VECTOR FIELDS ON MANIFOLDS WITH BOUNDARY

BY THOMAS B. GARNER

Introduction

If M is a manifold with boundary, then a vector field on ∂M will be a map $v:\partial M\to TM$ such that $\pi\cdot v=1$ where π is the projection in the tangent bundle of *M*. We will show that if *M* is compact, oriented, connected, $2n + 1$ -dimensional and *aM* is connected, then a nowhere zero vector field *v* extends to a nowhere zero vector field on *M* if and only if the Euler class of the 2*n*-plane bundle over *aM* of vectors normal to *v* is 0. This is a generalization of Hopf's classical result. The proof will depend on relative vector bundles. Most of the results about relative vector bundles are analogues of the results about standard vector bundles.

I would like to thank Norman Stein for his help and encouragement. I would also like to thank John Harper and Ming-Jung Lee for several enlightening conversations.

Throughout the paper we follow the following conventions: all spaces are paracompact; all manifolds are compact, connected, oriented and equipped with a Riemannian metric; a map is a continuous function; and all cohomology groups are over *Z* unless otherwise indicated. Given an *n*-plane bundle γ we will sometimes, by an abuse of language, use γ to denote its total space. In any pair *(B, B'), B'* is *closed* unless we explicitly say otherwise.

I. **Relative Plane Bundles**

Definition 1.1. A relative (n, k) -plane bundle, Γ , is a pair (γ, γ') where $\gamma =$ (E, p, B) is an *n*-plane bundle and $\gamma' = (E', p', B')$ is a k-plane sub-bundle of γ . We will call (B, B') the base of Γ and say that Γ is a relative (n, k) -plane bundle over (B, B') .

A *morphism* between (n, k) -plane bundles $\Gamma = (\gamma, \gamma')$ and $\Delta = (\delta, \delta')$ is a vector bundle morphism from γ to δ which restricts to a vector bundle morphism from γ' to δ' . If (B, B') is the base of Γ and Δ , then a (B, B') -morphism from Γ to Δ is a morphism which covers the identity map on (B, B') . If Γ and Δ are (B, B') -isomorphic, we will write $\Gamma = \Delta$. Using the standard result about vector bundles that a one-to-one B -morphism between *n*-plane bundles is a B -isomorphism, we get the analogous result for relative bundles.

PROPOSITION 1.2. *Suppose* (γ, γ') *and* (δ, δ') *are* (n, k) -plane bundles over (B, B') and $f: (\gamma, \gamma') \rightarrow (\delta, \delta')$ *is a* (B, B') -morphism. If f is one-to-one, then f is *a* (B, *B')-isomorphism.*

We will omit the proof of any result such as the above which is essentially similar to the corresponding non-relative one [cf. 3].

If $\Gamma = (\gamma, \gamma')$ is a relative (n, k) -plane bundle over (B, B') and $f: (C, C') \rightarrow$ (B, B') , then $(f^*(\gamma), f | c^*(\gamma'))$ is the *pullback* of Γ by *f.* We will denote the pullback by $f^*(\Gamma)$ or $f^*(\gamma, \gamma')$. Obviously, it is a relative (n, k) -plane bundle.

PROPOSITION 1.3. *Suppose* $f: (C, C') \rightarrow (B, B')$ and $\Gamma = (\gamma, \gamma')$ *is a relative* (n, k) -plane bundle over (B, B') . Then we have a morphism $\tilde{f}: f^*(\Gamma) \to \Gamma$ and a *commutative diagram*

where the vertical maps are projections and \tilde{f} is one-to-one on each fibre. Suppose $\Delta = (\delta, \delta')$ is also an (n, k) -plane bundle over (C, C') and that we have a morphism g *such that*

Then there is a morphism k such that we have the following commutative diagram

Furthermore if \tilde{g} *is one-to-one on each fibre, then k is a* (C, C') *-isomorphism from* Δ to $f^*(\Gamma)$.

Note that in the above proposition we use, by an abuse of notation, the same

symbol for the total space of a relative bundle as for the bundle itself. We will continue to do this when convenient.

Let θ^n be the trivial *n*-plane bundle over *B*, θ^k the trivial *k*-plane bundle over $B' \subset B$ considered as a sub-bundle of θ ["] in the natural way. Then (γ, γ') , a relative (n, k) -plane bundle over (B, B') , is *trivial* if and only if $(\gamma, \gamma') = (\theta^n, \theta^k)$. If $(C, C') \subset (B, B')$, then the *restriction* of a relative bundle $\Gamma = (\gamma, \gamma')$ over (B, B') to (C, C') is $(\gamma |_{c}, \gamma' |_{c'})$. We will denote it by $(\gamma, \gamma') |_{(c, c')}$ or $\Gamma |_{(c,c')}$. We now note some technical results which we will need later.

PROPOSITION 1.4. Let $\Gamma = (\gamma, \gamma')$ be a relative (n, k) -plane bundle over (B, B) \times *I. Then there exists an open cover* $\{U_j\}, j \in J$, of *B* such that $\Gamma \mid (U_j, U_j) \times I$ *is trivial.*

By Proposition 1.3 and Lemma 1.4.2 of [1] we get

PROPOSITION 1.5. Let (γ, γ') be a relative (n, k) -plane bundle over (B, B') .
Suppose B' has a neighborhood B'' of which it is a retract. Then there exists a neighborhood of B', B''', a k-plane bundle, γ'' , over B''' and an $(n-k)$ -plane bundle γ''' over *B"' such that:*

\n- 1)
$$
\gamma'' \mid_{B'} = \gamma';
$$
\n- 2) γ'' and γ''' are sub-bundles of $\gamma;$
\n- 3) $(\gamma'' \oplus \gamma''', \gamma'') = (\gamma \mid B''', \gamma'').$
\n

Furthermore, if γ and γ' are oriented, so are γ'' and γ''' .

PROPOSITION 1.6. Let $\Gamma = (\gamma, \gamma')$ be a relative (n, k) -plane bundle over (B, B') \times *I. Suppose B' has a neighborhood of which it is a retract and define r:B* \times *I* \rightarrow $B \times I$ by $r(b, t) = (b, 1)$. Then there exists a morphism $f: \Gamma \to \Gamma \mid (B, B') \times [1]$ covering *r such that f restricted to a fibre is one-to-one.*

In order to prove Proposition 1.6 we will need the following:

LEMMA 1.7. *Suppose the conditions of Proposition* 1.6 *are satisfied. Then there exists an open set* $\overrightarrow{B''} \supseteq B'$, a k-plane bundle γ'' *over* $B'' \times I$ and an $(n-k)$ -plane *bundle* γ'' *over B"* \times *I such that*

1)
$$
\gamma'' \mid_{B' \times I} = \gamma'
$$

\n2) γ'' and γ''' are sub-bundles of γ
\n3) $(\gamma''' \oplus \gamma'', \gamma'') = (\gamma \mid_{B''}, \gamma'').$

Furthermore, there exists a locally finite open cover of B, $\{U_i\}$, $j \in J$, with a sub*collection* $\{U_i\}$, $j \in J'$, *covering* B'' *such that*

$$
j \in J' \Rightarrow U_j \subset B'' \text{ and } (\gamma, \gamma'') \mid_{(U_j, U_j) \times I} \text{ is trivial,}
$$

$$
j \in J - J' \Rightarrow U_j \subset B - B' \text{ and } \gamma \mid_{U_j \times I} \text{ is trivial.}
$$

The proof of Proposition 1.6 is now analogous to the non-relative case [3]. Using Proposition 1.6 we get

THEOREM 1.8. Suppose $B' \subset B$ has some neighborhood of which it is a retract.

If f₀, f₁: (B, B') \rightarrow (C, C') are homotopic and $\Gamma = (\gamma, \gamma')$ is a relative (n, k) -plane *bundle over* (C, C') ; *then* $f_0^*(T) = f_1^*(T)$.

We now want a universal (n, k) -plane bundle. Let $\mathbb{R}^{\infty} = \bigoplus_{i=1}^{\infty} \mathbb{R}$. Let G_n be the Grassman manifold of oriented *n*-planes in \mathbb{R}^{∞} . Let $\gamma_n = (E_n, p_n, G_n)$ be a natural *n*-plane bundle over G_n . (If $p \in G_n$, then a point in the fibre above p is a pair (v, p) such that $v \in p$.)

PROPOSITION 1.9. *There are natural inclusions,* , *of* $G_k \times G_{n-k}$ *into* G_n *, and* κ *of* G_k *into* G_n *.*

From here on we will consider $G_k \times G_{n-k}$ and G_k to be the subsets of G_n given by the above result. Let γ_k' be the (oriented) obvious k-plane bundle over $G_k \times G_{n-k} \subset G_n$ such that if $(p, q) \in G_k \times G_{n-k}$ then the fibre above (p, q) is the set of all vectors in p . Then (γ_n, γ_k') is a relative (n, k) -plane bundle.

Note that $\gamma_k' \mid a_k = \gamma_k$. Therefore we will consider γ_k to be this sub-bundle of γ_n . Then we get the following

PROPOSITION 1.10. Let *i* be the inclusion of (G_n, G_k) in $(G_n, G_k \times G_{n-k})$. Then $i^*(\gamma_n, \gamma_k') = (\gamma_n, \gamma_k).$

PROPOSITION 1.11. Suppose (γ, γ') is a relative (n, k) -plane bundle over $(B, B'), \gamma = (E, p, B),$ and $\hat{f}: E \to \mathbb{R}^{\infty}$ *is linear and one-to-one on each fibre. If* ${f(v) \mid v \in p^{-1}(b), b \in B' \} \in G_k \times G_{n-k} \subset G_n$ for all $b \in B'$, then f induces \tilde{f}, f *such that we have the following commutative diagram:*

$$
(E,E') \xrightarrow{f} (\gamma_n,\gamma_k')\downarrow
$$

(B,B') $\xrightarrow{f} (G_n,G_k \times G_{n-k}).$

THEOREM 1.12. Let f, $g:(B, B') \rightarrow (G_n, G_k \times G_{n-k})$ be maps such that $f^*(\gamma_n, G_k)$ γ_k') = $g^*(\gamma_n, \gamma_k')$. Then $f \simeq g$.

The proof follows from

LEMMA 1.13. We can define homotopies $\hat{\theta}^a$, $\hat{\theta}^b$: $\mathbb{R}^{\infty} \times I \to \mathbb{R}^{\infty}$ which induce maps g^a, g^b : $(\gamma_n, \gamma_k') \times I \to (\gamma_n, \gamma_k')$. These induce g^a, g^b : $(G_n, G_k \times G_{n-k}) \times I$. $(G_n, G_k \times G_{n-k})$. Furthermore g_0^a and g_0^b are the identity.

We now note that "any" oriented (n, k) -plane bundle is the pullback of (γ_n, γ_k') .

Definition 1.14. An (n, k) -plane bundle (γ, γ') is oriented if γ and γ' are.

THEOREM 1.15. Let (γ, γ') be an oriented (n, k) -plane bundle over (B, B') *where B' has a neighborhood of which it* is *a retract. Then there exists a map f: (B,* B') \rightarrow $(G_n, G_k \times G_{n-k})$ such that $f^*(\gamma_n, \gamma_k') = (\gamma, \gamma')$. If $(\gamma |_{B'}, \gamma') = (\gamma' \oplus G_{k})$ $\theta^{n-k}, \gamma')$ where θ^{n-k} is the trivial bundle over B', f can be chosen so that $f(B') \subset G_k.$

The proof follows from Propositions 1.5 and 1.11.

Using the above results, we get the following:

THEOREM 1.16. If B' has a neighborhood of which it is a retract, there is a one-to*one correspondence between (isomorphism classes of) oriented relative (n, k)-plane bundles over* (B, B') *and* $[(B, B')$; $(G_n, G_k \times G_{n-k})]$.

Proof: Theorems 1.8, 1.12, 1.15.

II. **A Fibration**

In this section we will consider a certain "relative" fibration which we will need. First we prove a relative version of the standard result that "up to homotopy" every map is a fibration.

PROPOSITION 2.1. Let $f: (E, E_1) \rightarrow (B, B_1)$ be a map such that $f \mid_{E_1}$ is a homeo*morphism onto B₁. Then there exists a pair* (E', E_1') *and maps* $\pi: (E', E_1') \rightarrow$ $(B, B_1), j: (E, E_1) \rightarrow (E', E'_1), j': (E', E'_1) \rightarrow (E, E_1)$ such that π is a fibration, $\pi |_{E_1}: E_1' \to B_1$ is a homeomorphism and j and j' are homotopy equivalences. *Furthermore, the following diagram homotopy commutes (as maps of pairs):*

 $($ *the triangle involving j is strictly commutative* $).$

Proof: Let $E' = \{(e, \lambda) \in E \times B^I | f(e) = \lambda(0) \}$ and $E_1' = \{(e, f(e)^*) \in E \times B^I | f(e) = \lambda(0) \}$ $E' | f(e)^*$ is the constant path at $f(e)$ and $e \in E_1$. Define $j: (E, E_1) \rightarrow (E', E_1')$ by $j(e) = (e, f(e)^*)$, $j': (E', E_1') \to (E, E_1)$ by $j'(e, \lambda) = e$ and $\pi: (E', E_1') \to$ (B, B_1) by $\pi(e, \lambda) = \lambda(1)$. Note that $j'j$ is the identity. *jj'* is homotopic to the identity by the homotopy $h: (E', E_1') \times I \to (E', E_1')$ which retracts all paths to their initial points: $h_t(e, \lambda) = (e, \lambda_t)$ where $\lambda_t: I \to B$ is defined by $\lambda_t(s) =$ $\lambda(ts)$. So $h_0 = jj'$ and $h_1 = 1_{(B',B_1')}$, π is a fibration by [7, p. 84, Proposition 1].

Since the inclusion $G_{n-1} \to G_n$ has fibre S^{n-1} we get

PROPOSITION 2.2. Let $i: (G_{n-1}, G_{n-1}) \rightarrow (G_n, G_{n-1})$ be the inclusion map. Let $\pi:G_{n-1}' \to G_n$ be the fibration given by Proposition 2.1 applied to *i*. Then the fibre of π has the homotopy type of S^{n-1} .

PROPOSITION 2.3. Let $\pi: G_{2n'} \to G_{2n+1}$ be the fibration in Proposition 2.2. Let *be a generator of* $H^{2n}(S^{2n})$. *Then* $\tau(\iota) = W_{2n+1}$ *where* $W_{2n+1} \in H^{2n+1}(G_{2n+1})$ *is the integral Stiefel Whitney class in dimension* $2n + 1$.

Proof: [5, Theorem 6.16].

94 THOMAS B. GARNER

PROPOSITION 2.4. $H^{2n+1}(G_{2n+1}, G_{2n}) = Z$ and we can choose a generator of it, ε , \mathcal{L} *such that* $\delta e = 2\varepsilon$ *, where* $e \in H^{2n}(G_{2n})$ *is the Euler class and* δ *is the boundary map in the cohomology sequence of the pair* (G_{2n+1}, G_{2n}) . Furthermore, $i^*(\varepsilon) = W_{2n+1}$ where $W_{2n+1} \in H^{2n+1}(G_{2n+1})$ is the integral Stiefel Whitney class in dimension $2n + 1$ *and i is the inclusion map of* G_{2n+1} *in* (G_{2n+1}, G_{2n}) .

Proof: Immediate using the well known fact that (G_{2n+1}, G_{2n}) is the Thom space of γ_{2n+1} over G_{2n+1} .

Following Kervaire, who defined relative Stiefel Whitney classes [4], we will call 8 the relative Euler class. Using the above Propositions and noting that W_{2n+1} is the first Postnikov invariant for the inclusion $G_{2n} \to G_{2n+1}$ we get

LEMMA 2.5. Let M be a $2n + 1$ -dimensional manifold with boundary. Suppose $f:(M, \partial M) \rightarrow (G_{2n+1}, G_{2n})$ and $f^{*}(\varepsilon) = 0$, where ε is the generator of $H^{2n+1}(G_{2n+1}, G_{2n})$ G_{2n}) = *Z* given in Proposition 2.4. Then f is homotopic (as a map of pairs) to some f' where $f'(M) \subset G_{2n}$.

III. **The Main Theorem**

If *M* is a manifold with boundary, a vector field on ∂M is a map $v:\partial M \to TM$ such that $\pi v = 1_{\partial M}$ where π is the projection for the tangent bundle of *M*. Note that we don't require a vector field on ∂M to lie in $T(\partial M)$.

Definition 3.1. Let *M•* be a manifold and *S* a subset of *M.* Given a nowhere zero vector field on S, v, let ν_{ν} be the sub-bundle of TM \mid s of vectors normal to v. More explicitly, $(v_*)_x = \{u \in TM_x | u \text{ is normal to } v(x)\}\.$ v_* has a natural orientation since TM is oriented (i.e., if u_1, \dots, u_{n-1} form a basis for $(\nu_*)_x$, then they give the right orientation of it, if and only if u_1, \dots, u_{n-1} , $v(x)$ give the orientation of TM_x).

We can now state and prove our main result.

THEOREM 3.2. Let M be a $2n + 1$ -dimensional manifold with boundary and v a *nowhere zero vector field* on *aM. Then v can be extended to a nowhere zero vector field on M if and only if* $e(v_n) = 0$ *, where e denotes the Euler characteristic class.*

Proof: By Theorem 1.15 we can find a map $f:(M, \partial M) \rightarrow (G_{2n+1}, G_{2n})$ such that $f^*(\gamma_{2n+1},\gamma_{2n}) = (TM,\nu_\nu)$. Since $\delta e = 2\varepsilon$ by Proposition 2.4, we get

where the rows come from the exact sequences of the pairs involved. We know

that $f^*(e) = e(\nu_e)$ be the definition of the Euler class of ν_e . Since $H^{2n+1}(M) = 0$ and $H^{2n}(\partial M) = H^{2n+1}(M, \partial M) = Z$, $\delta: H^{2n}(\partial M) \to H^{2n+1}(M, \partial M)$ is an isomorphism. So $f^*(\varepsilon) = 0$ if and only if $e(\nu_{\varepsilon}) = f^*(e) = 0$.

We now split the proof:

Only if: Suppose *v* extends to a nowhere zero vector field on *M,* **v.** Let *8* be the trivial line bundle over M generated by **v**. Then $(TM, \nu_{\nu}) = (\nu_{\nu} \oplus \theta, \nu_{\nu})$. Take $g:M \to G_{2n}$ so that $g^*(\gamma_{2n}) = v_{\nu}$. Then considering *g* as a map from *(M, aM)* to (G_{2n+1}, G_{2n}) , we get

$$
g^*(\gamma_{2n+1}, \gamma_{2n}) = (g^*(\gamma_{2n+1} | G_{2n}), g^*(\gamma_{2n}))
$$

= $(g^*(\gamma_{2n} \oplus \theta), g^*(\gamma_{2n}))$
= $(g^*(\gamma_{2n}) \oplus \theta, g^*(\gamma_{2n}))$
= $(\nu_{\nu} \oplus \theta, \nu_{\nu})$
= $(TM, \nu_{\nu}).$

 $\text{Since } f^*(\gamma_{2n+1}, \gamma_{2n}) = (\text{TM}, \nu_{\nu}) = g^*(\gamma_{2n+1}, \gamma_{2n}) \text{ and } (\gamma_{2n+1}, \gamma_{2n}) = i^*(\gamma_{2n+1}, \gamma_{2n})$ by Proposition 1.10 where $i: (G_{2n+1}, G_{2n}) \rightarrow (G_{2n+1}, G_{2n} \times G_1)$ we see that $(ij)^*$ $(\gamma_{2n+1}, \gamma'_{2n}) = (ig)^* (\gamma_{2n+1}, \gamma'_{2n})$. By Theorem 1.10 if $\simeq ig:(M, \partial M) \to (G_{2n+1}, \partial M)$ $G_{2n} \times G_1$). But we can factor $ig:(M, \partial M) \to (G_{2n+1}, G_{2n} \times G_1)$ through (G_{2n}, G_{2n}) since $g(M) \subset G_{2n}$. Thus we get the following commutative diagram

$$
H^{2n+1}(G_{2n+1}, G_{2n} \times G_1) \xrightarrow{(ig)^*} H^{2n+1}(M, \partial M)
$$

$$
i^* \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad g^*
$$

$$
H^{2n+1}(G_{2n+1}, G_{2n}) \xrightarrow{\text{inclusion}^*} H^{2n+1}(G_{2n}, G_{2n}) = 0
$$

Since $\tilde{H}^*(G_1) = 0$, i^{*} is an isomorphism. Let $s' = (i^*)^{-1}(s)$. Then $(ig)^*(s') = 0$. Therefore $0 = (if)^*(\varepsilon') = f^{*}i^*(\varepsilon') = f^{*}(\varepsilon)$. So $e(\nu_i) = 0$ since it is zero if $f^*(\varepsilon) = 0.$

If: Assume that $f^*(\varepsilon) = 0$. By Lemma 2.5, $f \simeq g$ where $g(M) \subset G_{2n}$. Then

$$
(TM, \nu_{\nu}) = f^*(\gamma_{2n+1}, \gamma_{2n})
$$

= $g^*(\gamma_{2n+1}, \gamma_{2n})$
= $(g^*(\gamma_{2n+1}), g^*(\gamma_{2n}))$
= $(g^*(\gamma_{2n+1} | G_{2n}), g^*(\gamma_{2n}))$
= $(g^*(\gamma_{2n} \oplus \theta), g^*(\gamma_{2n}))$
= $(g^*(\gamma_{2n}) \oplus \theta, g^*(\gamma_{2n})).$

Let $\varphi: (TM, \nu_*) \to (g^*(\gamma_{2n}) \oplus \theta, g^*(\gamma_{2n}))$ be the relative bundle isomorphism. Let $u(x) \in TM_x$ be the unit vector normal to $\varphi^{-1}(g^*(\gamma_{2n}))$ with the "right" orientation. That is, if $u_1, \dots, u_{2n} \in \varphi^{-1}(g^*(\gamma_{2n}))$ | is a basis giving the orientation of $\varphi^{-1}(g^*(\gamma_{2n}))|_{\alpha}$, then $u(x), u_1, \cdots, u_{2n}$ is a basis of TM_x giving the orientation of TM_x . Take $d:M \to \mathbb{R}$ a nowhere zero differentiable function which agrees with $||v||$ on ∂M . This can be done by extending $||v||$ to a positive differentiable function on an open collar neighborhood, *N,* of *aM* and using a partition of

THOMAS B. GARNER

unity subordinate to $\{M - \partial M, N\}$. Then $\nu: M \to TM$, defined by $\nu(x) =$ $d(x)u(x)$, is a nowhere zero vector field on M. By construction, $v \mid_{\partial M} = v$.

As a corollary to this theorem, we get the classical result of Hopf, in the case where M is oriented and odd-dimensional.

COROLLARY 3.3, *Let M be an odd-dimensional manifold with boundary. Let* $v: \partial M \to TM$ be a nowhere zero vector field pointing out of M normal to ∂M (*i.e., if* $u \in T(\partial M)_x$, then $v(x)$ is normal to **u**). Then v extends to a nowhere zero vector field on *M* if and only if $\chi(M) = 0$.

Proof: Since v is normal to $T(\partial M)$, ν_{ν} , which is the bundle over ∂M of vectors normal to v, is $T(\partial M)$. So $e(\nu_n) = e(T(\partial M)) = \chi(\partial M)\iota = 2\chi(M)\iota$.

We also get the following result which is *not* true if *N* is odd-dimensional (cf. $M_1 = M_2 = D^2$ the unit disc).

COROLLARY 3.4. Suppose $N = \partial M_1 = \partial M_2$ is a 2n-dimensional manifold and let M be the differentiable manifold formed by $M_1 \cup M_2$. Let $v: N \to TM \mid N =$ $TM_1|_{\partial M_1} = TM_2|_{\partial M_2}$ be a nowhere zero vector field. Then v extends to a nowhere zero vector field on M_1 *if and only if it extends to a nowhere zero vector field on* M_2 .

Proof: Let *v*, be the vector bundle over $\partial M_1 = \partial M_2$ of vectors normal to *v*. Then by Theorem 3.2, v extends to a nowhere zero vector field on M_i if and only if $e(\nu_{\nu}) = 0$.

THE UNIVERSITY OF ROCHESTER

REFERENCES

- [1] M. ATIYAH, K-Theory, W. A. Benjamin, Inc., 1967.
- [2] A. BOREL, *Topics in the Homology Theory of Fibre Bundles,* Lecture Notes in Mathematics, No. 76, Springer-Verlag, Berlin, 1967.
- [3] D. HuSEMOLLER, Fibre Bundles, McGraw-Hill, New York, 1966.
- [4] **M.** KERVAIRE, *Relative Characteristic Glasses,* Amer. J. Math. **79(1957),** 517-58.
- [5] A. LIULEVICIUs, Characteristic Classes and Cobordism, Mathematics Institute, Aarhus • University, Denmark, 1967.
- [6] J. MILNOR, *Lectures on Characteristic Classes,* Mimeographed Lecture Notes, Princeton, New Jersey.
- [7] R. MosHER AND M. TANGORA, Cohomology Operations and Applications in Homotopy Theory, Harper & Row, New York, 1968.
- [8] J. STASHEFF, *A Classification Theorem for Fibre Spaces,* Topology, 2(1963), 239-46.
- [9] E. THOMAS, *Seminar on Fiber Spaces,* Lecture Notes in Mathematics, No. 13, Springer-Verlag, Berlin, 1966.

 $.96$