
THE MAXIMAL ABELIAN EXTENSION OF A LOCAL FIELD AS A 
KUMMERIAN EXTENSION* 

BY VICTOR s. ALBIS GONZALEZ 

§1. Introduction 

We shall consider a local field L of characteristic 0, i.e., a finite extension of a 
p.adic number field, p being a rational prime; further, we assume that q 2:'.: 1 
represents the highest power of p for which the q•th roots of 1 are contained in L 
( they form a finite group). The following notations and results will be used 
consistently in this paper: 
n = [L; QP], where QP denotes the field of p•adic numbers. 
0L = ring of integers of L; if L = QP we write ZP instead of eQp . 
<PL = the maximal prime ideal of eL. 
YL = the associated valuation; any element 7r E eL, such that vL( 7r) 1 is called 

a uniformizing parameter of L. 
UL = {a E 0L; vL(a) = O} = the group of units of eL 
U L,i = 1 + <PL', i = 1, 2, • • • ; in particular, 1 + <PL = U L,1 is called the group 

of principal units of L. 
µq = the group of q•th roots of 1 (q defined as above) contained in L. 
µ' q = the group of roots of 1 contained in L whose orders are prime to p. 
It is well•known [6: p. 78] that any element 'Y of LX can be written ul)iquely as 
'Y = 7rmE, where 7r is a fixed uniformizing parameter of L, m E Z and E E Ui. -
Further, a celebrated theorem of Hensel [6: p. 78] says that 

(1) u L ~ µ' q X µq X ( z p X . . . X z p). 
n times 

where the groups on the right hand side of (1) are written additively. Hence 

(2) £X ~ Z X µ1 q X µq X (Zp X · · · X Zp) 
n .times 

Let us suppose now that q > 1, i.e., that the group µq is not trivial, and let us 
denote by La/L the maximal abelian extension of L. Its Galois group Gai {La/L) 
is given by 

Z X µ\ X µq X (Zp X • • • X Zp), 
n times 

where Z = IT au primes ZP is the total completion of Z[6: p. 81]. Denoting by Lq the 
fixed field of µq inLa/L, it follows that La/Lq is a (cyclic) kummerian extension of 
degree q, and it is natural, in the spirit of class field theory, to ask which elements 
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/3 E LX satisfy the condition Lq{qVfJ) = La . It will suffice to determine them 
mod Lxq (see proposition 1.) 

We remark immediately the following proposition: 

PROPOSITION 1. To determine all f3 E LX mod Lxq satisfying La = Liq.../~), 
it is necessary and sufficient to determine all kummerian extensions L(q-y~)/L, of 
degree q, which are linearly disjoint from Lq/L. 

The property: L(q-y~)/L and Lq/L are linearly disjoint, will be called, from 
now on property P. Simetimes we shall say "/3 satisfies P", and some other times 
"L(q-y~)/L satisfies P," hoping no confusion will arise from this. 

We intend to transform condition P into a statement on the reciprocity law; 
in order to achieve this, it is desirable to have a convenient basis of Lx mod Lxq 
to simplify the computations with the local symbols. Let us recall what they are: 
If L(q0)/L is a kummerian extension of degreeq > 1, the local symbol (a,/3) 
with respect to the q-th powers is defined by the relation 

(3) 

where ( -, L(qV{3)/L): Lx - Gal (L(q-y~)/L) is the reciprocity map; (a,/3) is a 
q-th root of 1, and it is independent of the choiceofqV/3 [4: p. 242]. Thefollowing 
two propositions contain useful information relating (a,/3) to (a, L(q-y~)/L. 
Here r q is a fixed primitive q-th root of 1. 

PROPOSITION' 2. Let K = L(qv~) be a kummerian extension of L of degree 
q > 1, andletT E Gal (K/L) be such that T(q-y~) = r/v1J. If (a, L(qV/3)/L) = 
T\ then ( a,/3) = r /. 

Proof: Ta(qV/3) = r/·qV/3 = (a,f3tVf3. 

PROPOSITION 3. Same notations as in proposition 1, and let (a,/3) denote the 
local symbol with respect to the q-th powers, 1 < q ::; q. Then (a,/3) = rt, where 
rq = r/q. 

Proof: If To denotes the restriction of T toL(i·v1J)/L, then To is a generator of 
Gal(L(qv~)/L), and since (a, L(qV/3)/L IL<qv% = (a, L(qV/3)/L, we get 
(a, L(qV/3)/L) = To0 ; taking /J.V/3 = (qV/3)qf&, we have thus To(/J.V/3) = 
r/a·§.V/3, from which (a,/3) = rt follows. 

§2. The arithmetic version of condition P 

First we recall that for every natural number m > 0, there exists a unique 
unramified extension Lem) of degree m, contained in the maximal unramified 
extension Lnr of L; also, for any intermediate field L ~ M C Lnr , the Galois 
group of M/L is generated by the restriction of the Frobenius automorphism rr 
of Lnr/L to M/L (or, if preferred, rr = lim u IM), and we have, for M/L finite 
and unramified, +----

rr( a) = aN(rJ'L) (mod CPM), for all a E 0M, 
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where N((h) denotes the absolute norm of the ideal <PL. Thus when mentioning 
the Frobenius automorphism of a particular intermediate field of Ln,/L (in 
particular, of the inertia field of any finite extension of L), we shall always be 
referring to the restriction of <1 to that field. Also we shall always identify 
Gal (Ln,/L) withZ. • 

In the second place, we will use the results, due to KOCH, contained in the 
following two theorems: 

THEOREM 1 [6: p. 98]. Let n = [L: QP] = 0 (mod 2), t q a primitive q-th root of 1 
and q' the highest power of P, less than q, for whichL(q' V /tq)/L is unramified (i.e., 
L(q' vTcJ/L is the inertia field of L(qv'f:i)/L. Let <1 denote the Frobenius automor­
phism of L(qv'f:i)/L, and let g be a rational integer such that <1(q' v'f:i) = (q' v'f:i)u. 
Then: 

a) g = 1 ( mod q) 
b) There is a basis { 1r, a0 , a1 , · · · , an} of LX mod Lxq with the fallowing properties: 

(I) 1r is a unif ormizing parameter of L; 
(II) ao is q-primary, i.e., L(q-Vao)/L is unramified; 
(III) a1, a2, • • • , an E UL ; 
(IV) if ( - , - ) is the local symbol on L with respect to q-th powers, then 

( 7r' ao) = r q ; 

V = 1 • • • n/2 
' ' ' 

and for all remaining pairs of distinct basic elements, the symbol equals 1; 

(V ) <1(q~) = t/~; 
(VI) tq = ao<u-l)/qa/' mod Lxq, and g - 1/q ~ 0 (mod p) if q' > 1. 

Moreover, if q' = 1 we may take a1 = tq and g = 1. 

CoROLLARY. Let L/QP satisfy the conditions of theorem 1, and let { 1r, 

a0 , a 1 , • • • , an} be the basis constructed there. Then 

( )- ) (g-1)/q ( ) )- -q' 
1r, ~ q = t q ; a2 , t q = ~ q ; 

Proof: From 
t q = ao (q-l)/qa1q' mod LXq 

we obtain ( 1r, t q) = t /u-l)/q and ( a2 , t q) = ( a2 , a1) qr = t q-q'. With the exception 
of (t P , t q) = 1 and ( a1 , t q) = 1, the remaining relations are trivially verified. Let 
us compute (tq, tq)- If p ~ 2, we easily see that (tq, tq) = 1. If p = 2, q :2: 4, 
we have 

1 = ( -tq, tq) = ( -1, tq)(tq, tq) = (tq, tq)Hq/ 2 = t/(Hq/ 2\ 

where we have used tq" = (tq, tq) and -1 = tqq12. Therefore 
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x(q/2 + 1) = O(mod q) => x = O(mod q) => (sq, Sq) 1, 

since 1 + q/2 is odd. If p = q = 2, we have 

(-1, -1)v -1 = (-1, L( v -1)/L)( v -1) 

= (NL/Q,(-1), Q2( v-1)/Q2)v -1 = v -1, 

sinceNL/Q2(-l) = (-1r = 1,nbeingeven;therefore(-1,-1) = I.Finally, 
if q' = 1, we obtain a1 = Sq and • 

(a1, sq) = (t q, sq) = 1. 
and if q' ~ p, 

(a1, Sq) = (a1, a1)•' = 1 

since ( a1 , a1) = 1 if p ~ 2, and ( a1 , a1) = 1 ors / 2 if p = 2. 

THEOREM 2. [6: p. 104]. Let n = 1 (mod 2). Then there exists a basis of LX mod 
Lx 2 satisfying thef allowing properties: 
(I) 1r is a unif ormizing parameter of L; 
(II) ao is 2-primary; 
(III) ao , a1 , • • • , an E UL ; 
(IV) (ao, 1r) = -1, (a1, a1) = -1; 

(a2,+ 1, a2,) = (a2,, a2,+1) = -1 for v = 1, • .. , (n - 1)/2, and for all other 
pairs of basic elements the local symbol equals 1. 
(V) a1 = -1. 

Let us remark that, in the situation of theorem 2, the extension L( v=i)/L 
is totally ramified (thus q' = 1), since n = 1 (mod 2) and Q2(v=i)/Q2 is 
totally ramified ( the prime 2 ramifies in Q ( v=1) / Q)). 

PROPOSITION 4. Let L/QP , q > 1. Then (µq , La/L) ~ µq . 

Proof. It suffices to show the existence of a /3 E LX mod Lxq such that 
(µq, L(qV{j)/L) ~ µq, since this, a fortiori, implies that (µq, La/L) ~ µq .But, 
forn = 1 (mod2), (-1, -1) = -1,andforn = 1 (mod2) we get 

(tq,a2) =st= Sq if q' = 1 
and 

(sq, 1r) = fq-cu-i)tq if 1 < q' ~ q, 

where (g - l)q ~ 0 (modp), which proves the proposition. 
Before proving our assertion about condition (P) being equivalent to a state­

ment on the reciprocity, we need some easy lemma ta: 

LEMMA 1. If L CM CM~ Lq, then (µq, M/L) = 1. 

Proof. Since Gal(Lq/L) ~ (Z/qZ)' X H, where H is torsion-free, we have 
(µq, Lq/L) ~ (Z/qZ)', and, a fortiori, (µq, Lq/L) = 1, since the elements of 
(Z/qZ)' have orders prime top. Whence (µq, M/L) = 1 if LCM C Lq. 

LEMMA 2. Let L/QP as before, and 1 < q ~ q, q a power of p. Then 
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a) f3 (t J;,~q ~ f3 (t £Xq 
b) If L(~.yp) / L, cyclic of degree q, and Lq/ L arelinearly disjoint, thenL(g'\/{j) / L 

and Lg/ L are linearly disjoint. 

We now prove 

,THEOREM 3, Let L(q'\/ft)/L be an extension of degree q, l < q_ ~ q, q a po'µ)er of 
p. Letr( 1·V/§) = ta· v.0 (so that r gen'erates Gal(L(v.'\/{j),/L). Then the following 
statements are equivalent: • 

a) L(v.0)/L and Lq/L are linearly disjoint. 
b) (tq, L(v.0)/L) = r\ a¢ 0 (mod p). 
j •• L • • ' ' 

Proof. a)~ b). By lemma ·2, L(g0)/L and Lg/L are linearly,disjoint, so 
Gal(L/g0)/L) ~ Gal(Lq/L) X Gal(L(q'\/{j)/L) ~ [lim Gal(K/L)] X 
Gal(L(tJVft)/L, where K runs over all intermediate fields L C KC Lq; K/L 
finite. Hence • 

(lemma 1) 

. = rt , where a ¢ 0 ( mod p), 
'·; ·. . ' .. 

by proposition 2, where r1(g'\/{j) = t/0, and r1 generates Gal(L(gy~)/L). 

But then (rq, Liq~)/L) = (rq, L(q0)/L) = Ta, with r ~ ri I L(V.yp), 

since r(qw) = rlw (proposition 3). 

• b) ~ a) By lemma 2, .a), (3 (£ Lxq. Also, since a ¢ 0 (mod p), we have (rq, 
L(PW)/L) =rt~ 1, where To= r IL(Pyp). Now L(PW) nLq = L, since 
otherwise L(PW) c Lq would imply (rq, L(P'\/{j)/L) = 1, by lemina l.:But 
then, for any subextension M/L, MC Lq, we have 

Gal(M(p0)/L) .~· Gal(M/L) x· Gal(L(PW)/L); 

hence M/L and L(P'\/{j)/L are linearly disjoint. Since M/L was arbitrary, the 
result follows .~romlem~a 2, b) and proposition 6, chap. V, §2[3]. 

PROPOSITION 5. The extensions L(qv~)/L which are linearly disjoint from 
Lq/L are totally ramified. 

Proof: Since Gal(Ln,/L) ~ Z, we have µq = Gal(La/Lq) C Gal(La/Ln,), and 
therefore Lg C Ln,, by the Gal()is correspondence. Consequently, Ln,/L and 
L(v.y~)/L are linearly disjoint [3: prop. 6, chap. V; §2], whence L(v.y~)/L is 
totally ramified. 

§3. Determination of the extensions L(gy~)/L satisfying property P 

In this section we are going to use the results in the previous ones to determine 
all (3 E LX mod Lxq for which condition P 1s satisfi.ed. The following result in total 
ramification ( especially condition c) ) will play a crucial role. 
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THEOREM 4. Let L/QP be a local field and q the highest power of p for which the 
q-th roots of 1 are contained in L. Then the following statements are equivalent: 

a) L(q-Vtq)/L is totally ramified. 
b) (-, L(q~)/L): UL -Gal(L(q~)/L is onto. 
c) There is a uniformizing parameter 1r of L such that ( 1r, t q) = 1. 
d) XP = timod <PLP•l<P-1>, has no solutions in L, where e = e(L/Qp) is the 

ramification index of L/Qp. 

Remark. If [L :QP] = 1 (mod 2), this is always the case as remarked before. 

Proof: The equivalence of a) and b) follows trivially from the fact that 
(UL' L(qvrq)/L) = 1, the inertia group of L(q~)/L, whose order is precisely 
e(L(q-Vtq)/L) [4: p. 224]. That ofa) a~d b) follows from Satz 119in [5] forp = q, 
and the fact that L(qv-:X)/L is totally ramified if, and only if, L(P-V-:X)/L is 
totally ramified. Let us show that c) ===> b) and that a) ===> c) to complete the 
proof. 

C ===} b) We know that(-, L(q~)/L): LX -aal(L(qvrq)/L) is onto; hence, 
using the fact that any 'Y E LX can be written uniquely as 1rm e, m E Z, e E UL , 
and also that ( 1r, L(q~)/L) = 1, by hypothesis, we obtain Gal(L(qvtq)/L) = 
(LX, L(qvrq)/L) = (UL' L(qvrq)/L); consequently, ( - ' L(qvr q)/L): 
UL - Gal (L(q-Vfq)/L) is onto. 

a) ===> c) Since L(qvtq)/L is totally ramified, we may take g = q' = 1 and 
fq = a1. Hence (1r, fq) = 1 if n = 0 (mod 2) (corollary to theorem 1) and 
( 1r, -1 ) = 1 if n = 1 ( mod 2) ( (IV) , theorem 2) . 

We are now ready to determine the extensions L(q'\1{3)/L, f3 E LX mod Lxq, 
satisfying condition P. This determination will depend on the way L(q~)/L 
ramifies, that is on theorem 4. 

THEOREM 5. If L(qvr q)/L is not totally ramified, then Le0)/L satisfies 
condition P if, and only if, L(q'\1{3) = L(qW), where 1r1 is a uniformizing param­
eter. Moreover, there are exactly qn+i such extensions. 

Proof: (===>) Suppose that L(q'\1{3)/L satisfies condition P, and let 

in the basis described in theorem 1 (recall that necessarily n = 0 (mod 2)). 
Then m ¢ 0 ( mod q), for otherwise we contradict b) in theorem 3, since 

(/3, r q) = r q-q'b2 and q1b2 = 0 (mod p), 

because q' ~ p ( same notations as in theorem 1). Furthermore, 

(/3, f q) = f q m(g-l)/q-q'b2 

and 
m(g - 1)/q - q1b2 = m(g - 1/q) ¢ 0 (mod p); 

thus m ¢ 0 (mod p) since (g - 1)/q ¢ 0 (mod p) (theorem 1). Taking 1r' = 
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(3"'( 1rY) q' with mx + qy = 1, it follows that L(qv' 1r') = L(q'\/(3), since x and q 
are relatively prime and clearly v( 1r1) = mx + qy = 1 [5: p. 151]. 

( ¢=) Let L(qv~) = L(qv 1r'), 1r1 being a uniformizing parameter of L, say 
( 4) 7r1 = 1raop0a1Plal 2 ••• anPn mod LXq. 

Then 
(/3, .\q) = (1r', .\qr = .r/[(g-1)/q-pzq'] 

where /3 = 1r'',,/, 'Y E Lx, r andq being relatively prime. Since (g - 1)/q - p2q' ~ 
0 ( mod p), where /3 = 1r1' 'Y\ 'Y E Lx, r and q being relatively prime. Since 
(g - 1)/q - p2q1 ~ 0 (modp), it follows, byvirtueoftheorem 3, thatL(Pv~)/L 
satisfies P. 

Finally, from ( 4) it follows that there are exactly qn+i such extensions. 
In order to elaborate in this case a complete list of such extensions, we may 

use the basis, if available; otherwise, starting from a given uniformizing param­
eter we should be able to exhaust all the possibilities in a finite number of steps. 

We now turn to the remaining case: L ( qv' .r q) / L is totally ramified. 

THEOREM 6. Let us suppose that L ( qv' .1 q) / L is totally ramified. Then: 
a) There are exactly <p(q)qn+l distinct extensions L(qv'~)/L, {3 E LX mod Lxq 

satisfying property P. 
b) If n = 1 (mod 2) and {1r, ao, a,,···, an} is the basis in theorem 2, then 

L(qv~)/L, with 

satisfies property P if, and only if, b1 = 1 ( mod 2). 
c) If n = 0 (mod 2) and {1r, ao, a1, ···,an} is the basis in theorem 1, then 

L(qV{3)/L, with 

satisfies property P if, and only if, b2 ~ 0 ( mod p) . 

Proof: Since in both cases we may take g = q' = 1 and a1 = .\q, we get 

(/3, .\q) = (/3, -1) = ( -1, -l/ 1 = ( -l)b' if n = (mod 2), 

and 
(/3, .\q) = (a 2 , .\q/ 2 = .\q-bz if n = 0 (mod 2). 

a), b), c) follow now and easily. 

In order to use theorem 6 to elaborate a list of the extensions satisfying P, in 
the case there considered, we shall need always an explicit basis of LX mod Lxq. 
Since K = Qp(.\q) CL and we have (/3, .\q) = (NLtK (/3), .\q), for all /3 E Lx, 
we conclude thatL(qy 1~)/L satisfies P if, and only if, K(q#)/K, /3' = N Ltx(/3), 
satisfies P, because K(q~)/K is always totally ramified [2: p. 277, exc. 4]. 
Explicit bases for the case contemplated in theorem 6 are computed in [1]. 
DNIVERSIDAD NACIONAL DE COLOMBIA 
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