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Introduction and Notation 

Let PTop be the category of all Partially Ordered Topological Spaces with 
continuous, isotone functions as their morphisms. Let CrORR be the subcate­
gory of R-regular spaces in PTop, COTS the subcategory of PTop-spaces with 
compact underlying topological space and continuous partial order, and RcOT 
the subcategory of R-compact spaces in PTop (see [1] pag. 97 and 100). 

The primary object of this paper is to extend to RcOT the theorem given in 
[10] pag. 127, by T Shirota, which for real compact topological spaces X states 
that the lattice CX determines the space. This result supercedes earlier results 
of Kaplansky [5] about the lattice CX; of M. H Stone [11] about the ring CX; 
and of A. N. Milgram [6] about the multiplicative semigroup CX, for X compact 
Hausdorff, and of T. Shirota [9] for the translation lattice and for the semigroup 
CX, and of E. Hewitt [4] for ring CX where Xis real compact. 

Given a topological space T, we can realize it as the partially ordered topo­
logical space (T, d) where cl is the discrete partial order (no two elements are 
comparable). 

In this sense PTop is an extension of Top, the category of all topological 
spaces. 

We call C1X the set of continuous isotone, real valued functions on a partially 
ordered topological space X = (T, S ). This set is a subset of CT = C1(T, d). 

By abuse of the language if X = ( T, S ) , we write C X instead of CT. If our 
attempt to an straight-forward generalization had been successful, the small 
set C1X would have provided the information not only on the topology of X, 
but on its partial order as well. 

Leaving for a future work our initial aim, we restricted ourselves in this work 
to compact Hausdorff X and to rings, Z-rings, Z-groups and translation lattices 
generating them with C1X when necessary. This led to counterexamples for 
rings, Z-rings and for pointed Z-groups. See Section 2, Theorem 2. 

However, in Section 3, we do define categories of pairs with first component. 
a ring, a Z-ring, a pointed Z-group, or a pointed translation lattice, and display 
new objects which actually characterize compact ordered topological spaces. In 
some of these cases (CX, C1X) characterizes real-compact ordered topological 
spaces. 

* The author wishes to thank Professor T. H. Choe for the suggestions and encourage­
ment he received during the development of this paper. He also wants to acknowledge his. 
stay at the Centro de Investigacion del IPN which was made possible thanks to the financial 
support that he received from Consejo Nacional de Ciencia y Tecnologia (CONACYT, 
Mexico, Subvenci6n 083). Part of this research was however done at the Instituto de Mate­
maticas, UNAM, Mexico 
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In our Theorem 3, for example, we realize ex in a natural way as a pointed 
translation lattice, and e 1x as a subset of ex. 

We introduce the category p-PTL of pairs (A, B) where A is a pointed trans­
lation lattice and B c A with its morphisms defined in the obvious way. 

Theorem 3 states that for X, Y E RcOT, if Yl:(eY, e1Y) '.:::'. (eX, e1X) is a 
p-PTL isomorphism, implies the existence of f :X '.:::'. Y in RcO T such that 
1" = e1(f), where e1 is considered as a natural RcOT - PTL functor. 

An application of this theorem for those spaces with discrete partial order 
yields that for X, Y real compact spaces, if Yl:eY '.::::'. ex is a PTL-isomorphism, 
there isf:X,..., Y homeomorphism such that YI = e(f). 

Theorems 4 and 5, are similar results this time considering the natural p-Ring­
structure and p-pointed-C-group-structure respectively. 

A Corollary of Theorem 4 is Shirota Theorem, according to which if 
Yl:eY = ex is a ring-isomorphism, there is f:X"' Ya homeomorphism such 
that YI= e(f). 

Sharper results are given in Section 4 for X E COTS: 
Let AX, Lr X and LgX be respectively the subring, the sub-l-ring and the 

sub-C-group of ex generated by e1X. Our Theorem 10 shows that for 
X, YE COTS, if Yl:(AY, e1Y) '.:::'. (AX, e1X) is a p-ring isomorphism, there 
exists X:X "' Y a COTS-isomorphism such that YI = e1(X), and similarly if 
Yl:(LrY, e 1Y) ,..., (LrX, e 1X) is a p-l-ring isomorphism. 

A Corollary of Theorem 10, Corollary 5, is the Stone Theorem, for X compact 
and e X a ring. 

Finally these technics are adapted for pointed-C-groups and the correspond­
ing theorem (Theorem 11) is proved. 

1. General statements about e1X 

Let F be a functor from a subcategory of PTop to a category of algebras. FX 
may characterize X, but we are interested in whether the characterization 
happens in such a way that cp:FX,..., FY, implies the existence off:Y,..., X such 
thatcp = F(f) andF(f)(h) = hof. 

LEMMA 1. Every space S in CrORR has the initial PTop-structure with respect 
to e1X. 

Proof: By [1] Corollary 1 and Theorem 5, the evaluation map p:X - R 01 x is 
an embedding. This shows that e1X separates points of X, and by [1], ther~ 
exists a PTop-initial structure X' on X with respect to e1X. Now consider 
p':X'-R 01 x given by p'(x) = p(x) since e 1X = e1X',then p' is also an e_m­
bedding and we have X ,..., pX = p' X' ,..., x•. 

THEOREM 1: Let A be a category such that e1:CrORR --t A, e1(X) = e1X and 
e1 (f) (g) = gf defines a functor. Let cp: e1X ,..., e1Y in A. Then the following state­
ments are equivalent: 

1) There exists a bijection j: x- Y such that pa;0 cp = p f(rol for all xeX 
2) There exists a CrORR-isomorphismf:X - Y such that e1(f) = cp. 
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Proof: Letf:X - Y be a bijection as in 1). Let hee 1Y, and xeX be arbitrary. 
Then cp(h)(x) = (p,,ocp)(h) = P1cxl(h) = (h0f)(x). 
Therefore rp(h) = h0f. To prove 2) it is then sufficient to show thatf is con­

tinuous and isotone, since the same argument will give J 1 continuous and iso­
tone. Since cp is bijective, we have e1X = {h0f I hee1Y}. Since Y has initial struc­
ture with respect to e1Y, it follows that f is continuous and isotone. Conversely, 
supposej:X - Y is an isomorphism in CrORR, such that e 1(f) = cp. Clearly f 
is bijective and since (p.,ocp)(h) = cp(h)(x) = e 1(f)(h)(x) = (hof)(x) = 
h(f(x)) = PfCxl(h), we obtain 1). 

Remark: If we define a partial order on e 1Xbyf ~ g if and only iff(x) ~ g(x) 
for all xeX, then e1(X) is a lattice. 

The following statement is false: "If cp:e1Y - e 1x is a lattice isomorphism, 
there exists an isomorphism in COTS,f:X - Y such that cp = e1(f)" 

Proof: Let X = Y = 2 where 2 = ({ 0.1}, 0 ~ 1) with discrete topology and 
denote by (a, b) the function (a, b) :X - Rwhere (a, b) (0) = a and (a, b) (1) = 
b. Define ,t,:e1Y - e1X by ,[;(a, b) = (2a + 1, 2b + 1). Obviously ,f,, is a lattice 
isomorphism, but the above statement would imply the existence of a bijective 
f:X - Y such that po = ,f; = Pi<o) which means: 

3 = po(3, 3) = (po,[;) (1, 1) = PJ<o)(l, 1) = 1 

a contradiction. 

Remark: The above example leaves open the question of whether there exists 
f:X ~ Y in COTS, such that e1(f) is another isomorphism of e1X and e1Y, 
but we include this example here because the statements which we shall prove 
later are of the type just discussed. 

2. Counterexamples 

Since e1X fails in general to have the algebraic structures considered for ex 
we could try to generalize the theorems concerning ex by considering the 
subalgebras of ex generated by e1X. 

Let F: CrORR - Cr be the order-forgetful functor. U:Cr - CrORR the 
canonical inclusion, given by X - (X, d). We set ex = Cr(FX, R), AX for 
the subring of ex generated by e1X, Lr X for the sub-Z-ring of ex generated by 
e 1x and LgX for the sub-Z-group of ex generated by e1X. As an example we 
remark that A([a, b]) is the set of continuous functions on [a, b] which are of 
bounded variation. 

We shall introduce more functors when we will need them. 

THEOREM 2: The fallowing statements for X, Ye COTS are false: 
l) AY ~ AX in the category of rings, then X ~ Yin COTS 
2) LrY ~ LrX in the category of l-rings, then X ~Yin COTS. 
3) LgY ~ LgX in the category of l-groups, then X ~ Yin COTS. 
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Proof: If we describe as in a previous remark, the functions m C12 by 
(a, b):2 -+ R such that (a, b)(0) = a and (a, b)(l) = b, C12 is 
{ (a, b) E R2 I a ~ b} while C2 is the whole R2. Since a ;t; b implies b ~ a and 
therefore -a ~ -b, the group generated by C12 is C2. Let 2 = ({O, l}, d) where 
d is the discrete partial order. Now is C2 = C2 and so is Lg2 = Lr2 = A2 = 
C2 = C2 = A2 = Lr2 = Lg2. But it is clear that 2 ~ 2. 

3. Generalization of theorems on CX 

We introduce categories of pairs, with first component a certain algebraic 
system and second component a subset of the underlying set of the first. We 
show for RcOT and for some of these algebraic structures that the pair (CX, C1X) 
characterizes the space X. We leave for our Section 4 characterizations which 
depend more strongly on C1X. 

Notation: If AK denotes a category of algebras, we denote by p-AK the cate­
gory whose objects are pairs (X, Y) such that X E AK and Y c X and whose 
morphisms are m:(X, Y) -+ (Z, W) where m:X -+ Z is a AK-homomorphism 
andm(Y) c W. 

We include the following definition for the convenience of the reader: 

Definition 1. (Shirota [9]): By a translation lattice L we mean a lattice where 
for every a E L and for real numbers a, a sum a + a is defined which satisfies 
the following conditions: 

1) a+ 0 = a 
2) (a + a) + {3 = a + (a + {3) 
3) If a ;::: 0, then a + a ;::: a 

4) If a ;::: b, then a + a ;::: b + a. 

Remark: If L is a translation lattice, every real number r induces on L an 
unary operation f:L-+ L, given by f(a) = a+ r. C(X, R) can obviously be 
considered a translation lattice by setting (f + a)(x) = f(x) + a for a real 
:rn.umber a and for a function! E CX. 

Definition 2. A translation lattice L with a nullary operation z E L will be 
called a pointed translation lattice. We shall denote by PTL the corresponding 
category. 

Remark: Clearly, CX and C1X are pointed translation lattices, where we shall 
choose as its point the constant zero function. A PTL homomorphism will be 
of course a functionf:L-+ L' such thatf(z) = z',J(a A b) = f(a) A f(b) and 
f(a + r) = f(a) + r. 

THEOREM 3: If X, YE RcOT and y;: (CY, C1Y) -+ (CX, C1X) is a p-PTL­
isomorphism, there exists f:X-+ Ya RcOT-isomorphism such that if; = C1(f). 

Proof: For every x E X, the map p.,:CX-+ R given by p.,(f) = f(x) is a 
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translation lattice-homomorphism. If we consider CY ~ CX ~ R in the 
category TL ( translation lattices), it follows by [9] Theorem 8, 
pag. 35, that there exists a unique point which we callf(x) such that p.,•ift = Ptcxl; 
the uniqueness arising from the fact that py is injective. We show that the asso­
ciating rule x - f (x) defines a bijective function. By the uniqueness off (x), it 
isafunction.Letf(x) =f(y);thenp.,•y; = PtCx) = PtCYl = py•y;andsincey;is 
an isomorphism and hence surjective, p., = py. This shows for X E RcOT that 

x = y. To show thatf is surjective, let y E Y and consider CX ~ CY~ R. 
By the same argument as above, there exists a unique element of X, g(y) such 
that p11•y;-• = pg(y), Therefore: p11 = py•y;-i•i/t = pg(ul'VI which means that 
y = f(g(y) ). We have that if;(C1X) ~ C1Y, that f is bijective and that, for 
every x E X, the following diagram commutes: 

It then follows from Theorem 1 that f:X - Y is a RcOT-isomorphism, and 
since 

i/t(h)(x) = Px•i/t(h) = Ptcxl(h) = h(f(x)) = (h•f)(x), 

then 

COROLLARY 1: If X, Y are real compact spaces, and if;:CY - ex a PTL-iso­
morphism, there exists a homeomorphism f: X - Y such that i/t = C (f). 

Proof: We simply note that C1X = CX and C1Y = CY. 

LEMMA 2: For every completely regular topological space X, let SAX be a 
subring of CX which contains all the constant functions. If h: SAY - SAX is a 
sur)°ective ring homomorphism, then h(f) = f for all r E R. 

Proof: For r = 1, since 1 E SAX and h is surjective, there exists g E SAY 
such that 

I = h(g) = h(g•I) = h(g)•h(l) = l•h(l) = h(l). 

Suppose h(ii) = ii for a positive integer n. Then 

h(n + 1) = h(ii + I) = h(ii) + h(l) = ii+ I - n + 1 

One shows easily that h(O) = 0 and if n is a negative integer 

0 = h(-n + n) = h(=;,, + ii) = h(-n) + h(ii) = =n + h(ii). 

Therefore h(ii) = ii. Moreover denoting by r the rational 1/m, one easily obtains 
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r = i/m and h(r) = r, and from this follows just as easily h(r) = r for all ra­
tionals r. Finally if r E R and r > 0, there exists s E R, r = s2. Then h(r) = 
h(s)·h(s) > 0. Let r ER and r = lim,,EN'n where r,. is rational for all n EN. 
Let e be an arbitrary positive rational number. Let N E N be such that when­
ever n > N, r,. - r < e or r - r,. < e and let n > N. If rn - r < e, e + r -
r,. > 0, and e + h(f) - h(r,.) = h(e + r - rn) > 0. Therefore fn - h(r) < e 
and similarly if r - rn < e, then h(r) - r,. < e. For every x E X, we then have: 
r,. - h(r) (x) < e or h(r) (x) - r,. < e which means that h(r) (x) = IimnEN'n = r 
for all x E X, and can be expressed as h(r) = r. 

THEOREM 4: If X, YE RcOT, and t: (CY, C1Y) - (CX, C1X) is a p-Ring­
isomorphism there exists an RcOT-isomorphismf:X - Y such that VI = C1(f). 

Proof: Since t:CY - CX is a Ring-isomorphism, it can be interpreted as 
PTL-isomorphism because t(0) = 0 and t(f + r) = t(f) + VICr) = V1(f) + f. 
By Theorem 3 we obtain the desired result. 

COROLLARY 2: If X, Y are real-compact spaces, and Vl:CY - ex a ring iso­
morphism, there exists an homeomorphism f:X - Y such that VI = C(f) 

Proof: The proof is as in Corollary 1. 

Definition 3: An £-group G with a nullary operation 1 E G will be called a 
pointed £-group. A PLG-homomorphism h:G - G' is an £-group homomorph­
ism such that h(l) = 1'. 

THEOREM 5: If X, YE RcOT, and VI: (CY, C1Y) - (CX, C1X) is a p-PLG­
isomorphism there exists an RcOT-isomorphismf:X - Y, such that VI = C1(f). 

Proof: As in Theorem 3, we consider for every x E X, CY ____1___.,. CX ~ R in 
PLG (for CZ we select the nullary operation i E CZ and for R, 1 E R). By [9] 
Theorem 10 pag. 36, considering its proof, there exists a point f(x) in Y which is 
unique as Y E RcOT, such that p.,•VI = PtC:cl• By following now all the steps of 
the proof of Theorem 3, we finish this proof. 

COROLLARY 3: if X, Y are rea1,compact spaces and Vl:CY - ex is a PLG­
isomorphism, there exists an homeomorphism f:X - Y such that VI = C(f). 

Proof: The proof is the same as in Corollary 1. 

4. Sharper algebraic characterizations of COTS-spaces 

As in Section 2, let F:CrORR -er be the order-forgetful functor. Let CX = 
Cr(FX, R). Let AX, LrX and LgX be respectively the subring, the sub-£-ring 
and the sub-l-group of CX generated by C1X, 

We introduce the concept of a distinguished ideal of AX, and relate this with 
:filters in a subset ZX of PX ordered by the set inclusion. By associating each 
element of X to the unique ultrafilter of ZX which converges to x, and those 
with maximal distinguished ideals, we are able to characterize X in COTS by 
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(AX, C1X). In a similar way we do the same with (LrX, C1X) and (LgX, C1X) 
also. See Theorems 10 and 11. 

Notation: We define Z:AX--+ PX and Z 1:LrX--+ PX by Zf = J 1(0) and 
Zif = 1\0) respectively. We denote ZAX by ZX and Z1LrX by Z 1X. By a 
filter in ZX we mean a filter in the set ZX ordered by the inclusion. 

Remark: 

i) ZO = X iv) Zf·g = Zf U Zg 
ii) ZI = 0 v) Z(l + l) = Zf n Zg = Z1(lf I+ I g I) 

iii) Zf = Zf" vi) if g = f A I, then Zif = Zig. 

Definition 4: Let I be an ideal of the ring AX. We call I a distinguished ideal 
if I n {f E AX I Zf = 0} = 0. 

LEMMA 3: The intersection of any family of distinguished ideals is itself a 
distinguished ideal. 

Proof: trivial. 

THEOREM 6: For every distinguished ideal I of AX, ZI is a filter of ZX con­
versely if 1/1 is a filter in ZX, Z- 11/1 = {f E AX I Zf E it,} is a distinguished ideal 
of AX. 

Proof: Since I is a distinguished ideal of AX, 0 ~ ZI. Let Zf, Zg be two sets 
in ZI such that f, g EI. Then J2 + g2 E J and therefore Zg n Zf = 
Z(l + g2) E ZI. Letf EI andZf c Zg E ZX. Thengf EI andZg = Zg U Zf = 
Z(g f) E ZI. Conversely, using the notation of section 2, we remark that 
C1UFX = CX and therefor AUFX = ex. Since it, has the finite intersection 
property and it, c CZUFX, it generates a filter ii, in ZUFX. By [3] Theorem 
2.3 b) pag. 25, z-i:;;, is a proper ideal of ex, i.e. Zf ~ 0 whenever f E Z- 1ii,. 
Therefore Z- 1it, = z-1:;;, n AX is a distin,guished ideal of AX. 

Remark: Theidealgeneratedbyf andg isdistinguishedexactlyif Zf n Zg ~ ¢. 
i. e. if J2 + g2 is non invertible. 

LEMMA 4: Let it, be a jilter in ZX, and I a distinguished ideal of AX. Then 
ZZ- 11/1 = it, and I c Z- 1ZI. 

Proof: This is trivial as we have defined Z:AX--+ PX as a map. 

COROLLARY 4: If I is a maximal distinguished ideal of AX, then I = Z- 1ZI. 
If it, is a filter in ZX, there exists the distinguished ideal I = Z- 1it, such that it, = ZI. 

THEOREM 7: For every distinguished ideal M of AX, Z- 1ZM is a maximal dis­
tinguished ideal if and only if ZM is an ultrafilter . 

. Proof: Let M be a distinguished ideal. Suppose Z- 1ZM is a maximal dis­
tinguished ideal and let it, be a filter in ZX such that ZM c 1/1. We obtain that 
Z- 1ZM c z-1it,. Since z- 1zM is a maximal distinguished ideal, we have 
Z- 1ZM = Z-1it,. By Theorem 6 and Lemma 4 ZM = ZZ- 1ZM = ZZ- 1it, = it,. 
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Conversely suppose that ZM is un ultra.filter, and I a distinguished ideal such 
that z-1zM c I. Then ZM = ZZ- 1ZM c ZI and since ZM is an ultra-filter, 
ZM = ZI. Therefore Z- 1ZM = z- 1zI. This, together with z- 1zM c I c 
Z- 1ZI gives Z- 1ZM = I which shows that Z- 1ZM is a maximal distinguished 
ideal. 

LEMMA 5: If u i·s an ultrafilter in ZX and Zf n Zg ¢ 52f for all Zg E u, then 
Zf Eu. If M is a maximal distinguished ideal of AX and Zf n Zg ¢ 52f for all 
g E M, then f E M. 

Proof: This is immediate by the maximality of u and the fact that ZM is an 
ultra-filter. 

LEMMA 6: For x E X, if Px:AX ---+ R is the x-th projection, Zpx- 1 (0) is an 
ultrafi lter. 

Proof: Px -l ( 0) is clearly a distinguished ideal since x E Zf for all f E Px -l ( 0). 
Since the map p,, is a surjective ring homomorphism, AX/p;-1(0) ~ R and 
p.,-1 (0) is a maximal ideal. By Corollary 4, p.,-1(0) = z-1zp.,- 1(0) and by Theo­
rem 7, Zp;-1(0) is an ultra-filter. 

Notation: We denote Zp.,-1 (0) by A.,. 

Remark: In order to characterize all the maximal distinguished ideals of AX 
as sets of the form p.,-1 ( 0), we need to discuss convergence in our filters. 

Definition 5: If we denote by N(x) the set of all (not necessarily open) 
neighborhoods of x, a filter ,f/ of ZX is said to converge to x if the set of all Zf in 
N (x) belongs to ,f/. This means that ,f/ converges to x if and only if A.,n N (x) c f. 
A point x is said to be an adherence point of ,f/ if x E n f. If x is an adherence 
point off, Zg n Zf ¢ 52f whenever Zg E N(x) and Zf E ,f/. Therefore, in this 
last case, there exists an ultrafilter u such that f c u and u converges to x. 

Definition 6: (Nachbin [7]). Let (X, ::S;) be a partially ordered set and Sc X. 
We call S decreasing if, whenever a ::;; b and b E S, a E S. Similarly Swill be 
increasing if from a ::S; band a E S, b E S follows. 

We denote by LS the smallest decreasing subset of X containing S and by 
MS the corresponding smallest increasing set. Since decreasing and increasing 
have the intersection property, and X is both decreasing and increasing. LS 
and MS always exist. 

Definition 7: (Nachbin [7]. (X, ::S;) EE PTop will be said to be normally ordered 
if for every two disjoint closed subsets A, B of X such that A is decreasing and 
B increasing, there exist two disjoint open sets U, V such that U contains A and 
is decreasing, and V contains B and is increasing. 

Notation: We denote by NOR the category of normally ordered spaces in 
PTop and by NORC the intersection of NOR with HOTS. 
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LEMMA 7: If Xis a locally compact space in NORC, every filter if; in ZX cone 
verges to at most one point. 

Proof: Suppose if; converges to two distinct points x and y. Without loss of 
generality x $ y. Since :s; is continuous, there exist neighborhoods U of x and 
V of y such that LV n MU = 0- Without loss of generality, since Xis locally 
compact, U and V are compact and therefore LV, MU are two disjoint closed 
sets which satisfy the hypothesis of [7] Prop. 4 pag. 44. Let f E C1X be such that 
JLV = 0 and JMU = 1. Then LV c r 1 (0) = Zf and therefore Zf E N(y). 
Similarly MU C (f - 1)- 1 (0) = Z(f - 1) which means that Z(f - 1) E N(x). 
Having assumed that if; converges to x and toy, ZJ, Z(f - 1) E if; which is a 
contradiction as Zf n Z (f - 1) = 0 and if; is a filter. 

LEMMA 8: LetX E COTS.Ifafilterif;of ZXconvergestox, niJ; = {x}. 

Proof: Since X is compact and if; is a family of closed sets which satisfy the 
finite intersection property, n if; ,t- 0- Let y ,t- x. If x $ y we reason as in Lemma 
7 and findf E C1X such thatf(y) = 0 and Z(f - 1) E N(x) c if;. Therefore 
y Et Z (f - 1) and accordingly y Et n if;. If y $ x, we similarly find compact 
neighborhoods V of y and U of x such that LU n MV = 0, and a function g 
in C1X such thatgLU = 0 andgMV = 1. It follows thatg-1(0) = Zg E N(x) c if; 
and y Et Zg. 

LEMMA 9: If an ultrafilter if; of ZX has an adherence x, if; converges to x. 

Proof: We show that A., n N(x) c if;. LetZf E A,, n N(x). For every Zg E if;, 
x E Zg n Zf. Since if; is an ultrafilter, Zf E if;. 

THEOREM 8: Let X E COTS. The ultrafilters in ZX are exactly (A.,).,Ex• 

Proof: Since Xis compact, by the finite intersection property every ultrafilter 
has an adherence point and therefore converges. We know from Lemma 6 that 
every A,, is an ultrafilter in ZX, and it is obvious that A., = Zp.,-1(0) converges 
to x. Let if; be an arbitrary ultrafilter in ZX which converges to x. By Lemma 8, 
n if; = { x}. Therefore, every set Zf of if; satisfies the follwing: x E Zf, f (x) = 0, 
f E p.,-1 (0); Zf E Zp.,-1 (0) = A,,. This means that if; c A,, and since if; is an 
ultrafilter, if; = A,, . 

Remark: A,, is the unique ultrafilter of ZX which converges to x, and every 
filter if; which converges to x is a subset of Ax . 

THEOREM 9: Let X E COTS. The maximal distinguished ideals of AX are 
exactly (Px-1(0).,Ex . 

Proof: By Lemma 6 p.,-1(0) is a maximal distinguished ideal. Conversely, 
let M be an arbitrary maximal distinguished ideal of AX. By Corollary 4, 
M = z- 1zM and by Theorem 7, ZM is an ultrafilter. Since ZM satisfies the 
finite intersection property and X is compact, there exists an x E X such that 
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ZM converges to x. Therefore ZM = A., and M = z- 1zM = z- 1A., = 
z- 1zp.,- 1(O) = p.,-1(O). 

Notation: We denote by MAX the set of all maximal distinguished ideals in 
AX, which by the above theorem is { p.,-1 ( 0) \ x E X}. 

LEMMA 10: For every XE COTS, the natural map bx:X - MAX given by 
bx(a) = Pa-1 (O) is a bijection. 

Proof: The surj ectivity is obvious. Let x $ y be given in X. Then 
Mx n Ly = 0 and we can find a function f E C1X c AX such that 
f(y) = 0 ~ 1 = f(x). This means thatf E Pu-1(O) andf (f Px-1(O). Therefore 
py- 1 (O) ~ Px-1 (O). 

THEOREM 10: If X, YE COTS, and if;: (AY, C1Y) - (AX, C1X) is ap-Ring­
isomorphism, there exists A:X - Ya COTS-isomorphism such that if; = C1(A). 
Similarly if u: (Lr Y, C1Y) - (Lr X, C1X) is a p--C-Ring-isomorphism there exists 
g:X - Ya COTS-isomorphism such that u = C1(g) . 

. Proof: Let X, Y be spaces in COTS such that if;: (AY, C1X) - (AX, C1X) 
is a p-Ring-isomorphism. Since ,f;:AY - AX is a Ring-isopmorphism, it induces 
a bijective function ~:MAY - MAX. Define /1. as by- 1or 10bx. Let XE X; then 
P>..ex)-1(O) = br(A(X)) = (br0A) (x) = cr10bx) (x) = 1/;1p,,-1(O). 

Let g E pxcx)-1(O); then ,f;(g) (x) = g(A(x) ). We show next that ,f;(g) = g0 A for 
allg E AY. Letx E Xandg E AY. Callr = g(A(x)).·Then (g - r)(A(x)) = 0 
and therefore g - f E P>..ex)-1(O). But, for this case, we have just shown that 
,f;(g ..,... f)(x) = 0 = (g - f)(A(x)). By Lemma 2 ,f;(f) = f and we obtain 
,f;(g)(x) - r = ,f;(g)(x) - y;(f)(x) = g(A(x)) - f(A(x)) = (goA)(x) - r. 
Since x was arbitrary, ,f;(g) = goA, and we have shown that, for the bijection A 
the following diagram commutes: 

Since ,f;(C1Y) = C1X we can interpret this diagram as 

By Theorem 1, it follows that A:X--; Y is a CrORR-isomorphism; i.e. a COTS~ 
isomorphism. 

The statement about (Lr Y, C1Y) is proved in an analogous way. 
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COROLLARY 5: If X, Y are compact spaces and 1/;:eY-► ex is a ring-iso­
morphism, there exists an homeomorphism }..:X-► Y such that 1/; = e(A) . 

Proof: The proof is the same as in Corollary 1. 

Remark: We introduced in Definition 3 the concept of pointedt-group (&-group 
with a unit), PLG. If X is a PLG we call a subset Y a sub-t-group with unit of 
X if Y is an !-group and has the same unit as X. The intersection of a family of 
sub-t-groups with unit is clearly a sub-t-group with unit. 

Notation: Let XE COTS. We denote by Lgu(X) the sub-t-group with 1 of 
ex which is the intersection of all L, sub-t-groups with I of ex, which contain 
e1X and such that, with f EL and f invertible in ex, r 1 EL. We define 
Z2:Lgu(X) -► PX by Z.J = r 1(0) and, as we did for Z and Z1 , we mean by 
Z~, Z2(Lgu(X) ). 

LEMMA 11: Let XE COTS, and h:Lgu(X) -► R be a surjective PLG-homo­
morphism. Thenh(r) = rforallr ER. If h(f) = 0, thenh(if I)= 0andZJ ~ fZf. 

Proof: By the definition of h, h(I) = 1, and since Lgu(X) is a lattice we can • 
repeat the rest of the proof of Lemma 2, proceeding directly from r,. - r < E 

tor,. - h(f) = h(r,. -. r) :::;; h(E) = E. 

If h(f) = (0, h)( - f) = -h(f) = 0. Therefore 

h(IJI) = h(f V -f) = h(f) V h(-f) = 0 VO= 0. 

Suppose Z.J = fZf. Then O EE Imf andr 1 E ex. Thereforer 1 E Lgu(X). We 
show that h(I r 1 I) ~ 0. Suppose h(I r 1 I) = 0. Since h(I f I) = o, h(I f IV 1r 1 I) = o. 
But I :::;; If I V I r 1 I and 1 = h(I) :::;; h(I f I V I r 1 I) = 0, a contradiction. Let 
h(lr 1 I) = a> 0, then h(lr 1 I - a)= h(lr 1 1)-h(a) = a - a = 0. It follows 
that h((i r 1 I - a) V If I) = 0. To obtain the contradiction needed to reject 
"ZJ = !25", let e > 2a and d = min {a, e-1}. We shall show that (lr 1 I - a) V 
If ~ I d > 0. Since for each x E X, f(x) ~ 0, it follows that r 1(x) ~ 0 and 
1r 1(x)I ~ O.Ifo < 1r 1(x)I < 2a, e-.1 < (2a)-l < 1r 1(x)l- 1= IJ(x)iandwe 
obtain d < e-1 < IJ(x)I. If 2a < 1r 1 (x)I, clearly 1r 1 (x)I - a~ a~ d. 

LEMMA 12: Let XE COTS and h:Lgu(X) -► R be a surjective PLG-homo­
morphism. Then Z2h-1(0) is an untrajilter in Z2X. 

Proof: Since his a group-homomorphism, h(O) = 0, and we have O E h- 1(0), 
Z20 = XE Z2h-1(0). Therefore Z2h--:-1(0) ~ ¢. By Lemma 11 fZf E Z2h-\O). 
Let/, g E h-1(0); then If I V I g I E h-1(0) and 

ZJ n Z2g = Z2(I JI v I g I) E Z2h-1(0). 

To see that Z2h-1(0) is a filter in Z2X, we need now show that if/ E h-1(0) and 
ZJ c Z2g for g E Lgu(X), then g E h-1(0). Suppose g EE h_1.(0) and h(g) = 
a ~ 0. Then g - a E h-1(0) and Z2(g - a) E Z2h-1(0). From this we obtain a 
contradiction as Z.J n Z2(g - a) c Z~ n Z2(g - a) = fZf. Having shown that 
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ZJi- 1(0) is a filter, suppose ther9 exists a filter if; in Z2X such that Z2h-1(0) g;; if;. 
Let Z2{J E if;\Z2h-1(0). Then h(g) = a F- 0, and we obtain again that 
g - a E h-1(0), Z2(g - a) E Z2h-1(0) c if; and fZf = Z2{J n Z2(g - a) E if;. 
This contradiction shows that Z2h-1(0) is an ultrafilter. 

LEMMA 13: Let X E COTS and h:Lgu(X) - R be a surjective PLG-homo­
morphism. There exists a unique x E X such that h(J) = f(x) for all f E Lgu (X). 

Proof: We have just shown that Z2h-1(0) is an ultrafilter in Z2X. Since Xis 
in COTS, and is therefore locally compact and normally ordered with continuous 
order, we conclude as in Lemma 7 that n Z2h-1(0) has at most one element. Since 
X is compact, it follows by the finite intersection property of Z2h -i ( 0) that there 
exists X E n Z2h-1(0), and accordingly n Z2h-1(0) = {x}. 

Let f E Lgu(X), and h(j) = b. Then h(f - b) = 0, and f - b E h-1(0) 
follows. Therefore x E n Z2h-1(0) c Z2(f - b) and we obtain 0 = (f - b) (x) = 
f(x) - b, which means h(f) = b = f(x). 

THEOREM 11: If X, YE COTS, and if;: (Lgu(y), C1Y) - (Lgu(X), C1X) 
is a p-PLG-isomophism there exists f: X - Y, a COTS-isomorphism such that 
if;= C1(f). 

Proof: The proof is essentially as in Theorem 3, using here Lemma 13, to 
apply Theorem 1. 
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