
RELATIVE PRINCIPAL FIBRATIONS 

BY J. F. McCLENDON 

1. Introduction 

A relative principal fibration is, roughly speaking, a fibration in a category that 
is induced from a principal fibration in a subcategory. A better name might be 
co-relative principal fibration since the notion is relative to an object under a 
given object rather than to a subobject. It was shown in [5] that relative principal 
fibrations arise naturally in the factorization of non-orientable fibrations. It will 
be shown in a separate paper (Reducing Towers of Principal Fibrations) that 
the class of relative principal fibrations is fairly large. In particular, if F-+ E-+ B 
is a fibration with F n-connected and 1r/F) = 0, i > 2n, then it is a relative 
principal fibration (no connectivity assumptions on B). The exact sequence of 
the present paper is essential to the proof of that result. It should be noted that 
even in the simple case of principal fibrations in the category of pointed spaces 
and maps the results here, while not unknown, are more general than the familiar 
path-loop sequence results. 

Section 2 discusses some properties of the category Top(C-+ D). Functors 
fl and i; are introduced and some adjoint equations are noted. In section 3 "rela­
tive principal fibration" is defined and the basic lifting properties are proved. 
Section 4 describes a long exact sequence extending part of the results of section 
3. 

There is a notion of relative principal cofibration. There objects are being 
studied and applied by D. Kruse. 

2. Basic Results 

Let Top(u:C-+ D) be the category whose objects are triples (X, x, x) with 
x:C--+ X, x:X-+D and xx= u. The maps are mapsf:X-+ Y with#= y and 
yf = x. The main properties of Top(C--+ D) were noted in [4] (see [3] for more 
detail). Denote Top(id:D -+D) by Top(D = D). Recall that it has the essential 
homotopy properties of Top(pt = pt), the category of pointed spaces and maps. 
The idea is that the fibers r1( d) (but no fibration assumptions on x are made) 
have a natural base point x-1d n x D and standard homotopy can be done there. 
One can also view D as a parameter space and think of doing ordinary homotopy 
,vith a parameter d. Many of the basic functors can be recovered from the follow­
ing definition. 

2.1 Definition. Let a map y: Y-+ D and a space W be given and W0 c W, 
Yo C Y. Define F(W, Wo; Y, Yo I fi) = {w: (W, Wo)-+ (Y, Yo) I yw is constant} 
Give it the compact-open topology. 

2.2 N ates. ( 1) We have F-+ D, w -+ the constant value of yw. Denote this map 
by y also or y' if confusion seems likely. If fj:C--+ Yo is given with yiJ = u then 
define C-+ F by c-+ w, w(W) = ye; denote this map by y. 
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(2) If Y E Top(D = D) then 

PvY = F((I, O); (Y, yD) I y) 

nvY = F((S1, 1); (Y, yD) I y) 

arethepathandloopfunctorsforTop(D = D) (sec [4]). 

(3) For YE Top(C -D) define nvny = F(Sn, YI?)). 
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This can be viewed as an object in Top(C -D). However, it can also be viewed 
as an object in Top(Y = Y) as follows. Let p be the base point of Sn, p = 
(1, 0, 0, · · · , 0) and let Qnny ___,,. Y be w ___,,. w(p). Let Y ___,,. nvnY send y to the 
constant function at y. The iteration formula suggested by the notation isn't 
true-but the following one is. 

2.3 LEMMA. 

0 ~ i ~ j. 

( 4) Let a space A and a map x: C , ___,,. X be given. Then the dual to 
2.1 is A X X/R where R is the equivalence relation generated by (a, x) 
(a', x) all a, a' E A whenever x E xC. In particular we obtain 

i:n°X = sn X X/R. 

( 5) The functors Q and i: are related by several different adjointness equations. 
(a) Suppose X, Y E Top(C ___,,. R). Then we have 

[i:n °X, Y]n C = [X, QDn Y]n C 

(b) Suppose a fixed map X ___,,.Yin Top(C ___,,. D) is given. Then 

[i:n°X, Y]nx = [X, nvnY]y 0 

(c) Suppose X E Top(C ___,,. D) and Y E Top(D = D). In the following 
equation take C - nnY to be yu and X ___,,. Y to be yx. Then 

[±n°X, Y]nx = [X, nvnY]n° 

(6) Suppose a topological group G acts on C and D and u:C ___,,. D is a G-map. 
Then we have a category Top 0 ( C ___,,. D) and the above constructions and equa­
tions are valid there also. 

3. Relative Principal Fibrations 

Let Z E Top(D = D) and PnZ ___,,. Z E Top(D = D) the canonical path-loop 
( so principal) fib ration in the category. Let X E Top ( C ___,,. D") and f: X ___,,. Z E 
Top(C ___,,. D), where Z E Top(C ___,,. D) via C ___,,. D ___,,. Z. Consider the follow­
ing pullback 
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3.1 Definition. The map P - X described above is a relative principalfibration 
in Top(C -D) (or, as in [5], aD-principal fibration). 

Note that if f and X are in Top(D = D) then P - Xis a principal fibration 
there and its properties are described in [4]. In particular if D = point andf is a 
pointed map then P - X is a principal fibration in the usual sense and its prop­
erties are well known ( see, for example, [Nomura, 7]). 

We wish to study the lifting problem for P - X. It is convenient to introduce 
one slight complication. Consider the following commutative diagram in 
Top ( C - D) and associated sequence. 

(3.2) 

(3.3) 

p 1 PvZ 

~///.,, lp 1 / g f 
W---- ➔X z 

ls 
B 

[W, P]B O ~ [W, X]B O ~ [W, Z]n O 

Define fJ = P* and a = f* . [W, Z]n ° has a natural base point z@. 

3.4 THEOREM. (a) The sequence 3.3 is exact. 
(b) The group [W, UnZ]n ° acts on the set [W, P]B 0 • The action is defined, below. 
( c) The action in ( b) is transitive on the stable set fJ-1[g] for any [g] E [W, P]B 0 . 

Now fix g and h in the diagram 3.2. Consider 

A C O 0 
(3.4) [W, DBX]x - [W, UnZ]n 

Both sets are groups (see section 2) and o, defined by o[a] = [-H + (Df)a + H], 
H = Jh is a homorphism. 

3.4 THEOREM (cont.) (d) The stability subgroup of the action on [h] in (c) is 
Image o, so fJ-1[g] is in one-to-one correspondence with the cokernel of o. 

The action of (b) is defined as follows. First consider the map 

(B X nUnZ) X BP - P 

defined by (b, k, (x, m)) - (x, k + m). Now k, m:I - Zand k(l) = zb(b) and 
s(x) = b sok(l) = zbs(x) = zx(x) = m(O) and hence the map is well defined. 
It is clearly continuous and a (C/B)-map. We deduce the following diagrams. 

[W, (B X nDnZ) X BP]B O - [W, P]B 0 

II 
[W, B X nUnZ]B c X [W, P]B 0 

II 
[W, UnZ]n c X [W, P]B 0 
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It is easy to check that this defines an action of the. group [W, UnZh>° on the set 
[W, P]B0 • 

3.5 Note. (a) If P---+ Xis a principal fibration in Top(D ,;,, D9, B· = D, and 
g, hare the canonical zeros xw, pw respectively then the above information is con­
tained in [4]. 

(l:J) Suppose that B == D = point,! is a pointed map, ancl g!lP-dh are arbitra,ry 
(making 3.2 commute). Then theorem 3.~ includes results of Ncrrinira '[6] and 
James-Thomas [2]. The other results of these authors (usID.g rest~i6ti6ns on Z 
and X) can be generalized to the present context without difficulty ( d. note (a) 
of section 4). 

(c) D = K(1r, 1), Z = L,;,(G, n) (see [5]). This case is usefuLfor studying 
liftings in non-orientable fibrations. 

( d) The definitions and results carry over to Top 0 ( C ---+ D). 

Proof of 3.4. (a) a[g] = 0 is equivalent to the existence of a lifting of gf to 
PnZ and this, in turn, is equivalent to the existence of a lifting of g. 

(b) It is easy to check that the map (B X nflnZ) X nP----+ P in Top( C -4 B) 
defines a homotopy action in the category [see Echman-Hilton, 1] and (b) follows 
immediately. 

( c) Suppose /'.J[h] = {1[h1]; that is, ph and pk' are ( C / B)-homotopic. Then there 
is a (C / B)-map h" :W---+ P such that pk" = ph and a (C / B)-homotopy from 
h' to h". This is because ( 1) P ---+ X is a fib ration over D since P~Z--"+ Z is and 
( 2) ( easy general fact) if E ---+ Y is a fibration over D and the given map Y ---+ D 
factors as Y---+ D'---+ D then E---+ Y is a fibration over D'. Now defined = 
d ( h", h) : W ---+ flnZ by d = ]h" - ]h. Then d is well defined because pJh" = 
fph" = fph = pJh. Also, dis a ( C / D )-map and clearly [d] • [h] = [h"] = [ht This 
prove (c). . .. 

(d) We must prove that u·h ""'h if and only if u E Imo. First suppose u ~ 
oa = h' + Qfa - h'. Thenu•h = u· (g, h') = (g, h' + Qfa:.... h' + h'):W _,;p_ 
It is easy to check that u""' (g, h' + (Qf)a) ""' (g, h') by a (C / B)-homotopy 
and sou· h ""'h. The following lemma is helpful in proving the converse. • 

3.6 LEMMA Let v, v':W---+ PnZ be maps in Top(C---+ D). Assume p1'/J = P1v: 
W---+ Zand H:v ":'-' v' is a homotopy in Top(C---+ D). Define u:w·~ nnZ by 
u(w)(t) = H(w, t) (1), Then v + u - v' ""'O:W---+ flnZ byll homo~ 
topy in Top(C---+ D ). The lemma is not difficult to prove by standard techniques. 

Now suppose u • h ""'h i.e. (g, u + h') ""'(g, h1) by a (C / B)-homotopy. The 
homotopy gives a self homotopy of g, i.e. a (C / B)cmap a: W---+ QBX• The homo­
topy also gives u + h ""' h and this homotopy covers (nf)a. The lemma gives 
u + h + (Qf)a - h ""'0: W---+ flnZ and hence u rv h - (Qf)a -:-.. h; Sou ""' 
o(-a):W---+flnZ. 

4. A Long Exact Sequence · 

Consider the diagram of section 3. Assume that g and h are fixed. In thjs section 
we extend 3.3 and 3.4 of section 3 to a long exact sequence. 
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4.1 THEOREM. The following is an exact sequence of pointed sets: 

The sequence consists of groups and homomorphisms after the third term and abelian 
groups after the sixth. (Here [-, - ] means [ - , - ]0 • The zero elements of the sets 
and the maps are described below). 

Notes (a) Suppose s:B-+ X and ss = 1 and Xis an H-space in Top(B = B) 
(in the obvious categorical sense). Do not suppose[ is an H-map or even a map 
under B if B = D. Then it is not difficult to check the isomorphism: 

[W, n/x1x O ,...., [W, nB iXJB 0 

The replacement (with adjustment of maps) gives a simpler sequence. The first 
stage of a tower for BO(n) -+ BO (as in [5]) gives such a simplified sequence. 
There is a similar simplification in the more general case that X-+ B is itself a 
relative principal fibration. 

(b) Z = L,,,(G,n),D = K(1r, 1). The sequence is 

• • · [W, QB2X]x 0 -+Hn- 2 (W, C; G,;;)-+ [W, fiBP]Pc-+ [W, DBX]x0 

-+H"- 1 (W, C; G,f.,)-+ [W, P]Bc-+ [W, X]B0 -+Hn(W, C; G.,,). 

,a-1[g] = cokernel [W, QBX]x-+ Hn-1(w, C; Gy;), 

(c) B = D,f E Top(D = D), and g = xw, h = pw, then this sequence reduces 
to the path-loop sequence of [4]. In particular, if D = * and g = h = * then 
this is the standard path-loop sequence (Nomura [7]). 

( d) The proof given below is direct. If mild assumptions are made the sequence 
can be obtained by function space methods. 

The zero elements are defined as follows: D -+ nniz sends d to the constant 
loop at z(d). nn'Z-+ D is the evaluation map. Denote these maps by z and i 
respectively (abuse of notation). The zero of [W, nniZ]n is zw. X-+ QBiX sends 
x to the constant loop at x and QBiX-+ Xis the evaluation. Denote these by x 
and x respectively. p and p are defined similarly. The zero of [W, QB iX]x is xg 
and the zero of [W, QBiP]P is ph. 

The homomorphisms are defined as follows. 
(a) an:[W, QBnX]x-+ [W, nnnZ]n. Define an[k] = [Go] where G: W X I -+ 

Dnnz covers H = fh and G1 = Q"fu. It is not difficult to check that the result is 
independent of the choice of G and is a homomorphism. Also a 0 = f * and a1[k = 
[H + Dfk - H]. 

(b)/3n:[W,nBnP]p-+[W,nBnx]x f3n = (Qnp)* 
(c) 'Yn:[W, nn"+1Z]n-+ [W, QB"P]P'Yn[k] = [k]·[hn] where hn is defined from 
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H = Jh and the action is defined by 

finnv:finn( (B Xn nnZ) Xn P) - OnnP 

and II is the action of part 3. 

Proof. Consider the following commutative diagram: 
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[W, risn X]x ~. [W, flvnZ]v 'Yn-l [W, risn-lp]P /3n-l [W, i2B n-lx]x ~ [W, flvn-lz]v 

t t t t t 
[:in-iw, fisXlx - [~n-lw, flvZlv - [~n-lw, P]B - [~n-lw, X]B - [~n-lw, Zln 

In the top row[-, - ] means[-, - ]0 and in the bottom row it means[-, - ]w. 
~ means i;0 everywhere. The vertical arrows arise from the observation of section 
2 that (for example) OnnX = Qx,.-10nX and the adjoint relations. The bottom 
row almost fits into the scheme of section 3. If it fitted exactly we would be done. 
The problem is that the map fh:W - PnZ doesn't factor through Das we re­
quired for C - PnZ. However, the maps of section 3 can be modified slightly to 
take this into account and exactness of the 5 term sequence then follows. 
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