
ASSOCIATED PRIME DIVISORS IN THE SENSE OF NOETHER 

BY RIOBARD A. KUNTZ* 

1. Introduction 

Recently, several papers appeared discussing various notions of associated 
prime divisors (see [1], [2], and [5]). In this note we produce a sixth type, which, 
in the case of Noetherian rings, reduces to the associated primes (the prime 
radicals of the primary ideals in a normal primary decomposition). In [3], we 
discussed a concept called relatively prime ideals in the sense of Noether (Bis 
called relatively prime to A in the sense of Noether, if A:B = A). It turns out 
that in Noetherian rings, Pis an associated prime of A, if and only if, Pis not 
relatively prime to the P-isolated component of A in the sense of Noether. 

Throughout this note, R denotes a commutative ring with unity, and all 
ideals and elements are assumed to be in such a ring. On the whole, our terminol­
ogy will be that of [6]. We use the concept ideal in the somewhat restrictive sense, 
in that for us, an ideal is not the entire ring. We shall let upper case letters, most 
frequently the beginning of the alphabet, denote ideals, and lower case letters, 
elements of R. For us, A: x will denote the ideal quotient A: ( x), and A ( P) will 
denote the P-isolated component of the ideal A, i.e., A(P) = {x E RI there 
exists y ~ P such that xy E A} . If A is an ideal, we let Z(A) denote the set 
of all zero divisors modulo A, i.e., Z(A) = {x ER I there exists,y ~ A such that 
xy EA}. 

2. Definitions and Preliminary Results 

Definition 1: If A and B are ideals, then B is called relatively prime to A 
in .the sense of Noether if A :B = A. 

2: Let P be a prime ideal. Then P is called an associated prime divisor of A 
in the sense of Noether, if Pis not relatively prime to A(P) in the sense of 
Noether. We denote this condition by (Ne) and say Pis a (Ne)-prime of A, 
if P satisfies (Ne) relative to A. 

We first show that there are several ways of characterizing the (Ne)-primes 
of A. 

PROPOSITION 1: Let P be a prime ideal cont,aining A .. Then the following state-
ments are equivalent: 

(a) Pis a (Ne)-prime of A. 
(b) A(P) :P ¢ A(P). 
(c) A(P) :P > A(P). 
( d) There exists x ~ A (P) such that A(P) :x = P. 

Proof. (a) <=> (b) This equivalence is clear from the definitions. 
(b) <=> (c) This equivalence is clear since A(P) c A(P) :P. 
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(c) => (d) Let x E A(P) :P\A(P). Then xP c A(P), so A(P) :x ::> P. 
Now: let t E A(P) :x. Then t,x E A(P), and since x EE A(P), this means t E P. 
Hence A(P) :x = P. 

(d) => (c) Suppose there exists x EE A(P) such that A(P) :x = P. Then 
xP c A(P), hence x E A(P) :P. But x EE A(P) implies that A(P) :P > A(P). 

We now record a special property of the ideal quotient A(P) :P. 

PROPOSITION 2. Let P be a prime ideal cont,aining A. Then either A(P) :Pc P, 
or A(P) = Pin whwh caBe A(P) :P = R. 

Proof. Assume A(P) :P ¢ P. Then there exists t EE P such that tP c A(P). 
Thus for each p E P, tp E A(P), and since t EE P, it follows that p E A(P). 
Hence P c A(P), and since the other containment relation is alw:ays true, it 
follows that A(P) = P. 

Minim.al prime overideals play an important part in many discussions in 
commutative ideal theory. We now produce a result characterizing these minim.al 
prime overideals. 

PROPOSITION 3. Let P be a prime ideal cont,aining A. Then the folwwi'ng Btate-
ment8 are eq:u,ivalent: 

( a) P is a minimal prime overideal of A. 
(b) A(P) is a P-primary ideal. 
(c) v'A(P}=P. 
(d) There exists x EE P such that A(P) :xis a P-primary ideal. • 

Proof. (a) {::,} (b) This is proposition 6 of [2]. 
(b) => ( c) This implication is clear from the definition of primary ideals. 
(c) => (b) If vA(P) = P, then to show A(P) is P-primary, we need only 

show that xy E A(P) and x EE P implies y E A(P). But this follows from the 
definition of A ( P). 

(b) => (d) Let x = l. 
(d) => (c) Letp E P. Thenp• E A(P):xforsomepositiveintegern. Thus 

p"d E A(P), and since x EE P, we have that p" E A(P). Hence vA(P} = P. 
We end this section with a proposition concerning the P-component of an 

ideal and the operations of n, : , and v. 
PROPOSITION 4. Let A and·B be ideals, and P a prime ideal. Then: 
(a) (A. n B)(P) = A.(P) n B(P). Oonaequently, the P-component distriouteB 

over any finite intersection. 
(b) If B iBfi,nitely generated, then (A.:B)(P) = A.(P):B. 
(c) vA(P} = ( vA)(P). 

Proof. (a) This is proposition 7 of [2]. 
(b) We first show that (A.:x)(P) = A(P) :x . . To see this we observe the 

following: y E (A.:x)(P) if and only if there exists t EE P such that yt E A.:x 
if and only if yt,x E A for some t EE P if and only if yx E A(P) if and only if 
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y E A(P):x. NowsupposeB =(bi,···, b,.). Then (A:B)(P) = (A:(bi, •• ·, 
b,.))(P) = (ntA:bi)(P) = nt((A:bi)(P)),= nt(A(P):bi) = A(P):B. 

(c) Let x E v A(P). Then there exists positive integer n such: that x" E 
A(P). So x"t E A for some t E P. Now x"t E A implies x"t" = (xt)" EA, hence 
xt E v'A. Since t E P, we have X E ( vA)(P). Conversely, suppose X E 
( v'A) ( P). Then there exists t ~ P such that xt E. v'A. So there exists a positive 
integer n such that (xt)" = x"f' E A. Now t ~ P implies t" ~ P, hence x" E 
A(P), so x E v A(P). 

3. Associated Primes in the Sense of Noether 

We first introduce some terminology. The set complement of Z(A) is a multi­
plicatively closed set ( collection of all elements relatively prime to A), hence by 
Zorn's Lemma there are prime ideals containing A, contained in Z(A), and 
maximal with respect to these properties. These prime ideals are called maximal 
prime divisom of A and denoted by,·MxPD. For discussions of MxPD, see [2], 
[3], and [5]. Furthermore, we denote the minimal prime overideal property by 
MnPD, i.e., Pis called a MnPD of A if Pis 11. minimal prime overideal of A. 

We now list the various definitions of associated prime divisors as discussed 
in [1], [2], and [5]. Let P be a prime ideal containing A. Then: 

(B) Pis an associated prime divisor of A in the Bourbaki sense if P = :A :x 
for some x E R. 

(Z-S) P is an associated prime divisor of A in the Zarski-Samuel sense if 
A :x is P-primacy for some x E R. 

(Bw) Pis an associated prime divisor of A in the weak Bourbaki sense if P 
is a MnPD of A:x for some x E R. 

(K) Pis an associated prime divisor of A in the Krull sense if P = Z(A(P)). 
(N) P is an associated prime divisor of A in the Nagata sense if PRs is a 

MxPD of ARs for some multiplicatively closed set S. 

NotnJ,ion. If Pis a prime containing an ideal A, then Pis called a (B)-prime 
of A, when Pis an associated prime divisor of A in the Bourbaki sense. Similarly 
for the other conditions. 

It is known that in Noetherian rings these conditions are equivalent, that in 
general they are distinct conditions, and that they form an increasing sequence 
of implications ( cf. [2] and [5]). We now state and prove the result of this section 
which places the (Ne}-prim.es between the (B)-primes and (Bw)-primes, shows 
that in general the (Ne)-primes are distinct, and neither imply nor are implied 
by the (Z-S)-primes. More precisely we have 

PROPOSITION 5. Let P be a prime ideal containing an ideal A. Then: 
(a) Pa (B)-prime of A=> Pa (Ne)-prime of A, but not corwersely. 
(b) Pa (Ne)-prime of A=> Pa (Bw)-prime of A, but not conversely. 
(c) Pa (Ne)-pri"me of A¢> Pa (Z-S)-prime of A. 
(d) Pa (Z-S)-prime of A ¢>Pa (Ne)-prime of A. 

Before we prove proposition 5, it may be instructive to visualize the six asso-
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ciated prime divisor conditions via a diagram .. In the diagram below, none of 
the implications can be reversed. 

(B) 

rf'~ 
(Ne) (Z-S) 

\ # 
(Bw) 

i 
(K) 

J.l 
(N) 

In terms of 
definitions 

the diagram is 

W c now prove proposition 5. 

P = A:x 

rf' ~ 
P = A(P) :x A:x is P-primary 

~ # 
Pis MnPD of A:x 

!). 
P = Z(A(P)) 

il 
PRs is MxPD of ARs 

(a) Let P be a (B)-prime of A. Then there exists x such that P = A :x. 
Taking the P-component of both sides of the last equation we have P = P( P) = 
(A :x)(P). Now by proposition 4, (A:x)(P) = A(P) :x, hence P = A(P) :x. 
Example 2, below, shows that the converse is not true. 

(b) Suppose P is a (Ne)-prime of A, then there exists x E R such 
thatA(P):x = P. ButA(P):x = (A:x)(P),and (A:x)(P) = P=> Pisa 
MnPD of A:x. Example 1 below, shows that (Z-8) ¢> (Ne). Furthermore, 
since it is true that ( Z-8) = > ( Bw), it follows that ( Bw) ¢ > (Ne). 

( c) Example 2, below. 
(d) Example 1, below. 

Example 1. This example is discussed by D. Underwood in [5, p. 74]. Let R 
be a rank one valuation ring with the additive group of real numbers as value 
group. Let P = {x E RI v(x) > O} and A = {x E RI v(x) ~ 1} . Then Pis 
the unique proper prime of R, and so A is P-prim.ary, hence A(P) = A. For 
any x E R\A, A :x is P-prim.ary, hence P is a (Z-8)-prim.e of A. Furthermore, 
in [5] it is shown that A:x ¢ P for any x ER. Then since A(P) = A, it follows 
that A(P) :x ¢ P for any h E R. Thus, Pis not a (Ne)-prim.e of A. 

Example 2. Let K denote the field of two elements {O, 1} and R the collection 
of all sequences on K which have "constant tails", i.e., R = {a = {ai} 1 ai E K 
and there exists positive integer n such that for all positive integers p, an = 
an+p} . Define addition and multiplication in R componentwise, i.e., a + b = 
{ a; + bi} and ab = { aibi} . It is seen that R is a commutative ring with identity 
e = { a,} where a. = 1 for all i. For each positive integer j, let u; = { a;} E R 
such that a .. = 0 for i ¢ j and a; = 1. Also, let v1 = {a,} E R such that a, = 0 
for i < j and a .. = 1 for i ~ j. Then for each x E R, there exists a finite set of 
positive integers, J, (possibly empty) and possibly an integer p > maxJ {j} 
such that x = Vp + 'li.111,;. Let P = ( { u;} ) = { a E R I there exists a nonnegative 
integer n with an = lln+P = 0 for all positive integers p} . Then P is a prime 



86 RICHARD A. KUNTZ 

ideal. Let A denote ihe zero ideal in R. We now claim (a) Pis a (Ne)-prime of 
A, (b) Pis not a (B)-prime of A, and (c) Pis not a (Z-8)-prime of A. 

(a) A(P) = {y E RI there exists x EE P such that xy = O} . Let y E P. Then 
there exists finite set of positive integers J, such that y = };.,ui. Let i - 1 = 
max:J {j} . Then Vi EE P. Furthermore, since i > j for each j E J, it is seen that 
v,y = v,(};Ju;) = 0. This means that y E A(P), and since y was any element 
of P, it follows that P c A(P). But since the other inclusion is always true, 
P = A(P). Now P = P:1 = A(P) :1, hence Pis a (Ne)-prime of A. 

(b) Let O ¢ x E R. Then x = v, + };Jui where J is a finite set of positive 
integers (possibly empty) and i, if it exists, is greater than max:J {j} . If J = IZf, 
then i exists and so u,x ¢ 0. In this case A:x ¢ P. Now suppose J ¢ IZf and 
let j E J. Then again u; E P and xu1 = u; ¢ 0, so A :x ¢ P. Thus, since A :x ¢ 

P for each non zero element of R, it follows that Pis not a (B)-prime of A. 
( c) R is a Boolean ring and so the only primary ideals are the primes ideals 

themselves. Thus by part (b), A:x is not P-primary for any x E R, hence P 
is not a (Z-S)-prime of A. 

4. Sufficient Conditions 

In this final section we show that the sets of finitely generated primes are 
the same for the four types of associated prime divisors, ( B), (Ne), ( Bw), and 
(Z-8). To this end we first record the following results: 

PROPOSITION 6. Suppose Q is P-primary and P is finitely generated. Then 
Q:P > Q. 

Proof. Let P = (x1, • • ·, Xn). If P = Q, there is nothing to show, for then 
Q:P = R. Hence assume x1, • • • , Xp do not belong to Q, where 1 ~ p ~ n. Now 
choose non negative integers n,, i = 1, • • • , p such that x = nx:• EE Q, while 
x,-x E Q for eachj = 1, • • ·, n. Then it is clear that Q:P > Q, since x E Q:P. 

COROLLARY. Let P be a finitely generated MnPD of A. Then Pis a (Ne)-prime 
of A. 

Proof. If P is a MnPD of A, then A(P) is P-primary. Now the corollary 
follows from proposition 6 and condition ( c) of proposition 1. 

PROPOSITION 7. Let A be an id,eal. Then {finitely generated (Bw)-primes of 
A} = {finitely generated (Ne)-primes of A} = {finitely generated (B)-primes of 
A} = {finitely generated (Z-8)-primes of A} . 

Proof. Because of the implications displayed in the diagram of proposition 
5, it is sufficient to prove (1) :finitely generated (Bw)-primes of A are (Ne)­
primes of A, and (2) :finitely generated (Ne)-primes of A are (B)-primes of A. 

To prove (1), assume Pis a :finitely generated (Bw)-prime of A. Then there 
exists x, E R such that A(P) :x is P-primary. Since P is finitely generated, 
(A(P) :x) :P > A(P) :x, by proposition 6. Now let y E (A(P) :x) :P\A(P) :x. 
Then yP is contained in A(P) :x, which means xyP c A(P), and so xy E 
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A(P):P. But y EE A(P):x =} xy EE A(P). Hence xy E A(P) :P\A(P), i.e., 
A(P) :P > A(P), and so by condition (c) of proposition 1, Pis a (Ne)-prime 
of A. • 

Now to prove (2), let P = (x1, • • • , x..) and let A(P) :y = P. Now for each 
x, there exists u, EE P such that (x,u,)y E A. Let u = Di"u,. Then u EE P and 
ux,y = D,11,,-x,y E A.. Furthermore, uy EE A, for if so, then y E A(P), whence 
A(P) :y ·¢. P. We now claim A:uy = P. It follows that P c A:uy since for 
each i, x, E A:uy and P = (x1, • • • , x,.). 

Conversely, suppose vuy E A. Then V'J/ E A(P), as u EE P. Hence 
v E A(P) :y = P, thus P = A:uy. 

COROLLARY. Let P be a finitely generated M nPD of A. Then P is. an associated 
prime divisor of A in all six senses. 

Proof. If Pis a MnPD of A, then Pis a (Bw)-prime of A. Now a finitely 
generated (Bw)-prime of A is also a (B)-prime of A, hence corollary follows. 

COROLLARY. Let Q be P-primary and kt P be finitely generated. Then P is an 
associated prime divisor of Q in all six senses. 

Proof. Clear. 

COROLLARY. Let A = n1 nQ, be a normal primary decomposition and let p = P1 
be finitely generated. Then Pis a (B)-prime of A. (Hence the finitely generated 
associated primes in a normal primary decomposition are associated prime divisors 
in all six senses.) 

Proof. The associated primes of a normal primary decomposition are ( Bw )­
primes. 

Remark. Without the finitely generated conditions on P, the above corollaries 
are no longer true, cf. Example 1. 

We end our discussion with the observation that if A has a normal primary 
decomposition, then { (B)-primes of A} = { (Ne)-primes of A} . To see this, 
first let us recall: if Q is P-primary, then Q:x = R, if x E Q, Q:x = Q, if x EE P, 
and Q:x = Q•, if x E P\Q and where Q• is P-primary. 

PROPOSITION 8. Let A = ntQ, be a normal primary decomposition for A, and 
suwose P = P1 is a (Ne)-prime of A. Then Pis a (B)-prime of A. 

Proof. Let the associated primes of A be indexed such that P, c P1 = P for 
i = 1, • • • , k, and if k ¢. n, then P, ¢ Pi for k < i ~ n. Now since Pis a 
(Ne)-prime of A, there exists x E R such that P = A(P) :x = (n 11Q,) :x = 
nNQ,:x). If k = n, we are done, for in this case A(P) = A, and so A:x = P. 
So assume k < n. Then A:x = (ntQ,) :x = nl(Q,:x) n (n1,-rtQ.) = p n 
(nr.+tQ,:x). Now since Pr¢ P, for r = k + 1, • • ·, n, there exists y,. E Q,.\P. 
Lety = 111,-ri"y,.. Theny E (nr.+tQ,)\P.ItthenfollowsthatA:xy = (A:x) :y = 
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P:y n ( nk+1"(Q1:x) :y = p n R = P, since P:y = p and (Q1:x) :y = R for 
i = k + 1, • • • , n. Thus Pis a (B)-prime of A. 
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