VECTOR FIELDS ON MANIFOLDS WITH BOUNDARY

By Tromas B. GARNER

Introduction

If M is a manifold with boundary, then a vector field on M will be a map
v:0M — TM such that 7-v = 1 where = is the projection in the tangent bundle
of M. We will show that if M is compact, oriented, connected, 2n -+ 1-dimen-
sional and 6M is connected, then a nowhere zero vector field » extends to a no-
where zero vector field on M if and only if the Euler class of the 2n-plane bundle
over dM of vectors normal to v is 0. This is a generalization of Hopf’s classical
result. The proof will depend on relative vector bundles. Most of the results
about relative vector bundles are analogues of the results about standard vector

bundles.
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Throughout the paper we follow the following conventions: all spaces are
paracompact; all manifolds are compact, connected, oriented and equipped with
a Riemannian metric; a map is a continuous function; and all cohomelogy groups
are over Z unless otherwise indicated. Given an n-plane bundle v we will some-
times, by an abuse of language, use v to denote its total space. In any pair
(B, B'), B’ is closed unless we explicitly say otherwise.

I. Relative Plane Bundles

Definition 1.1. A relative (n, k)-plane bundle, T, is a pair (v, v') where v =
(E, p, B) is an n-plane bundle and ¥' = (E’, p’, B’) is a k-plane sub-bundle of 7.
We will call (B, B') the base of T and say that T is a relative (n, k)-plane
bundle over (B, B').

A morphism between (n, k)-plane bundles T = (y,v’) and A = (3, 8) is a
vector bundle morphism from v to § which restricts to a vector bundle morphism
from v’ to 8. If (B, B’) is the base of I" and A, then a (B, B)-morphism from T
to A is a morphism which covers the identity map on (B, B'). If I and A are
(B, B')-isomorphic, we will write I' = A. Using the standard result about vector
bundles that a one-to-one B-morphism between n-plane bundles is a B-isomor-
phism, we get the analogous result for relative bundles.

ProposiTioN 1.2. Suppose (v, ¥') and (5, ') are (n, k)-plane bundles over
(B, B') and f:(v,7") — (5,4) is a (B, B')-morphism. If f is one-to-one, then f is
a (B, B')-isomorphism.

We will omit the proof of any result such as the above which is essentially simi-
lar to the corresponding non-relative one [cf. 3].
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If I' = (v,7) is a relative (n, k)-plane bundle over (B, B') and f:(C, C') —
(B, B), then (f*(v), f| ¢*(v")) is the pullback of T by f. We will denote the
pullback by f*(T) or f*(v, v"). Obviously, it is a relative (n, k)-plane bundle.

ProrosttioN 1.3. Suppose f:(C, C') — (B, B') and T = (v, ') is a relative
(n, k)-plane bundle over (B, B'). Then we have a morphism f:f*(I') — T and a
commutative diagram

fo

e 1, (BB)

where the vertical maps are projections and f is one-to-one on each fibre. Suppose
A = (8,8") isalso an (n, k)-plane bundle over (C, C') and that we have a morphism
g such that

A g

r) ———> T

(c,c) — (B,B).
Then there is a morphism k such that we have the following commutative diagram

(c,cy —— (B,B).

Furthermore if § is one-to-one on each fibre, then k is a (C, C")-isomorphism from
A to £(T).

Note that in the above proposition we use, by an abuse of notation, the same
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symbol for the total space of a relative bundle as for the bundle itself. We will
continue to do this when convenient.

Let 6" be the trivial n-plane bundle over B, 6* the trivial k-plane bundle over
B’ C B considered as a sub-bundle of 6" in the natural way. Then (v, v'), a rela-
tive (n, k)-plane bundle over (B, B'), is trivial if and only if (v, ') = (87, 6%).
If (C, C') C (B, B'), then the restriction of a relative bundle I' = (v, v") over
(B, B') to (C, C")is (v| &, ¥ | ). We will denote it by (v, v') | cmery oF
T'| (¢,cn. We now note some technical results which we will need later.

ProposiTioN 1.4. Let T' = (v,v) be a relative (n, k)-plane bundle over (B, B)
X I. Then there exists an open cover {Uj, 7 € J, of B such that T | (v;.uxr @8
trivial.

By Proposition 1.3 and Lemma, 1.4.2 of [1] we get

ProrosiTioN 1.5. Let (v, ') be a relative (n, k)-plane bundle over (B, B').
Suppose B has a neighborhood B” of which it is a retract. Then there exists a neigh-
borhood of B', B”, a k-plane bundle, ", over B"” and an (n-k)-plane bundle " over
B” such that:

DAY e =1
2) v" and " are sub-bundles of v;
3) (Y &7, 7)) = (v 7).

Furthermore, if v and ' are oriented, so arey” and ¥

ProposiTiON 1.6. Let T' = (v, 7') be a relative (n, k)-plane bundle over (B, B)
X 1. Suppose B' has a neighborhood of which it is a retract and define r:B X I —
B X Ibyr(b,t) = (b,1). Then there exists a morphism f:T — T | (g,p/yxp11 Covering
r such that f restricted to a fibre is one-to-one.

In order to prove Proposition 1.6 we will need the following:

LeMMA 1.7. Suppose the conditions of Proposition 1.6 are satisfied. Then there
exists an open set B” D B', a k-plane bundle " over B” X I and an (n-k)-plane
bundle v" over B” X I such that

1) ’YZ ] B'XI ”/= 'Y,
2) v andvy are sub-bundles of v
n 4 ” 4
3 (v &v,v) =((ls"7)
Furthermore, there exists a locally finite open cover of B, {Uj},j € J, with a sub-
collection {U;},j € J', covering B” such that
j€J =U;c B and (v,7") | cwivixa 18 trivial,
j€J ~J =U;C B — B andv| vjx is trivil.

The proof of Proposition 1.6 is now analogous to the non-relative case [3].

Using Proposition 1.6 we get

TrrEorEM 1.8. Suppose B' C B has some neighborhood of which it is a retract.
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If fo, fi: (B, B") — (C, C') are homotopic and T = (v, %) is a relative (n, k)-plane
bundle over (C, C'); then fo*(T') = £*(T).

We now want a universal (7, k)-plane bundle. Let R® = @7 R. Let G, be the
Grassman manifold of oriented n-planes in R”. Let v, = (Ea, pn, G») be a natural
n-plane bundle over G,. (If p € G, then a point in the fibre above p is a pair
(v, p) such that v € p.)

ProrosiTioN 1.9. There are natural inclusions, ¢ of G X Gn_i into G, and
K Of Gk wmnito Gn.

From here on we will consider G, X G._x and G to be the subsets of G, given
by the above result. Let v; be the (oriented) obvious k-plane bundle over
Gy X Gu C G, such that if (p, g) € Gy X G, then the fibre above (p, ¢) is
the set of all vectors in p. Then (v», v+ ) is a relative (n, k)-plane bundle.

Note that v | ¢ = & Therefore we will consider v to be this sub-bundle of
¥s. Then we get the following

Prorosition 1.10. Let © be the inclusion of (Gn, Gi) in (Gn, Gx X Gu_i). Then
Fvm 1) = (Yny 7).

ProposrTioN 1.11. Suppose (v, ¥') is a relative (n, k)-plane bundle over
(B, B'), vy = (E, p, B), and f:E — R” is linear and one-to-one on each fibre. If
{f(v) |v € p7(b),b € B’} € G X Gur C G forallb € B, then f induces J, f
such that we have the following commutative diagram:

(E,E’) —‘—f—) ('Yn,'Yk,)

(BB") —I, (GnGiX Gucs).
TaeoREM 1.12. Let f, g: (B, B') — (G, Gi X Gn_z) be maps such that f*(ya,
v&') = §*(vn,vi ). Thenf ~g.
The proof follows from

Lemma 1.13. We can define homotopies §°, §*:R® X I — R™ which induce maps
g, & (vn, v') X I — (¥n, 1) These induce ¢, °:(Ga, G X Goy) X I —
(Gn, G X Gu_y). Furthermore go* and go’ are the identity.

We now note that “any” oriented (7, k)-plane bundle is the pullback of
(7”: 'Yk,) .

Definition 1.14. An (n, k)-plane bundle (v, v’) is oriented if v and v" are.

TaeoreM 1.15. Let (v, ¥') be an oriented (n, k)-plane bundle over (B, B')
where B’ has a neighborhood of which it is a retract. Then there exists a map f: (B,

B') = (Gu, Gi X Gut) such that f*(vm v) = (1, ¥). If (v s, 7)) = (¥ &
0" " +') where 6™ * is the trivial bundle over B, f can be chosen so that f(B') C G..

The proof follows from Propositions 1.5 and 1.11.
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Using the above results, we get the following:

TuroreM 1.16. If B has a neighborhood of which it is a retract, there is a one-to-
one correspondence between (isomorphism classes of) oriented relative (n, k)-plane
bundles over (B, B') and [(B, B'); (Gn, Gx X Gnz)].

Proof: Theorems 1.8, 1.12, 1.15.

II. A Fibration

In this section we will consider a certain “relative” fibration which we will
need. First we prove a relative version of the standard result that “up to homot-
opy”’ every map is a fibration..

Prorosition 2.1. Let f:(E, E,) — (B, By) be a map such that f | &, is a homeo-
morphism onto By. Then there exists a pair (E', Ey) and maps =:(E', BY) —
(B,B)),j:(E, Ei) — (E',EY),j:(E, BY) — (E, E1) such that = is a fibration,
7| 5B — Bi is a homeomorphism and j and j are homotopy equivalences.
Furthermore, the following diagram homotopy commutes (as maps of pairs):

(ELE) "7 (E,E)

(B,By)
(the triangle involving j is strictly commutative).

Proof: Let E' = {(e,\) € E X B"|f(e) = A(0)} and By = {(e, f(e)*) €
E' | f(e)* is the constant path at f(e) and e € Ey} . Define j: (E, Ey) — (E', Ey')
by j(e) = (e, f()*), i (¥, By) — (B, E)) by j (e, \) = eand x:(E, BY) —
(B, By) by w(e, \) = A(1). Note that ;7 is the identity. 75" is homotopic to the
identity by the homotopy h:(E’, By') X I — (E’, E)') which retracts all paths
to their initial points: h:(e, A) = (e, A\;) where \;:] — B is defined by A¢(s) =
A(ts). S0 hy = 77 and by = 1(gr,5,). 7 is a fibration by [7, p. 84, Proposition 1].

Since the inclusion G,_; — G, has fibre 8" we get

ProposiTiON 2.2. Let i:(Gay, Go_1) — (Ga, Gn_i) be the inclusion map. Let
7:Gai — Gy, be the fibration given by Proposition 2.1 applied to i. Then the fibre of
w has the homotopy type of S™ .

ProprosITION 2.3. Let m: Gy — Gania be the fibration in Proposition 2.2. Let « be
a generator of H™(S™). Then 7(1) = Wants where Wanys € H*™ 7 (Gonya) 75 the
integral Stiefel W hitney class in dimension 2n -+ 1.

Proof: [5, Theorem 6.16].
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ProrosITION 2.4. H*"(Gany1, Gon) = Z and we can choose a generator of i, &,
such that se = 2g, where e € H*"(Gay) is the Euler class and § is the boundary map
in the cohomology sequence of the pair (Gont, Goa). Furthermore, i*(8) = Wapp
where Wonys € H™™(Gani1) 15 the integral Stiefel Whitney class in dimension
2n + 1 and 1 is the inclusion map of Gant1 0 (Gensa, Gan).

Proof: Immediate using the well known fact that (Giny, Gon) is the Thom
space of yant1 over Gants.

Following Kervaire, who defined relative Stiefel Whitney .classes [4], we will
call & the relative Euler class. Using the above Propositions and noting that
W gn+1 is the first Postnikov invariant for the inclusion Gz, — Gana We get

Lemma 2.5. Let M be a 2n + 1-dimensional manifold with boundary. Suppose
1 (M, 0M) — (Gan1, Gon) and *(&) = 0, where & is the generator of H*™™*(Ganya,
Gan) = Z given in Proposition 2.4. Then f ©s homotopic (as a map of pairs) to some
f where (M) C G,

II1. The Main Theorem

If M is a manifold with boundary, a vector field on dM is a map v:dM — TM
such that mv = lax where = is the projection for the tangent bundle of M. Note
that we don’t require a vector field on M to liein T'(8M).

Definition 3.1. Let M" be a manifold and S a subset of M. Given a nowhere
zero vector field on S, v, let », be the sub-bundle of 7'M | s of vectors normal to ».
More explicitly, (v,). = {u € TM,|u is normal to v(x)} . », has a natural
orientation since TM is oriented (i.e., if %1, - - - , Us—1 form a basis for (»,)., then
they give the right orientation of it, if and only if w1, « -+ , Un-1, ¥(z) give the
orientation of TM,).

We can now state and prove our main result.

TeEOREM 3.2. Let M be a 2n + 1-dimensional manifold with boundary and v a
nowhere zero vector field on M. Then v can be extended to a nowhere zero vector field
on M if and only if e(v,) = 0, where e denotes the Euler characteristic class.

Proof: By Theorem 1.15 we can find a map f: (M, M) — (Gant1, Gen) such
that f*(vent1, v20) = (TM, »,). Since d¢ = 2 by Proposition 2.4, we get

H m ( GZu ) — H e (G2n+1,G2n )
e — 28

f* [ J ”

e(vy) T 21*(8)
H™(aM) H™ (M, oM)

where the rows come from the exact sequences of the pairs involved. We know
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that f*(e) = e(»,) be the definition of the Euler class of »,. Since H***'(M) = 0
and H™(0M) = H™N (M, oM) = Z, s: H*"(8M) — H*™'(M, 9M) is an iso-
morphism. So f*(&) = 0if and only if e(»,) = f*(e) = 0.

We now split the proof:

Only 4f: Suppose v extends to a nowhere zero vector field on M, v. Let 8 be the
trivial line bundle over M generated by v. Then (TM, »,) = (v, ® 6, »,). Take
g:M — G, s0 that g*(v2.) = v,. Then considering g as a map from (M, 9M)
to (Gant1, Gas), we get

(g*(72n+1 | G2a), g*(";’zn))
(g*(72n @ 0)7 g*(72n))
(9% (12s) @ 6, " (72s))
(Vv @ 90, Vv)

= (TM, »,).

Since f* (Yant1, Yam) = (TM, »,) = g-* (7an+1, v2n) ADA (Yoni1, Yon) = 1'*('}'2n+1; ’Y’zn)
by Proposition 1.10 where ¢:(Gzas1, Gen) = (Gonsa, Gau X G1) we see that (if)*
(vent1, Y'2) = (39)™ (Y2041, 7'2n). By Theorem 1.10 if ~ ig: (M, M) — (Gans,
Gan X G1). But wecan factor ig: (M, M) — (Gant1, Gan X Gy) through (Gan, Go,)
since g(M) C Ga,. Thus we get the following commutative diagram

H" ™ (Goni1,Gen X Gh) ._Eg)_: B (M, M)

o* J’ T g*
tncluston®

H 2n+l(G2n+l,G2n) H 2"+1(G2n, Gz») =0

Since A*(@;) = 0, " is'an isomorphism. Let &’ = (¢*)™*(s). Then (4g)*(¢’) = 0.
Therefore 0 = (if)*(&') = f*(&') = f*(&). So e(v,) = 0 since it is zero if
f*(e) = 0.

If: Assume thatf*(¢) = 0. By Lemma 2.5, f ~ g where g(M) & Gy,. Then

(TM, v,) = f*(72n+1,’ Yon)

= g*(72n+1, Yon)

= (Q*(72n+1): g*(’an))
(.‘]fk (v2nt1 I Gan), 9#(721»'))
(0% (ven ©.6), §*(v2m))
(0% (120) @ 6, 5" (72n)).

Let o: (TM, v,) — (¢*(ym) @ 6, 9" (y2:)) be the relative bundle isomorphism.
Let u(z) € TM, be the unit vector normal to ¢ “(§*(y2.)) with the “right”
orientation. That is, if u, - -+ , zs € ¢ (g7 (v2)) |- is a basis giving the orienta-
tion of ¢ (¢ (v2n)) la, then w(z), wy, - - - , Us. is a basis of TM, giving the orienta-
tion of TM,. Take d: M — R a nowhere zero differentiable function which agrees
with || v || on @M. This can be done by extending || v || to a positive differentiable
function on an open collar neighborhood, N, of M and using a partition of

g*(72n+1, Y2n)

[/ |
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unity subordinate to {M — M, N} . Then v:M — TM, defined by v(z) =
d(z)u(z),is a nowhere zero vector field on M. By construction, ¥ | sxr = v.

As a corollary to this theorem, we get the classical result of Hopf, in the case
where M is oriented and odd-dimensional.

CoROLLARY 3.3. Let M be an odd-dimensional manifold with boundary. Let
v:dM — TM be a nowhere zero vector field pointing out of M normal to dM (i.e., if
u € T(dM),, then v(x) is normal to w). Then v extends to a nowhere zero vector field
on M if and only if x(M) =

Proof: Since v is normal to T'(dM), »,, which is the bundle over 3 of vectors
normal to v, is T(0M).So e(v,) = e(T(dM)) = x(dM ) = 2x(M)..

We also get the following result which is not true if N is odd-dimensional (cf.
M, = M, = D” the unit disc).

CoROLLARY 3.4. Suppose N = 0M, = oM, is a 2n-dimensional manifold and
let M be the differentiable manifold formed by My U M,. Let v:N — TM | y =
TMy| osey = TM:| ou, be a nowhere zero vector field. Then v extends to a nowhere
zero vector field on My if and only if it extends to a nowhere zero vector field on M.

Proof: Let v, be the vector bundle over M, = dM, of vectors normal to v.
Then by Theorem 3.2, v extends to a nowhere zero vector field on M, if and
only if e(v,) = »
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