
VECTOR FIELDS ON MANIFOLDS WITH BOUNDARY 

BY THOMAS B. GARNER 

Introduction 

If M is a manifold with boundary, then a vector field on aM will be a map 
v:aM--+ TM such that 1r·v = I where 1r is the projection in the tangent bundle 
of M. We will show that if Mis compact, oriented, connected, 2n + I-dimen
sional and aM is connected, then a nowhere zero vector field v extends to a no
where zero vector field on M if and only if the Euler class of the 2n-plane bundle 
over aM of vectors normal to v is 0. This is a generalization of Hopf's classical 
result. The proof will depend on relative vector bundles. Most of the results 
about relative vector bundles are analogues of the results about standard vector 
bundles. 
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Throughout the paper we follow the following conventions: all spaces are 
paracompact; all manifolds are compact, connected, oriented and equipped with 
a lliemannian metric; a map is a continuous function; and all cohomology groups 
are over Z unless otherwise indicated. Given an n-plane bundle 'Y we will some
times, by an abuse of language, use 'Y to denote its total space. In any pair 
(B, B'), B' is closed unless we explicitly say otherwise. 

I. Relative Plane Bundles 

Definition I.I. A relative (n, k)-pl,o,ne bundle, r, is a pair ('Y, -y') where 'Y = 
(E, p, B) is an n-plane bundle and-y' = (E', p', B') is a k-plane sub-bundle of-y. 
We will call (B, B') the base of r and say that r is a relative (n, k)-plane 
bundle over (B, B'). 

A morphism between (n, k)-plane bundles r = ('Y, -y') and A = (o, 01) is a 
vector bundle morphism from 'Y to o which restricts to a vector bundle morphism 
from -y' too'. If (B, B') is the base of rand A, then a (B, B')-morphism from r 
to A is a morphism which covers the identity map on (B, B'). If rand A are 
(B, B')-isomorphic, we will writer = A. Using the standard result about vector 
bundles that a one-to-one B-morphism between n-plane bundles is a B-isomor
phism, we get the analogous result for relative bundles. 

PROPOSITION 1.2. Suppose ('Y, -y') and (o, o') are (n, k)-pl,o,ne bundles over 
(B, B') and f: ( 'Y, -y') --+ (o, o') is a (B, B')-morphism. If f is one-to-one, then f is 
a (B, B')-isomorphism. 

We will omit the proof of any result such as the above which is essentially simi
lar to the corresponding non-relative one [cf. 3]. 
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If r = ( 'Y, -y') is a relative ( n, k)-plane bundle over (B, B') and f: ( C, c') -
(B, B'), then (f'(-y), f I c•*(-y')) is the pullback of r by f. We will denote the 
pullback by :f(r) or f'(-y, -y'). Obviously, it is a relative (n, k)-plane bundle. 

PROPOSITION 1.3. Suppose f: ( C, c') - ( B, B') and r = (-y, -y') is a relative 
(n, k)-plane bundle over (B, B'). Then we have a morphitrm J::f(r) - rand a 
commutative diagram 

f*(r) __l__ r 

1 l 
( C,C') ____l__,, (B,B') 

where the vertical maps are projections and J is one-to-one on each fibre. Suppose 
A = (a, a') is also an (n, k)-plane bundle over (C, C') and that we have a morphitrm 
g such that 

fl'(r) r 

l l 
(C,C') (B,B'). 

Then there is a morphism k such that we have the following commutative diagram 

r 

l 
(B,B'). 

Furthermore if ii is one-to-one on each fibre, then k is a (C, C')-isomorphism from 
t:.to;f(r). 

Note that in the above proposition we use, by an abuse of notation, the same 
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symbol for the total space of a relative bundle as for the bundle itself. We will 
continue to do this when convenient. 

Let 8" be the trivial n-plane bundle over B, (},. the trivial le-plane bundle over 
B' c B considered as a sub-bundle of(}" in th!;l natural way. Then ('Y, -y'), a rela
tive (n, k)-plane bundle over (B, B'), is trivial if and only if ('Y, -y') = (6", fJk). 
If (C, c') c (B, B'), then the restriction of a relative bundle r = ('Y, -r') over 
(B, B') to (C, c') is ('YI c:, -r' I c:•). We will denote it by ('Y, -y') I cc:,c:•> or 
r I <c:,c:•>· We now note some technical results which we will need later. 

PROPOSITION 1.4. Let I' = (-y, -y') be a relative (n, k)-plane bundle over (B, B) 
X I. Then there exists an open cover { U;}, j E J, of B such that r I <ui,ui>xr is 
trivial. 

By Proposition 1.3 and Lemma 1.4.2 of [1] we get 

PROPOSITION 1.5. Let ('Y, -r') be a relative (n, k)-pl,ane bundle over (B, B'). 
Suppose B' has a neighborhood B 11 of which it is a retract. Then there exists a neigh-

' B'11 II Ill ) Ill borhood of B , , a k-pl,ane bundle, 'Y , over B and an ( n-k -pl,ane bundle 'Y over 
B"' such that: 

1) 'Y11 I B' = 'Y1
; 

2) 'Y II and 'Y"' are sub-bundles of 'Y; 
3) (-y" EB 'Y111

, -y") = (-y I B 111, -y"). 

Furthermore, if-y and-y' are oriented, so are-y" and-y"'. 

PROPOSITION 1.6. Let r = (-y, -r') be a relative (n, k)-plane bundle over (B, B') 
X I. Suppose B' has a neighborhood of which it is a retract and define r:B X I -
BX I by r(b, t) = (b, 1). ThenthereexistsamorphiErm f: r- r I <s,s•>xi11 covering 
r such that f restricted to a fibre is one-to-one. 

In order to prove Proposition 1.6 we will need the following: 

LEMMA 1.7. Suppose the conditions of Proposition 1.6 are satisfied. Then there 
exists an open set B" ::> B', a k-pl,ane bundle -r" over B" XI and an (n-k)-pl,ane 
bundle ,f" over B" X I such that 

1) 'Y11 I B'XI = 'Y1 

2) 'Y" and 'Y"' are sub-bundles of 'Y 
3) (-y"' EB 'Y11, -y") = ('YI B 11, -r"). 

Furthermore, there exists a locally finite open cover of B, { U;}, j E J, with a sub
collection { U;} , j E J', covering B 11 such that 

j E J' => U; c B" and ('Y, -r") I ru;,u;>xr is trivial, 
j E J - J' => U; CB - B' and 'YI u,xr is trivial. 

The proof of Proposition 1.6 is now analogous to the non-relative case [3]. 
Using Proposition 1.6 we get 

THEOREM 1.8. Suppose B' c B has some neighborhood of which it is a retract. 
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If fo,f1: (B, B')-+ (C, C') are homotopic and r = ('Y, 'Y1
) is a rel,ative (n, k)-plane 

bundle over (C, d); thenfo*(r) = fi*(r). 

We now want a universal (n, k)-plane bundle. LetR"° = EB:.1R. Let G,. be the 
Grassman manifold of oriented n-planes inR"°. Let 'Yn = (E.,., p,., G,.) be a natural 
n-plane bundle over G,.. (If p E G,., then a point in the fibre above pis a pair 
(v, p) such that v E p.) 

PROPOSITION 1.9. There are natural inclusions, , of Gk X Gn-k into G,., and 
,c of Gk into G,.. 

From here on we will consider G,. X Gn-k and Gk to be the subsets of G,. given 
by the above result. Let 'Y,/ be the ( oriented) obvious le-plane bundle over 
G,. X G-,,, C G,. such that if (p, q) E G,. X Gn-1o then the fibre above (p, q) is 
the set of all vectors in p. Then ('Yn, 'Yk1 ) is a relative (n, k)-plane bundle. 

Note that 'Yk1 I a,. = 'Yk• Therefore we will consider 'Yk to be this sub-bundle of 
'Yn• Then we get the following ' 

PROPOSITION 1.10. Let i be the inclusion of (G,., Gk) in (G,., G,. X G,._,.). Then 
i*('Yn, 'Y,/) = ('Yn, 'Y1,). 

PROPOSITION 1.11. Suppose ('Y, 'Y1
) is a relative (n, k)-plane bundle over 

(B, B'), 'Y = (E, p, B), andJ:E-+ R"° is linear and one-to-one on each fibre. If 
{/(v) Iv E p- 1(b), b EB'} E G,. X G,._,. C G,.for all b E B', then/ induces J, f 
such that we have the following commutative diagram: 

(E,E') _L ( 'Ynm') 

l l 
(B,B') _l_ (G,.,G1,X G,.-k). 

THEOREM 1.12. Letf, g:(B, B')-+ (G,., G,. X G,._,.) be maps such that/*('Yn, 
'Y,/) = g*('Y,.,'Y1,1

). Thenf ~ g. 

The proof follows from 

LEMMA 1.13. We can define homotopies (', t:R"° XI -+R"° which induce maps 
g", g6:('Yn, 'Y,/) X I-+ ('Yn, 'Y1,1). These induce g", g6:(G,., Gk X G,._,.) XI-+ 
(G,., G,. X G-,,,). Furthermore go" and gob are the i,dentity. 

We now note that "any" oriented (n, k)-plane bundle is the pullback of 
( 'Y111 'Ykl) • 

Definition 1.14. An ( n, k)-plane bundle ( 'Y, 'Y1) is oriented if 'Y and 'Y' are. 

THEOREM 1.15. Let ('Y, 'Y1
) be an oriented (n, k)-plane bundle over (B, B') 

where B' has a neighborhood of which it is a retract. Then there exists a map f: (B, 
B') -+ (G,., G,. X G,._,.) such that f('Yn, 'Yk1 ) = ('Y, 'Y1

). If ('YI B', 'Y1
) = ('Y1 EB 

8..-"", 'Y') where 8"-1, is the trivial bundle over B', f can be chosen so that f ( B') c G,.. 

The proof follows from Propositions 1.5 and 1.11. 
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Using the above results, we get the following: 

THEOREM 1.16. If B' has a neighborhood of whi,ch it is a retract, there is a one-to
one correspondence between ( isomorphiwl classes of) oriemed relative ( n, k )-plane 
bundles over (B, B') and [(B, B'); (G,., Gk X G,._,.)]. 

Proof: Theorems 1.8, 1.12, 1.15. 

II. A Fibration 
In this section we will consider a certain "relative" fibration which we will 

need. First we prove a relative version of the standard result that "up to homot
opy" every map is a fibration. 

PROPOSITION 2.1. Letf: (E, E1)-+ (B, B1) be a map such thatf I •i is a homeo
morphism onto B1. Then there exists a pair (E', Ei') and maps 1r: (E', Ei') -+ 
(B, Bi), j: (E, E1) -+ (E', Ei'), :/: (E', Ei') -+ (E, E1) such that 1r is afibration, 
1r I •i' : Ei' -+ B1 is a homeomorphism and j and j' are homowpy eq_uivalences. 
Furthermore, the following diagram homowpy commutes ( as maps of pairs) : 

j 

(E',ED ------► 
j' 

( the triangle involving j is strwtly commutative) . 

Proof: LetE' = {(e, X) EE X B 1 lf(e) = X(O)} andEi' = {(e,f(e)*) E 
E' I f(e)* is the constant path atf(e) and e E E1}. Definej:(E, E1)-+ (K, Ei') 
by j(e) = (e,f(e)*),j':(E', Ei')-+ (E, E1) by /(e, X) = e and 1r:(E1

, Ei')-+ 
( B, B1) by 1r( e, X) = X( 1). Note that /j is the identity. jj' is homotopic to the 
identity by the homotopy h: (E', Ei') XI-+ (E', Ei') which retracts all paths 
to their initial points: h,(e, X) = (e, X,) where>.,:/-+ Bis defined by X,(s) = 
X(ts). So ho= jj' and h1 = l(B',Bi'l· 1ris afibration by [7, p. 84, Proposition 1]. 

Since the inclusion G,._1 -+ G,. has fibre s- 1 we get 

PROPOSITION 2.2. Let i: ( G,._1, G,._1) -+ ( G,., G,._1) be the inclusion map. Let 
1r:G,._/-+ G,. be thej[bration given by Proposition 2.1 applied to i. Then the fibre of 
1r has the homotopy type of sn-l • 

PROPOSITION 2.3. Let 1r: G2n'-+ Gii,.+1 be the fibration in Proposition 2.2. Let , be 
a generator of H2"( s2"). Then '1"( ,) = W2,.+1 where W 2n+1 E H2"+1( <h .. +1) is the 
integral Stiefel Whitney class in dimension 2n + I. 

Proof: [5, Theorem 6.16]. 
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PROPOSITION 2.4. H2"+1( G2n+1, G2n) = Z and we can choose a generator of it, 8, 

8uch that oe = 28, where e E H2"( G2n) is the Euler class and o is the boundary map 
in the cohomology 8equence of the pair (~n+i, G2n). Furthermore, i"\8) = W2n+1 
where W 2n+1 E H2"+1( G2n+1) is the integral Stiefel Whitney class in dimension 
2n + I and i is the incluaion map of G2n+1 in ( G2n+1, ~). 

Proof: Immediate using the well known fact that ( G2n+1, G2n) is the Thom 
space of 'Ylln+l over G2n+l• 

Following Kervaire, who defined relative Stiefel Whitney classes [4], we will 
call 8 the relative Euler class. Using the above Propositions and noting that 
Wsn+i is the first Postnikov invariant for the inclusion G2n -. G2n+1 we get 

LEMMA 2.5. Let M be a 2n + I-dimensional manifold with bound,ary. Suppose 
J:(M, aM) - (G2n+1, G2.) andf(8) = 0, where 8 is the generator of n2•+lc~ .. +1, 
~) = Z given in Proposition 2.4. Then f is homotopic ( as a map of pairs) to some 
f where f (M) C G2n. 

III. The Main Theorem 

If M is a manifold with boundary, a vector field on aM is a map v: aM -. TM 
such that 'lrV = 1.uc where 'II' is the projection for the tangent bundle of M. Note 
that we don't require a vector field on aM to lie in T( aM). 

Definition 3.1. Let M• be a manifold and S a subset of M. Given a nowhere 
zero vector field onS, v, let"• be the sub-bundle of TM Is of vectors normal to v. 
More explicitly, (v,),. = {u E TM,. I u is normal to v(x)} . "• has a natural 
orientation since TM is oriented (i.e., if u1, • • • , Un-1 form a basis for (v.).,, then 
they give the right orientation of it, if and only if u1, • • • , Un-1, v(x) give the 
orientation of TM.,). • 

We can now state and prove our main result. 

THEOREM 3.2. Let M be a 2n + I-dimensional manifold with bound,ary and v a 
nowhere zero vector field on aM. Then v can be extended to a nowhere zero vector field 
on M if and only if e(v.) = 0, where e denotes the Euler characteristic clas~. 

Proof: By Theorem 1.I5 we can find a map f: (M, aM) -. (G2n+1, ~n) such 
thatf('Y2n+1,'Y2n) = (TM, v,). Since oe = 28 by Proposition 2.4, we get 

H2n(G2,.) -_-_-_-_-:- H2"+1(G2 .. +1,~ .. ) 

f I I 2I [r 
e(v.) 6 2/(8) 

H2n(aM) ~+ 1(M, aM) 

where the rows come from the exact sequences of the pairs involved. We know 
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thatf(e) = e(v.) be the definition of the Euler class of v,. Since H 2n+1(M) = 0 
and H 2n(aM) = H 2n+i(M, aM) = Z, 8:H 2"(aM) -t H 2"+i(M, aM) is an iso
morphism. So/'(s) = Oifand.onlyife(v.) =f(e) = 0. 

We now split the proof: 

Only if: Suppose v extends to a nowhere zero vector field on M, v. Let 8 be the 
trivial line bundle over M generated by v. Then (TM, v,) = (vv EB 8, v11). Take 
g:M -t G2,. so that g*(-y2,.) = Vv. Then considering g 1:1,s a map from (M, aM) 
to ( G2n+i, G2n), we get 

g*( 'Y2n+1, 'Y2n) = (g*( 'Y2n+1 I G211), g*( 'Y2n)) 
(g*('Y2n EB 8), g*('Y2n)) 

= ( g*( 'Y2n) EB 8, g*(-y2n)) 
= (vv EB 8, Pv) 

= (TM, Pv). 

Since f'( 'Y2n+1, 'Y2n) = (TM, v.) = g*( 'Y2n+1, 'Y2n) and ( 'Y2n+1, 'Y2n) = i*{ 'Y2n+I, 'Y12,.) 
by Proposition 1.10 where i: ( G2n+1, G2,.) -t ( G2n+1, G2,. X G1) we see that (if)* 
(,y2,.+1,'Y'2,.) = (ig)* ('Y2n+1,'Y'2,.).ByTheoreml.lOif~ig:(M, aM)-t(G2,.+ 1, 

G2,. X G1), But wecanfactor ig: (M, aM) -t (G2n+1, G2,. X Gi) through (G2,., G2,.) 
since g(M) c G2n, Thus we get the following commutative diagram 

(ig)* 

inclusion* 
H 2"+1(G2 .. +1,G2,.) H 2"+1(G2,., G2,.) = 0 

Since D*(G1) = 0, i*is an isomorphism. Lets' = ( i*r1c s). Then( ig)*( s') = 0. 
Therefore O = (if)*(s') = f*i*{s') = J*(s). So e(v.) = 0 since it is zero if 
J*(s) = 0. 

If: Assume that/( s) = 0. By Lemma 2.5,f ~ g where g(M) c G2,.. Then 

( TM, v,) = f( 'Y2n+1, 'Y2n) 
= g*( 'Y2n+l, 'Y2n) 
= (g*( 'Y2n+1), g*('Y2,.)) 
= (g*('Y2n+l I G2n), g*('Y2n)) 
= (g*('Y2n EB 8), g*(-y2,.)) 
= (g*('Y2n) EB 8, g*('Y2n)), 

Let q,: (TM, v,) -t (g*(-y2,.) EB 8, g*(-y2,.)) be the relative bundle isomorphism. 
Let u(x) E TM., be the unit vector normal to q,-1(g*(-y2,.)) with the "right" 
orientation. That is, if Ui, • • • , u2,. E q,-1(g*( 'Y2n)) I-is a basis giving the orienta
tion of q,-1(g*( -y2,.)) I~, then u(x), u1, • • • , u2n is a basis of TM., giving the orienta
tion of TM.,. Take d:M -tR a nowhere zero differentiable function which agrees 
with II v /I on aM. This can be done by extending II v II to a positive differentiable 
function on an open collar neighborhood, N, of aM and using a partition of 
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unity subordinate to {M - aM, N} . Then v:M - TM, defined by v(x) = 
d(x)u(x),isanowherezerovectorfieldonM.Byconstruction, VI oM = v. 

As a corollary to this theorem, we get the classical result of Hopf, in the case 
where Mis oriented and odd-dimensional. 

COROLLARY 3.3, Let M be an odd-dimensional manifold with boundary. Let 
. v: aM - TM be a nowhere zero vector field pointing out of M normal to aM ( i.e., if 
u • E T(aM),., then v( x) is normal to u). Then v extends to a nowhere zero vector field 
on M if and only if x(M) = 0. 

Proof: Since vis normal to T( aM), v., which is the bundle over aM of vectors 
normaltov,isT(aM).Soe(v.) = e(T(aM)) = x(aM)L = 2x(M)L. 

We also get the following result which is not true if N is odd-dimensional (cf. 
M1 = M2 = D2 the unit disc). 

COROLLARY 3.4. Suppose N = aM1 = aM2 is a 2n-dimensional manifold and 
let M be the differentiable manifold formed by M1 U M2. Let v:N - TM IN = 
TM1 I oMi = TM2 I oM 2 be a nowhere zero vector field. Then v extends to a nowhere 
zero vector field on M1 if and only if it extends to a nowhere zero vector field on M2. 

Proof: Let v. be the vector bundle over aM1 = aM2 of vectors normal to v. 
Then by Theorem 3.2, v extends to a nowhere zero vector field on Mi if and 
only if e(v,) = 0. 
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