VECTOR FIELDS ON MANIFOLDS WITH BOUNDARY

BY THOMAS B. GARNER

Introduction

If M is a manifold with boundary, then a vector field on ∂M will be a map $v: \partial M \to TM$ such that $\pi \cdot v = 1$ where π is the projection in the tangent bundle of M. We will show that if M is compact, oriented, connected, 2n + 1-dimensional and ∂M is connected, then a nowhere zero vector field v extends to a nowhere zero vector field on M if and only if the Euler class of the 2n-plane bundle over ∂M of vectors normal to v is 0. This is a generalization of Hopf's classical result. The proof will depend on relative vector bundles. Most of the results about relative vector bundles are analogues of the results about standard vector bundles.

I would like to thank Norman Stein for his help and encouragement. I would also like to thank John Harper and Ming-Jung Lee for several enlightening conversations.

Throughout the paper we follow the following conventions: all spaces are paracompact; all manifolds are compact, connected, oriented and equipped with a Riemannian metric; a map is a continuous function; and all cohomology groups are over Z unless otherwise indicated. Given an *n*-plane bundle γ we will sometimes, by an abuse of language, use γ to denote its total space. In any pair (B, B'), B' is closed unless we explicitly say otherwise.

I. Relative Plane Bundles

Definition 1.1. A relative (n, k)-plane bundle, Γ , is a pair (γ, γ') where $\gamma = (E, p, B)$ is an *n*-plane bundle and $\gamma' = (E', p', B')$ is a *k*-plane sub-bundle of γ . We will call (B, B') the base of Γ and say that Γ is a relative (n, k)-plane bundle over (B, B').

A morphism between (n, k)-plane bundles $\Gamma = (\gamma, \gamma')$ and $\Delta = (\delta, \delta')$ is a vector bundle morphism from γ to δ which restricts to a vector bundle morphism from Γ to δ' . If (B, B') is the base of Γ and Δ , then a (B, B')-morphism from Γ to Δ is a morphism which covers the identity map on (B, B'). If Γ and Δ are (B, B')-isomorphic, we will write $\Gamma = \Delta$. Using the standard result about vector bundles that a one-to-one B-morphism between n-plane bundles is a B-isomorphism, we get the analogous result for relative bundles.

PROPOSITION 1.2. Suppose (γ, γ') and (δ, δ') are (n, k)-plane bundles over (B, B') and $f:(\gamma, \gamma') \to (\delta, \delta')$ is a (B, B')-morphism. If f is one-to-one, then f is a (B, B')-isomorphism.

We will omit the proof of any result such as the above which is essentially similar to the corresponding non-relative one [cf. 3]. If $\Gamma = (\gamma, \gamma')$ is a relative (n, k)-plane bundle over (B, B') and $f: (C, C') \rightarrow (B, B')$, then $(f^*(\gamma), f \mid_{C'} (\gamma'))$ is the *pullback* of Γ by f. We will denote the pullback by $f^*(\Gamma)$ or $f^*(\gamma, \gamma')$. Obviously, it is a relative (n, k)-plane bundle.

PROPOSITION 1.3. Suppose $f:(C, C') \to (B, B')$ and $\Gamma = (\gamma, \gamma')$ is a relative (n, k)-plane bundle over (B, B'). Then we have a morphism $\tilde{f}: f^*(\Gamma) \to \Gamma$ and a commutative diagram

where the vertical maps are projections and \tilde{f} is one-to-one on each fibre. Suppose $\Delta = (\delta, \delta')$ is also an (n, k)-plane bundle over (C, C') and that we have a morphism \tilde{g} such that

Then there is a morphism k such that we have the following commutative diagram

Furthermore if \tilde{g} is one-to-one on each fibre, then k is a (C, C')-isomorphism from Δ to $f^*(\Gamma)$.

Note that in the above proposition we use, by an abuse of notation, the same

symbol for the total space of a relative bundle as for the bundle itself. We will continue to do this when convenient.

Let θ^n be the trivial *n*-plane bundle over B, θ^k the trivial *k*-plane bundle over $B' \subset B$ considered as a sub-bundle of θ^n in the natural way. Then (γ, γ') , a relative (n, k)-plane bundle over (B, B'), is *trivial* if and only if $(\gamma, \gamma') = (\theta^n, \theta^k)$. If $(C, C') \subset (B, B')$, then the *restriction* of a relative bundle $\Gamma = (\gamma, \gamma')$ over (B, B') to (C, C') is $(\gamma \mid_C, \gamma' \mid_{C'})$. We will denote it by $(\gamma, \gamma') \mid_{(C,C')}$ or $\Gamma \mid_{(C,C')}$. We now note some technical results which we will need later.

PROPOSITION 1.4. Let $\Gamma = (\gamma, \gamma')$ be a relative (n, k)-plane bundle over (B, B) $\times I$. Then there exists an open cover $\{U_j\}, j \in J$, of B such that $\Gamma \mid_{(\sigma_j, \sigma_j) \times I}$ is trivial.

By Proposition 1.3 and Lemma 1.4.2 of [1] we get

PROPOSITION 1.5. Let (γ, γ') be a relative (n, k)-plane bundle over (B, B'). Suppose B' has a neighborhood B" of which it is a retract. Then there exists a neighborhood of B', B"', a k-plane bundle, γ'' , over B" and an (n-k)-plane bundle γ''' over B" such that:

1)
$$\gamma'' \mid_{B'} = \gamma';$$

2) γ'' and γ''' are sub-bundles of $\gamma;$
3) $(\gamma'' \oplus \gamma''', \gamma'') = (\gamma \mid_{B'''}, \gamma'').$

Furthermore, if γ and γ' are oriented, so are γ'' and γ''' .

PROPOSITION 1.6. Let $\Gamma = (\gamma, \gamma')$ be a relative (n, k)-plane bundle over (B, B') $\times I$. Suppose B' has a neighborhood of which it is a retract and define $r: B \times I \rightarrow B \times I$ by r(b, t) = (b, 1). Then there exists a morphism $f: \Gamma \rightarrow \Gamma \mid_{(B,B')\times[1]}$ covering r such that f restricted to a fibre is one-to-one.

In order to prove Proposition 1.6 we will need the following:

LEMMA 1.7. Suppose the conditions of Proposition 1.6 are satisfied. Then there exists an open set $B'' \supset B'$, a k-plane bundle γ'' over $B'' \times I$ and an (n-k)-plane bundle γ''' over $B'' \times I$ such that

1)
$$\gamma'' \mid_{B' \times I} = \gamma'$$

2) γ'' and γ''' are sub-bundles of γ
3) $(\gamma''' \oplus \gamma'', \gamma'') = (\gamma \mid_{B''}, \gamma'').$

Furthermore, there exists a locally finite open cover of B, $\{U_j\}, j \in J$, with a subcollection $\{U_i\}, j \in J'$, covering B'' such that

$$j \in J' \Rightarrow U_j \subset B'' \text{ and } (\gamma, \gamma'') \mid_{(U_j, U_j) \times I} \text{ is trivial,}$$

 $j \in J - J' \Rightarrow U_j \subset B - B' \text{ and } \gamma \mid_{U_i \times I} \text{ is trivial.}$

The proof of Proposition 1.6 is now analogous to the non-relative case [3]. Using Proposition 1.6 we get

THEOREM 1.8. Suppose $B' \subset B$ has some neighborhood of which it is a retract.

If $f_0, f_1: (B, B') \to (C, C')$ are homotopic and $\Gamma = (\gamma, \gamma')$ is a relative (n, k)-plane bundle over (C, C'); then $f_0^*(\Gamma) = f_1^*(\Gamma)$.

We now want a universal (n, k)-plane bundle. Let $\mathbf{R}^{\infty} = \bigoplus_{i=1}^{\infty} \mathbf{R}$. Let G_n be the Grassman manifold of oriented *n*-planes in \mathbf{R}^{∞} . Let $\gamma_n = (E_n, p_n, G_n)$ be a natural *n*-plane bundle over G_n . (If $p \in G_n$, then a point in the fibre above p is a pair (v, p) such that $v \in p$.)

PROPOSITION 1.9. There are natural inclusions, ι of $G_k \times G_{n-k}$ into G_n , and κ of G_k into G_n .

From here on we will consider $G_k \times G_{n-k}$ and G_k to be the subsets of G_n given by the above result. Let γ_k' be the (oriented) obvious k-plane bundle over $G_k \times G_{n-k} \subset G_n$ such that if $(p, q) \in G_k \times G_{n-k}$ then the fibre above (p, q) is the set of all vectors in p. Then (γ_n, γ_k') is a relative (n, k)-plane bundle.

Note that $\gamma_k' |_{\sigma_k} = \gamma_k$. Therefore we will consider γ_k to be this sub-bundle of γ_n . Then we get the following

PROPOSITION 1.10. Let *i* be the inclusion of (G_n, G_k) in $(G_n, G_k \times G_{n-k})$. Then $i^*(\gamma_n, \gamma_k') = (\gamma_n, \gamma_k)$.

PROPOSITION 1.11. Suppose (γ, γ') is a relative (n, k)-plane bundle over $(B, B'), \gamma = (E, p, B), \text{ and } \hat{f}: E \to \mathbb{R}^{\infty}$ is linear and one-to-one on each fibre. If $\{\hat{f}(v) \mid v \in p^{-1}(b), b \in B'\} \in G_k \times G_{n-k} \subset G_n$ for all $b \in B'$, then \hat{f} induces \tilde{f} , f such that we have the following commutative diagram:

$$(E,E') \xrightarrow{f} (\gamma_n,\gamma_k') \\ \downarrow \qquad \qquad \downarrow \\ (B,B') \xrightarrow{f} (G_n,G_k \times G_{n-k}).$$

THEOREM 1.12. Let $f, g: (B, B') \to (G_n, G_k \times G_{n-k})$ be maps such that $f^*(\gamma_n, \gamma_k') = g^*(\gamma_n, \gamma_k')$. Then $f \simeq g$.

The proof follows from

LEMMA 1.13. We can define homotopies \mathfrak{g}^a , $\mathfrak{g}^b: \mathbb{R}^{\infty} \times I \to \mathbb{R}^{\infty}$ which induce maps g^a , $g^b: (\gamma_n, \gamma_k') \times I \to (\gamma_n, \gamma_k')$. These induce g^a , $g^b: (G_n, G_k \times G_{n-k}) \times I \to (G_n, G_k \times G_{n-k})$. Furthermore g_0^a and g_0^b are the identity.

We now note that "any" oriented (n, k)-plane bundle is the pullback of (γ_n, γ_k') .

Definition 1.14. An (n, k)-plane bundle (γ, γ') is oriented if γ and γ' are.

THEOREM 1.15. Let (γ, γ') be an oriented (n, k)-plane bundle over (B, B')where B' has a neighborhood of which it is a retract. Then there exists a map $f:(B, B') \to (G_n, G_k \times G_{n-k})$ such that $f^*(\gamma_n, \gamma_k') = (\gamma, \gamma')$. If $(\gamma \mid_{B'}, \gamma') = (\gamma' \oplus \theta^{n-k}, \gamma')$ where θ^{n-k} is the trivial bundle over B', f can be chosen so that $f(B') \subset G_k$.

The proof follows from Propositions 1.5 and 1.11.

Using the above results, we get the following:

THEOREM 1.16. If B' has a neighborhood of which it is a retract, there is a one-toone correspondence between (isomorphism classes of) oriented relative (n, k)-plane bundles over (B, B') and $[(B, B'); (G_n, G_k \times G_{n-k})]$.

Proof: Theorems 1.8, 1.12, 1.15.

II. A Fibration

In this section we will consider a certain "relative" fibration which we will need. First we prove a relative version of the standard result that "up to homotopy" every map is a fibration.

PROPOSITION 2.1. Let $f:(E, E_1) \to (B, B_1)$ be a map such that $f \mid_{B_1}$ is a homeomorphism onto B_1 . Then there exists a pair (E', E_1') and maps $\pi:(E', E_1') \to (B, B_1), j:(E, E_1) \to (E', E_1'), j':(E', E_1') \to (E, E_1)$ such that π is a fibration, $\pi \mid_{B_1'}:E_1' \to B_1$ is a homeomorphism and j and j' are homotopy equivalences. Furthermore, the following diagram homotopy commutes (as maps of pairs):

(the triangle involving j is strictly commutative).

Proof: Let $E' = \{(e, \lambda) \in E \times B^I | f(e) = \lambda(0)\}$ and $E_1' = \{(e, f(e)^*) \in E' | f(e)^* \text{ is the constant path at } f(e) \text{ and } e \in E_1\}$. Define $j:(E, E_1) \to (E', E_1')$ by $j(e) = (e, f(e)^*), j':(E', E_1') \to (E, E_1)$ by $j'(e, \lambda) = e$ and $\pi:(E', E_1') \to (B, B_1)$ by $\pi(e, \lambda) = \lambda(1)$. Note that j'j is the identity. jj' is homotopic to the identity by the homotopy $h:(E', E_1') \times I \to (E', E_1')$ which retracts all paths to their initial points: $h_t(e, \lambda) = (e, \lambda_t)$ where $\lambda_t: I \to B$ is defined by $\lambda_t(s) = \lambda(ts)$. So $h_0 = jj'$ and $h_1 = 1_{(E', E_1')}$. π is a fibration by [7, p. 84, Proposition 1].

Since the inclusion $G_{n-1} \to G_n$ has fibre S^{n-1} we get

PROPOSITION 2.2. Let $i:(G_{n-1}, G_{n-1}) \to (G_n, G_{n-1})$ be the inclusion map. Let $\pi:G_{n-1}' \to G_n$ be the fibration given by Proposition 2.1 applied to *i*. Then the fibre of π has the homotopy type of S^{n-1} .

PROPOSITION 2.3. Let $\pi: G_{2n}' \to G_{2n+1}$ be the fibration in Proposition 2.2. Let ι be a generator of $H^{2n}(S^{2n})$. Then $\tau(\iota) = W_{2n+1}$ where $W_{2n+1} \in H^{2n+1}(G_{2n+1})$ is the integral Stiefel Whitney class in dimension 2n + 1.

Proof: [5, Theorem 6.16].

THOMAS B. GARNER

PROPOSITION 2.4. $H^{2n+1}(G_{2n+1}, G_{2n}) = Z$ and we can choose a generator of it, ε , such that $\delta \varepsilon = 2\varepsilon$, where $\varepsilon \in H^{2n}(G_{2n})$ is the Euler class and δ is the boundary map in the cohomology sequence of the pair (G_{2n+1}, G_{2n}) . Furthermore, $i^*(\varepsilon) = W_{2n+1}$ where $W_{2n+1} \in H^{2n+1}(G_{2n+1})$ is the integral Stiefel Whitney class in dimension 2n + 1 and i is the inclusion map of G_{2n+1} in (G_{2n+1}, G_{2n}) .

Proof: Immediate using the well known fact that (G_{2n+1}, G_{2n}) is the Thom space of γ_{2n+1} over G_{2n+1} .

Following Kervaire, who defined relative Stiefel Whitney classes [4], we will call ε the relative Euler class. Using the above Propositions and noting that W_{2n+1} is the first Postnikov invariant for the inclusion $G_{2n} \to G_{2n+1}$ we get

LEMMA 2.5. Let M be a 2n + 1-dimensional manifold with boundary. Suppose $f:(M, \partial M) \to (G_{2n+1}, G_{2n})$ and $f^*(\varepsilon) = 0$, where ε is the generator of $H^{2n+1}(G_{2n+1}, G_{2n}) = Z$ given in Proposition 2.4. Then f is homotopic (as a map of pairs) to some f' where $f'(M) \subset G_{2n}$.

III. The Main Theorem

If M is a manifold with boundary, a vector field on ∂M is a map $v: \partial M \to TM$ such that $\pi v = 1_{\partial M}$ where π is the projection for the tangent bundle of M. Note that we don't require a vector field on ∂M to lie in $T(\partial M)$.

Definition 3.1. Let M^n be a manifold and S a subset of M. Given a nowhere zero vector field on S, v, let ν_v be the sub-bundle of $TM \mid s$ of vectors normal to v. More explicitly, $(\nu_v)_x = \{u \in TM_x \mid u \text{ is normal to } v(x)\}$. ν_v has a natural orientation since TM is oriented (i.e., if u_1, \dots, u_{n-1} form a basis for $(\nu_v)_x$, then they give the right orientation of it, if and only if u_1, \dots, u_{n-1} , v(x) give the orientation of TM_x).

We can now state and prove our main result.

THEOREM 3.2. Let M be a 2n + 1-dimensional manifold with boundary and v a nowhere zero vector field on ∂M . Then v can be extended to a nowhere zero vector field on M if and only if $e(v_v) = 0$, where e denotes the Euler characteristic class.

Proof: By Theorem 1.15 we can find a map $f:(M, \partial M) \to (G_{2n+1}, G_{2n})$ such that $f^*(\gamma_{2n+1}, \gamma_{2n}) = (TM, \nu_v)$. Since $\delta e = 2\varepsilon$ by Proposition 2.4, we get

where the rows come from the exact sequences of the pairs involved. We know

that $f^*(e) = e(\nu_*)$ be the definition of the Euler class of ν_* . Since $H^{2n+1}(M) = 0$ and $H^{2n}(\partial M) = H^{2n+1}(M, \partial M) = Z$, $\delta: H^{2n}(\partial M) \to H^{2n+1}(M, \partial M)$ is an isomorphism. So $f^*(\varepsilon) = 0$ if and only if $e(\nu_*) = f^*(e) = 0$.

We now split the proof:

Only if: Suppose v extends to a nowhere zero vector field on M, \mathbf{v} . Let θ be the trivial line bundle over M generated by \mathbf{v} . Then $(TM, \nu_v) = (\nu_v \oplus \theta, \nu_v)$. Take $g: M \to G_{2n}$ so that $g^*(\gamma_{2n}) = v_v$. Then considering g as a map from $(M, \partial M)$ to (G_{2n+1}, G_{2n}) , we get

$$g^{*}(\gamma_{2n+1}, \gamma_{2n}) = (g^{*}(\gamma_{2n+1} | G_{2n}), g^{*}(\gamma_{2n})) \\ = (g^{*}(\gamma_{2n} \oplus \theta), g^{*}(\gamma_{2n})) \\ = (g^{*}(\gamma_{2n}) \oplus \theta, g^{*}(\gamma_{2n})) \\ = (\nu_{\nu} \oplus \theta, \nu_{\nu}) \\ = (TM, \nu_{\nu}).$$

Since $f^*(\gamma_{2n+1}, \gamma_{2n}) = (\text{TM}, \nu_v) = g^*(\gamma_{2n+1}, \gamma_{2n})$ and $(\gamma_{2n+1}, \gamma_{2n}) = i^*(\gamma_{2n+1}, \gamma'_{2n})$ by Proposition 1.10 where $i: (G_{2n+1}, G_{2n}) \to (G_{2n+1}, G_{2n} \times G_1)$ we see that $(if)^*$ $(\gamma_{2n+1}, \gamma'_{2n}) = (ig)^* (\gamma_{2n+1}, \gamma'_{2n})$. By Theorem 1.10 $if \simeq ig: (M, \partial M) \to (G_{2n+1}, G_{2n} \times G_1)$. But we can factor $ig: (M, \partial M) \to (G_{2n+1}, G_{2n} \times G_1)$ through (G_{2n}, G_{2n}) since $g(M) \subset G_{2n}$. Thus we get the following commutative diagram

$$H^{2n+1}(G_{2n+1},G_{2n} \times G_1) \xrightarrow{(ig)^*} H^{2n+1}(M,\partial M)$$

$$i^* \downarrow \qquad \uparrow \qquad g^*$$

$$H^{2n+1}(G_{2n+1},G_{2n}) \xrightarrow{inclusion^*} H^{2n+1}(G_{2n},G_{2n}) = 0$$

Since $\tilde{H}^*(G_1) = 0$, i^* is an isomorphism. Let $\varepsilon' = (i^*)^{-1}(\varepsilon)$. Then $(ig)^*(\varepsilon') = 0$. Therefore $0 = (if)^*(\varepsilon') = f^*i^*(\varepsilon') = f^*(\varepsilon)$. So $e(\nu_*) = 0$ since it is zero if $f^*(\varepsilon) = 0$.

If: Assume that $f^*(\varepsilon) = 0$. By Lemma 2.5, $f \simeq g$ where $g(M) \subset G_{2n}$. Then

$$(TM, \nu_{\gamma}) = f^{*}(\gamma_{2n+1}, \gamma_{2n}) = g^{*}(\gamma_{2n+1}, \gamma_{2n}) = (g^{*}(\gamma_{2n+1}), g^{*}(\gamma_{2n})) = (g^{*}(\gamma_{2n+1} | G_{2n}), g^{*}(\gamma_{2n})) = (g^{*}(\gamma_{2n} \oplus \theta), g^{*}(\gamma_{2n})) = (g^{*}(\gamma_{2n}) \oplus \theta, g^{*}(\gamma_{2n})).$$

Let $\varphi:(TM, \nu_v) \to (g^*(\gamma_{2n}) \oplus \theta, g^*(\gamma_{2n}))$ be the relative bundle isomorphism. Let $u(x) \in TM_x$ be the unit vector normal to $\varphi^{-1}(g^*(\gamma_{2n}))$ with the "right" orientation. That is, if $u_1, \dots, u_{2n} \in \varphi^{-1}(g^*(\gamma_{2n}))$ | is a basis giving the orientation of $\varphi^{-1}(g^*(\gamma_{2n}))$ |_x, then $u(x), u_1, \dots, u_{2n}$ is a basis of TM_x giving the orientation of TM_x . Take $d: M \to \mathbb{R}$ a nowhere zero differentiable function which agrees with ||v|| on ∂M . This can be done by extending ||v|| to a positive differentiable function of

THOMAS B. GARNER

unity subordinate to $\{M - \partial M, N\}$. Then $v: M \to TM$, defined by v(x) = d(x)u(x), is a nowhere zero vector field on M. By construction, $v \mid \partial_M = v$.

As a corollary to this theorem, we get the classical result of Hopf, in the case where M is oriented and odd-dimensional.

COROLLARY 3.3. Let M be an odd-dimensional manifold with boundary. Let $v: \partial M \to TM$ be a nowhere zero vector field pointing out of M normal to ∂M (i.e., if $u \in T(\partial M)_{z}$, then v(x) is normal to u). Then v extends to a nowhere zero vector field on M if and only if $\chi(M) = 0$.

Proof: Since v is normal to $T(\partial M)$, v_v , which is the bundle over ∂M of vectors normal to v, is $T(\partial M)$. So $e(v_v) = e(T(\partial M)) = \chi(\partial M)\iota = 2\chi(M)\iota$.

We also get the following result which is not true if N is odd-dimensional (cf. $M_1 = M_2 = D^2$ the unit disc).

COROLLARY 3.4. Suppose $N = \partial M_1 = \partial M_2$ is a 2n-dimensional manifold and let M be the differentiable manifold formed by $M_1 \cup M_2$. Let $v:N \to TM \mid_N = TM_1 \mid_{\partial M_1} = TM_2 \mid_{\partial M_2}$ be a nowhere zero vector field. Then v extends to a nowhere zero vector field on M_1 if and only if it extends to a nowhere zero vector field on M_2 .

Proof: Let ν , be the vector bundle over $\partial M_1 = \partial M_2$ of vectors normal to ν . Then by Theorem 3.2, ν extends to a nowhere zero vector field on M_i if and only if $e(\nu_{\nu}) = 0$.

THE UNIVERSITY OF ROCHESTER

References

- [1] M. ATIYAH, K-Theory, W. A. Benjamin, Inc., 1967.
- [2] A. BOREL, Topics in the Homology Theory of Fibre Bundles, Lecture Notes in Mathematics, No. 76, Springer-Verlag, Berlin, 1967.
- [3] D. HUSEMOLLER, Fibre Bundles, McGraw-Hill, New York, 1966.
- [4] M. KERVAIRE, Relative Characteristic Classes, Amer. J. Math. 79 (1957), 517-58.
- [5] A. LIULEVICIUS, Characteristic Classes and Cobordism, Mathematics Institute, Aarhus University, Denmark, 1967.
- [6] J. MILNOR, Lectures on Characteristic Classes, Mimeographed Lecture Notes, Princeton, New Jersey.
- [7] R. MOSHER AND M. TANGORA, Cohomology Operations and Applications in Homotopy Theory, Harper & Row, New York, 1968.
- [8] J. STASHEFF, A Classification Theorem for Fibre Spaces, Topology, 2(1963), 239-46.
- [9] E. THOMAS, Seminar on Fiber Spaces, Lecture Notes in Mathematics, No. 13, Springer-Verlag, Berlin, 1966.

·96