no two elements are comparable),
we introduce the inclusion functor UK — KOTS.

TarorEM 6: Let K be a subcategory of H, F: KOTS — K the order-forgetful
functor, UK — KOTS the inclusion functor. Then U s left-adjoint of F. ‘

Proof: Let f:A — BinKand ¢g:C — D in KOTS be given. Define 7. KOTS-
(UB,C) — K(B, FC) by 53,¢(h)(b) = h(b). Since nz,¢ is clearly a bijection,
we only need to show that the following diagram commutes:

KOTS(UB, ) —'2°, K(B, FC)

KOTS(Uf, g)l [K(f, Fg)

_—
KOTS(UA,D) q4, K(A,FD)

Let h € KOTS(UB,C) and a € A be arbitrary.
Then (K(f, Fg) ° nz.c) (h)(a) = K(f, Fg) (nz.c(h)) (a)

= (Fgeons.c(h) °f)(a) = Fg(ns.c(h)(f(a))
= Fg(h(f(a))) = 9(h(f(a))) = (g he Uf)(a)
14,0(g © b o Uf)(a) = (14,0 o KOTS(US, 9))(h)(a)
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Since @ and h are arbitrary the diagram commutes and % is a natural equiva-
lence as required. '

CoroLrLARY 3: Every subcategory K of H s coreflective in KOTS.
Proof: Follows directly from [3], 8.1
CoroLLARY 4: If K is coreflective in H, K 1s coreflective in HOTS.,

Proof: Let X € HOTS, let (X, 1) be the KOTS-coreflection of X and
(X, ¢2) the K-coreflection of (X3, ¢1). It is an easy matter to check that (X, ¢;)
is the K-coreflection of X. .

It is easy to find an example to show that the Forgetful functor F is not a left-
adjoint of U. However we have the following

LemMma 6: The inclusion functor UK — KOTS has a left-adjoint for the fol-
lowing subcategories K of H:

1) Hausdorff 4) real compact
2) completely regular 5) zero dimensional
3) compact _ 6) boolean spaces.

Proof: Since all these subcategories of H are productive and closed hereditary,
they have equalizers and products and are therefore complete. As an embedding,
U preserve limits. By [7] Theorem 2 page 110, we need only show that for every
D € KOTS, there exists a set Sp of K-objects, which is a solution set of D with

respect to U. Choose a set D’ such that D' = 2% Define Sp ={(8,t)|ScD

and ¢is a topology on S}. We shall show that Sp is a solution set. Let D -’l) uc
be given. Then TImh < D’. (We mean by I'4 the closure of the set 4.) Choose
a subset S, of D’ such that S, = TImh, find a bijection b:8, — T'Imh and
induce on 8; the topological structure from I'Imh. We obtain in this way that
8. € Spand b is an homeomorphism. Call A’ the map D — U(TImh) defined
by #(d) =h(d), ¢ the inclusion T'Imh — C, and define k,f so that k =
Ub™) ok and f =i0b. Now Ufok = U(ieob)ok = U(iob) o U(b") o
h = U(@)oh = h S € Spand the following diagram commutes:

n
D—UC

e

U(Sw)

Therefore Sp is a solution set as required.

CorOLLARY 5: For the subcategories K of H listed in Lemma 6, K is reflective
in KOTS.

Proof: See [3], 8.1.
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Let Y € KOTS. Define in Y, a ~ b if and only if {a, b} has an upper bound
or a lower bound, and a w¢b if and only if there exists ay, - - -, @, € Y such that
a ~ ay -+, 0, ~ b. Then ry is an equivalence relation on Y.

If K is an epireflective subcategory of H and ¥ € KOTS, let tY denote the
topological space Y /7y and h:Top — H and kH — K the epireflectors. We see
that the natural map ¥ — Y /wyisisotone as tY has been obtained by identifying
all the points which can be compared or are extrema of chains ¢, - - -, ¢, wWhere
¢; can be compared to ci+1. Let GY denote khtY. We define so a functor G:KOTS —
K as will be shown in the next Theorem.

TuaroreM 7: Let K be an epireflective subcategory of H. Then G can be constructed
wnto the lefi-adjoint of U.

Proof: @ is certainly a functor. Given A i B in KOTS, we consider:
A-L,g te g s g B op

ta

khtA -

GA

For t o f and 4, f is unique. For hep o f and hey, f7 is unique and for ky o f”
and kx:4, G(f) is well defined. It is an easy routine to check all the functor proper-
ties of G. For every Y € KOTS, call gy =kuyro by o ty. Let X € K and
Y € KOTS and define Ay,x as follows: Ay,x K(GY, X) — KOTS(Y, UX) and
Ar.x(f) =f o gy. Since iy is a natural map and h and k are epireflections, gy
is continuous and isotone. Therefore f o gy € KOTS(Y, UX). We claim that A
is a natural equivalence.

Let Ar.x(a) = Ap,x(b). Then a o gr = b o gy. Since iy is surjective and h, k
epireflections, we obtain that @ = b. Therefore Ay,x is injective. Let f:V — UX.
To show that 7y C kerf, let a,b € Y and anyb. If @ ~ b since UX has dis-
crete order, f(a) = f(b). If a ~ a3, a1 ~ @, --+,a, ~ b, similarly f(a) =
f(b). Therefore there exists f; such that the following diagram commutes:

Y.._fqux_li.x

[

tY
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Moreover, since & and k are epireflectors, there exist f, and f; such that fo o h = f;
and fs; o k = f;. Therefore fyokohot = faohot = fiot = f, which can be
rewritten as f = fsogyr = Ay,x(fs), and shows that Ay,x is surjective.
To show that A is natural, let 4 5 BinKand ¢ % D in KOTS. Consider
the following diagrams:
K(GD, A) 224, KOTS(D, UA) gl——a 1"”
K(@, c)j lKOTS (z, Uc) Ucoaogpot

—_—
K(GC,B) ¢z KOTS(C,UB) coao@l—>coaocGiogg
By the definition of G%, we know that Gi o ge = gpos.
Since Uc is the same map as ¢, we obtain Ucecaogpoi = coaoGioge.
CoROLLARY 6: LetK be a coreflective subcategory of H, C:H — K the correflector
and EX — H the inclusion functor. Then UEG is left-adjoint to UCF.
Proof: Consider the adjoint situations

E
KOTS ¢ ((j’ > K H U‘HOTS.

C F
A similar result holds for the reflective subcategories K of H.
CenTrRO DE INVESTIGACION DEL IPN
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