
VECTOR FIELDS ON MANIFOLDS WITH BOUNDARY 

BY THOMAS B. GARNER 

Introduction 

If M is a manifold with boundary, then a vector field on aM will be a map 
v:aM--+ TM such that 1r·v = I where 1r is the projection in the tangent bundle 
of M. We will show that if Mis compact, oriented, connected, 2n + I-dimen­
sional and aM is connected, then a nowhere zero vector field v extends to a no­
where zero vector field on M if and only if the Euler class of the 2n-plane bundle 
over aM of vectors normal to v is 0. This is a generalization of Hopf's classical 
result. The proof will depend on relative vector bundles. Most of the results 
about relative vector bundles are analogues of the results about standard vector 
bundles. 

I would like to thank Norman Stein for his help and encouragement. I would 
also like to thank John Harper and Ming-Jung Lee for several enlightening con­
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Throughout the paper we follow the following conventions: all spaces are 
paracompact; all manifolds are compact, connected, oriented and equipped with 
a lliemannian metric; a map is a continuous function; and all cohomology groups 
are over Z unless otherwise indicated. Given an n-plane bundle 'Y we will some­
times, by an abuse of language, use 'Y to denote its total space. In any pair 
(B, B'), B' is closed unless we explicitly say otherwise. 

I. Relative Plane Bundles 

Definition I.I. A relative (n, k)-pl,o,ne bundle, r, is a pair ('Y, -y') where 'Y = 
(E, p, B) is an n-plane bundle and-y' = (E', p', B') is a k-plane sub-bundle of-y. 
We will call (B, B') the base of r and say that r is a relative (n, k)-plane 
bundle over (B, B'). 

A morphism between (n, k)-plane bundles r = ('Y, -y') and A = (o, 01) is a 
vector bundle morphism from 'Y to o which restricts to a vector bundle morphism 
from -y' too'. If (B, B') is the base of rand A, then a (B, B')-morphism from r 
to A is a morphism which covers the identity map on (B, B'). If rand A are 
(B, B')-isomorphic, we will writer = A. Using the standard result about vector 
bundles that a one-to-one B-morphism between n-plane bundles is a B-isomor­
phism, we get the analogous result for relative bundles. 

PROPOSITION 1.2. Suppose ('Y, -y') and (o, o') are (n, k)-pl,o,ne bundles over 
(B, B') and f: ( 'Y, -y') --+ (o, o') is a (B, B')-morphism. If f is one-to-one, then f is 
a (B, B')-isomorphism. 

We will omit the proof of any result such as the above which is essentially simi­
lar to the corresponding non-relative one [cf. 3]. 
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If r = ( 'Y, -y') is a relative ( n, k)-plane bundle over (B, B') and f: ( C, c') -
(B, B'), then (f'(-y), f I c•*(-y')) is the pullback of r by f. We will denote the 
pullback by :f(r) or f'(-y, -y'). Obviously, it is a relative (n, k)-plane bundle. 

PROPOSITION 1.3. Suppose f: ( C, c') - ( B, B') and r = (-y, -y') is a relative 
(n, k)-plane bundle over (B, B'). Then we have a morphitrm J::f(r) - rand a 
commutative diagram 

f*(r) __l__ r 

1 l 
( C,C') ____l__,, (B,B') 

where the vertical maps are projections and J is one-to-one on each fibre. Suppose 
A = (a, a') is also an (n, k)-plane bundle over (C, C') and that we have a morphitrm 
g such that 

fl'(r) r 

l l 
(C,C') (B,B'). 

Then there is a morphism k such that we have the following commutative diagram 

r 

l 
(B,B'). 

Furthermore if ii is one-to-one on each fibre, then k is a (C, C')-isomorphism from 
t:.to;f(r). 

Note that in the above proposition we use, by an abuse of notation, the same 
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symbol for the total space of a relative bundle as for the bundle itself. We will 
continue to do this when convenient. 

Let 8" be the trivial n-plane bundle over B, (},. the trivial le-plane bundle over 
B' c B considered as a sub-bundle of(}" in th!;l natural way. Then ('Y, -y'), a rela­
tive (n, k)-plane bundle over (B, B'), is trivial if and only if ('Y, -y') = (6", fJk). 
If (C, c') c (B, B'), then the restriction of a relative bundle r = ('Y, -r') over 
(B, B') to (C, c') is ('YI c:, -r' I c:•). We will denote it by ('Y, -y') I cc:,c:•> or 
r I <c:,c:•>· We now note some technical results which we will need later. 

PROPOSITION 1.4. Let I' = (-y, -y') be a relative (n, k)-plane bundle over (B, B) 
X I. Then there exists an open cover { U;}, j E J, of B such that r I <ui,ui>xr is 
trivial. 

By Proposition 1.3 and Lemma 1.4.2 of [1] we get 

PROPOSITION 1.5. Let ('Y, -r') be a relative (n, k)-pl,ane bundle over (B, B'). 
Suppose B' has a neighborhood B 11 of which it is a retract. Then there exists a neigh-

' B'11 II Ill ) Ill borhood of B , , a k-pl,ane bundle, 'Y , over B and an ( n-k -pl,ane bundle 'Y over 
B"' such that: 

1) 'Y11 I B' = 'Y1
; 

2) 'Y II and 'Y"' are sub-bundles of 'Y; 
3) (-y" EB 'Y111

, -y") = (-y I B 111, -y"). 

Furthermore, if-y and-y' are oriented, so are-y" and-y"'. 

PROPOSITION 1.6. Let r = (-y, -r') be a relative (n, k)-plane bundle over (B, B') 
X I. Suppose B' has a neighborhood of which it is a retract and define r:B X I -
BX I by r(b, t) = (b, 1). ThenthereexistsamorphiErm f: r- r I <s,s•>xi11 covering 
r such that f restricted to a fibre is one-to-one. 

In order to prove Proposition 1.6 we will need the following: 

LEMMA 1.7. Suppose the conditions of Proposition 1.6 are satisfied. Then there 
exists an open set B" ::> B', a k-pl,ane bundle -r" over B" XI and an (n-k)-pl,ane 
bundle ,f" over B" X I such that 

1) 'Y11 I B'XI = 'Y1 

2) 'Y" and 'Y"' are sub-bundles of 'Y 
3) (-y"' EB 'Y11, -y") = ('YI B 11, -r"). 

Furthermore, there exists a locally finite open cover of B, { U;}, j E J, with a sub­
collection { U;} , j E J', covering B 11 such that 

j E J' => U; c B" and ('Y, -r") I ru;,u;>xr is trivial, 
j E J - J' => U; CB - B' and 'YI u,xr is trivial. 

The proof of Proposition 1.6 is now analogous to the non-relative case [3]. 
Using Proposition 1.6 we get 

THEOREM 1.8. Suppose B' c B has some neighborhood of which it is a retract. 
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If fo,f1: (B, B')-+ (C, C') are homotopic and r = ('Y, 'Y1
) is a rel,ative (n, k)-plane 

bundle over (C, d); thenfo*(r) = fi*(r). 

We now want a universal (n, k)-plane bundle. LetR"° = EB:.1R. Let G,. be the 
Grassman manifold of oriented n-planes inR"°. Let 'Yn = (E.,., p,., G,.) be a natural 
n-plane bundle over G,.. (If p E G,., then a point in the fibre above pis a pair 
(v, p) such that v E p.) 

PROPOSITION 1.9. There are natural inclusions, , of Gk X Gn-k into G,., and 
,c of Gk into G,.. 

From here on we will consider G,. X Gn-k and Gk to be the subsets of G,. given 
by the above result. Let 'Y,/ be the ( oriented) obvious le-plane bundle over 
G,. X G-,,, C G,. such that if (p, q) E G,. X Gn-1o then the fibre above (p, q) is 
the set of all vectors in p. Then ('Yn, 'Yk1 ) is a relative (n, k)-plane bundle. 

Note that 'Yk1 I a,. = 'Yk• Therefore we will consider 'Yk to be this sub-bundle of 
'Yn• Then we get the following ' 

PROPOSITION 1.10. Let i be the inclusion of (G,., Gk) in (G,., G,. X G,._,.). Then 
i*('Yn, 'Y,/) = ('Yn, 'Y1,). 

PROPOSITION 1.11. Suppose ('Y, 'Y1
) is a relative (n, k)-plane bundle over 

(B, B'), 'Y = (E, p, B), andJ:E-+ R"° is linear and one-to-one on each fibre. If 
{/(v) Iv E p- 1(b), b EB'} E G,. X G,._,. C G,.for all b E B', then/ induces J, f 
such that we have the following commutative diagram: 

(E,E') _L ( 'Ynm') 

l l 
(B,B') _l_ (G,.,G1,X G,.-k). 

THEOREM 1.12. Letf, g:(B, B')-+ (G,., G,. X G,._,.) be maps such that/*('Yn, 
'Y,/) = g*('Y,.,'Y1,1

). Thenf ~ g. 

The proof follows from 

LEMMA 1.13. We can define homotopies (', t:R"° XI -+R"° which induce maps 
g", g6:('Yn, 'Y,/) X I-+ ('Yn, 'Y1,1). These induce g", g6:(G,., Gk X G,._,.) XI-+ 
(G,., G,. X G-,,,). Furthermore go" and gob are the i,dentity. 

We now note that "any" oriented (n, k)-plane bundle is the pullback of 
( 'Y111 'Ykl) • 

Definition 1.14. An ( n, k)-plane bundle ( 'Y, 'Y1) is oriented if 'Y and 'Y' are. 

THEOREM 1.15. Let ('Y, 'Y1
) be an oriented (n, k)-plane bundle over (B, B') 

where B' has a neighborhood of which it is a retract. Then there exists a map f: (B, 
B') -+ (G,., G,. X G,._,.) such that f('Yn, 'Yk1 ) = ('Y, 'Y1

). If ('YI B', 'Y1
) = ('Y1 EB 

8..-"", 'Y') where 8"-1, is the trivial bundle over B', f can be chosen so that f ( B') c G,.. 

The proof follows from Propositions 1.5 and 1.11. 
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Using the above results, we get the following: 

THEOREM 1.16. If B' has a neighborhood of whi,ch it is a retract, there is a one-to­
one correspondence between ( isomorphiwl classes of) oriemed relative ( n, k )-plane 
bundles over (B, B') and [(B, B'); (G,., Gk X G,._,.)]. 

Proof: Theorems 1.8, 1.12, 1.15. 

II. A Fibration 
In this section we will consider a certain "relative" fibration which we will 

need. First we prove a relative version of the standard result that "up to homot­
opy" every map is a fibration. 

PROPOSITION 2.1. Letf: (E, E1)-+ (B, B1) be a map such thatf I •i is a homeo­
morphism onto B1. Then there exists a pair (E', Ei') and maps 1r: (E', Ei') -+ 
(B, Bi), j: (E, E1) -+ (E', Ei'), :/: (E', Ei') -+ (E, E1) such that 1r is afibration, 
1r I •i' : Ei' -+ B1 is a homeomorphism and j and j' are homowpy eq_uivalences. 
Furthermore, the following diagram homowpy commutes ( as maps of pairs) : 

j 

(E',ED ------► 
j' 

( the triangle involving j is strwtly commutative) . 

Proof: LetE' = {(e, X) EE X B 1 lf(e) = X(O)} andEi' = {(e,f(e)*) E 
E' I f(e)* is the constant path atf(e) and e E E1}. Definej:(E, E1)-+ (K, Ei') 
by j(e) = (e,f(e)*),j':(E', Ei')-+ (E, E1) by /(e, X) = e and 1r:(E1

, Ei')-+ 
( B, B1) by 1r( e, X) = X( 1). Note that /j is the identity. jj' is homotopic to the 
identity by the homotopy h: (E', Ei') XI-+ (E', Ei') which retracts all paths 
to their initial points: h,(e, X) = (e, X,) where>.,:/-+ Bis defined by X,(s) = 
X(ts). So ho= jj' and h1 = l(B',Bi'l· 1ris afibration by [7, p. 84, Proposition 1]. 

Since the inclusion G,._1 -+ G,. has fibre s- 1 we get 

PROPOSITION 2.2. Let i: ( G,._1, G,._1) -+ ( G,., G,._1) be the inclusion map. Let 
1r:G,._/-+ G,. be thej[bration given by Proposition 2.1 applied to i. Then the fibre of 
1r has the homotopy type of sn-l • 

PROPOSITION 2.3. Let 1r: G2n'-+ Gii,.+1 be the fibration in Proposition 2.2. Let , be 
a generator of H2"( s2"). Then '1"( ,) = W2,.+1 where W 2n+1 E H2"+1( <h .. +1) is the 
integral Stiefel Whitney class in dimension 2n + I. 

Proof: [5, Theorem 6.16]. 
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PROPOSITION 2.4. H2"+1( G2n+1, G2n) = Z and we can choose a generator of it, 8, 

8uch that oe = 28, where e E H2"( G2n) is the Euler class and o is the boundary map 
in the cohomology 8equence of the pair (~n+i, G2n). Furthermore, i"\8) = W2n+1 
where W 2n+1 E H2"+1( G2n+1) is the integral Stiefel Whitney class in dimension 
2n + I and i is the incluaion map of G2n+1 in ( G2n+1, ~). 

Proof: Immediate using the well known fact that ( G2n+1, G2n) is the Thom 
space of 'Ylln+l over G2n+l• 

Following Kervaire, who defined relative Stiefel Whitney classes [4], we will 
call 8 the relative Euler class. Using the above Propositions and noting that 
Wsn+i is the first Postnikov invariant for the inclusion G2n -. G2n+1 we get 

LEMMA 2.5. Let M be a 2n + I-dimensional manifold with bound,ary. Suppose 
J:(M, aM) - (G2n+1, G2.) andf(8) = 0, where 8 is the generator of n2•+lc~ .. +1, 
~) = Z given in Proposition 2.4. Then f is homotopic ( as a map of pairs) to some 
f where f (M) C G2n. 

III. The Main Theorem 

If M is a manifold with boundary, a vector field on aM is a map v: aM -. TM 
such that 'lrV = 1.uc where 'II' is the projection for the tangent bundle of M. Note 
that we don't require a vector field on aM to lie in T( aM). 

Definition 3.1. Let M• be a manifold and S a subset of M. Given a nowhere 
zero vector field onS, v, let"• be the sub-bundle of TM Is of vectors normal to v. 
More explicitly, (v,),. = {u E TM,. I u is normal to v(x)} . "• has a natural 
orientation since TM is oriented (i.e., if u1, • • • , Un-1 form a basis for (v.).,, then 
they give the right orientation of it, if and only if u1, • • • , Un-1, v(x) give the 
orientation of TM.,). • 

We can now state and prove our main result. 

THEOREM 3.2. Let M be a 2n + I-dimensional manifold with bound,ary and v a 
nowhere zero vector field on aM. Then v can be extended to a nowhere zero vector field 
on M if and only if e(v.) = 0, where e denotes the Euler characteristic clas~. 

Proof: By Theorem 1.I5 we can find a map f: (M, aM) -. (G2n+1, ~n) such 
thatf('Y2n+1,'Y2n) = (TM, v,). Since oe = 28 by Proposition 2.4, we get 

H2n(G2,.) -_-_-_-_-:- H2"+1(G2 .. +1,~ .. ) 

f I I 2I [r 
e(v.) 6 2/(8) 

H2n(aM) ~+ 1(M, aM) 

where the rows come from the exact sequences of the pairs involved. We know 
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thatf(e) = e(v.) be the definition of the Euler class of v,. Since H 2n+1(M) = 0 
and H 2n(aM) = H 2n+i(M, aM) = Z, 8:H 2"(aM) -t H 2"+i(M, aM) is an iso­
morphism. So/'(s) = Oifand.onlyife(v.) =f(e) = 0. 

We now split the proof: 

Only if: Suppose v extends to a nowhere zero vector field on M, v. Let 8 be the 
trivial line bundle over M generated by v. Then (TM, v,) = (vv EB 8, v11). Take 
g:M -t G2,. so that g*(-y2,.) = Vv. Then considering g 1:1,s a map from (M, aM) 
to ( G2n+i, G2n), we get 

g*( 'Y2n+1, 'Y2n) = (g*( 'Y2n+1 I G211), g*( 'Y2n)) 
(g*('Y2n EB 8), g*('Y2n)) 

= ( g*( 'Y2n) EB 8, g*(-y2n)) 
= (vv EB 8, Pv) 

= (TM, Pv). 

Since f'( 'Y2n+1, 'Y2n) = (TM, v.) = g*( 'Y2n+1, 'Y2n) and ( 'Y2n+1, 'Y2n) = i*{ 'Y2n+I, 'Y12,.) 
by Proposition 1.10 where i: ( G2n+1, G2,.) -t ( G2n+1, G2,. X G1) we see that (if)* 
(,y2,.+1,'Y'2,.) = (ig)* ('Y2n+1,'Y'2,.).ByTheoreml.lOif~ig:(M, aM)-t(G2,.+ 1, 

G2,. X G1), But wecanfactor ig: (M, aM) -t (G2n+1, G2,. X Gi) through (G2,., G2,.) 
since g(M) c G2n, Thus we get the following commutative diagram 

(ig)* 

inclusion* 
H 2"+1(G2 .. +1,G2,.) H 2"+1(G2,., G2,.) = 0 

Since D*(G1) = 0, i*is an isomorphism. Lets' = ( i*r1c s). Then( ig)*( s') = 0. 
Therefore O = (if)*(s') = f*i*{s') = J*(s). So e(v.) = 0 since it is zero if 
J*(s) = 0. 

If: Assume that/( s) = 0. By Lemma 2.5,f ~ g where g(M) c G2,.. Then 

( TM, v,) = f( 'Y2n+1, 'Y2n) 
= g*( 'Y2n+l, 'Y2n) 
= (g*( 'Y2n+1), g*('Y2,.)) 
= (g*('Y2n+l I G2n), g*('Y2n)) 
= (g*('Y2n EB 8), g*(-y2,.)) 
= (g*('Y2n) EB 8, g*('Y2n)), 

Let q,: (TM, v,) -t (g*(-y2,.) EB 8, g*(-y2,.)) be the relative bundle isomorphism. 
Let u(x) E TM., be the unit vector normal to q,-1(g*(-y2,.)) with the "right" 
orientation. That is, if Ui, • • • , u2,. E q,-1(g*( 'Y2n)) I-is a basis giving the orienta­
tion of q,-1(g*( -y2,.)) I~, then u(x), u1, • • • , u2n is a basis of TM., giving the orienta­
tion of TM.,. Take d:M -tR a nowhere zero differentiable function which agrees 
with II v /I on aM. This can be done by extending II v II to a positive differentiable 
function on an open collar neighborhood, N, of aM and using a partition of 
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unity subordinate to {M - aM, N} . Then v:M - TM, defined by v(x) = 
d(x)u(x),isanowherezerovectorfieldonM.Byconstruction, VI oM = v. 

As a corollary to this theorem, we get the classical result of Hopf, in the case 
where Mis oriented and odd-dimensional. 

COROLLARY 3.3, Let M be an odd-dimensional manifold with boundary. Let 
. v: aM - TM be a nowhere zero vector field pointing out of M normal to aM ( i.e., if 
u • E T(aM),., then v( x) is normal to u). Then v extends to a nowhere zero vector field 
on M if and only if x(M) = 0. 

Proof: Since vis normal to T( aM), v., which is the bundle over aM of vectors 
normaltov,isT(aM).Soe(v.) = e(T(aM)) = x(aM)L = 2x(M)L. 

We also get the following result which is not true if N is odd-dimensional (cf. 
M1 = M2 = D2 the unit disc). 

COROLLARY 3.4. Suppose N = aM1 = aM2 is a 2n-dimensional manifold and 
let M be the differentiable manifold formed by M1 U M2. Let v:N - TM IN = 
TM1 I oMi = TM2 I oM 2 be a nowhere zero vector field. Then v extends to a nowhere 
zero vector field on M1 if and only if it extends to a nowhere zero vector field on M2. 

Proof: Let v. be the vector bundle over aM1 = aM2 of vectors normal to v. 
Then by Theorem 3.2, v extends to a nowhere zero vector field on Mi if and 
only if e(v,) = 0. 
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