INVARIANCE PRINCIPLE FOR SUMS OF INDEPENDENT RANDOM VARIABLES ON A BINARY TREE

BY L. G. GOROSTIZA AND A. R. MONCAYO

Introduction

Consider a tree and a collection of independent and identically distributed random variables indexed by its nodes. For each realization of the random variables, and each branch of length n of the tree, there is a Donsker path associated to their partial sums on the branch. A stochastic process is defined by choosing at random one of the branches of length n and taking the corresponding Donsker path. We are interested in proving functional central limit theorems for such processes, as $n \to \infty$, that hold for almost all realizations of the random variables.

For the partial sums of length n on certain deterministic trees, and on Galton-Watson trees, central limit theorems holding almost surely have been proved by Stam [10], and by Joffe and Moncayo [4]. Previous and related work has been done by Harris [2], Kharlamov [5], Kolmogorov [6], and Ney [8, 9].

Joffe and Moncayo first tested their ideas on a binary tree [3]. Following them, we also try first on a binary tree, and in this paper we prove an invariance principle for this case. This result of course implies that of [3], and although our approach has some similarities with that work, it is simpler and more general; in particular, we can avoid the detailed use made there of characteristic functions.

Notation, Definitions, Results, and Proofs

For each $n = 1, 2, \dots, \gamma_n$ denotes the set of all binary sequences (i.e., sequences of zeros and ones) of length n, \mathfrak{B}_n is the algebra of all subsets of γ_n , and P_n is the uniform probability measure on $(\gamma_n, \mathfrak{B}_n)$. Expectation on the probability space $(\gamma_n, \mathfrak{B}_n, P_n)$ is written E_n .

 $\gamma = \bigcup_{n=1}^{\infty} \gamma_n$ is a binary tree. Its branches are denoted τ , so $\tau \in \gamma_n$ means that τ is a branch of length *n*. The particular branch $0 \cdots 0 \in \gamma_n$ is denoted ζ_n . The nodes are named θ , so $\theta \in \tau$ means that θ is a node in the branch τ . The set of nodes at the ends of the branches in γ_n is written ξ_n , so ξ_n is the *n*th generation of nodes. $\Theta = \bigcup_{n=1}^{\infty} \xi_n$ is the set of all nodes of the tree γ (we exclude the first node).

For $\tau \in \gamma_k$ and $\tau' \in \gamma_n$, with $k \leq n$, the notation $\tau \leq \tau'$ means that the first k nodes of τ' are the nodes of τ (so τ' is an extension of τ). For $\tau \in \gamma_k$ and $k \leq n$, γ'_n is the set of branches $\{\tau' \in \gamma_n : \tau \leq \tau'\}$ (i.e., the extensions of τ of size n). Clearly, the cardinality of γ_n is 2^n , and for $\tau \in \gamma_k$ and $k \leq n$, γ'_n has cardinality 2^{n-k} .

Let $\{X(\theta), \theta \in \Theta\}$ be independent and identically distributed random varibles, with mean zero and variance one, defined on a probability space $(\Omega, \mathfrak{F}, P)$. The notations E and Var refer to expectation and variance on this space. For $\tau \in \gamma_n$, and a natural number $k, 1 \leq k \leq n, S_k(\tau) = \Sigma_{\theta \in \tau' \in \gamma_k, \tau' \leq \tau} X(\theta)$ is the sum of the random variables on the first k nodes of the branch τ . On the product probability space $(\Omega \times \gamma_n, \mathfrak{F} \times \mathfrak{G}_n, P \times P_n)$ we define a random element Y_n of C[0, 1] as follows: for $\omega \in \Omega, \tau \in \gamma_n, t \in [0, 1]$,

$$Y_n(\omega, \tau; t) = n^{-1/2} S_k(\omega, \tau), t = k/n, k = 0, 1, \cdots, n,$$

linear on $[(k-1)/n, k/n], k = 1, \cdots, n.$

These are the Donsker paths on the branches of γ_n . For fixed $\omega \in \Omega$, the random process $\{Y_n(\omega, \cdot; t), t \in [0, 1]\}$ on $(\gamma_n, \mathfrak{G}_n, P_n)$ represents a (uniform) random choice of one of the 2^n Donsker paths. In the model of [3], the (random) distribution of the positions of the elements belonging to the *n*th generation was considered; now we are taking with each element in the *n*th generation the positions of its whole line of ancestors.

The invariance principle is the

THEOREM. The sequence or processes $\{Y_n(\omega, \cdot; t), t \in [0, 1]\}$ converges weakly to a standard Brownian motion process B for P-almost all ω .

Consequently, for any measurable $f:C[0, 1] \to (-\infty, \infty)$ whose discontinuity set has *B*-measure zero, $f(Y_n(\omega, \cdot))$ converges weakly to f(B) as $n \to \infty$, for *P*-almost all ω ; and if f is bounded, $E_n f(Y_n(\omega, \cdot)) = 2^{-n} \Sigma_{\tau \in \gamma_n} f(Y_n(\omega, \tau)) \to \int_{C[0,1]} fdB$ as $n \to \infty$, for *P*-almost all ω . In particular, the functional f(x) = x(1), $x \in C[0, 1)$, yields the central limit theorem of [3].

Proof. The proof is presented in two lemmas. The first lemma gives a sufficient condition for weak convergence of X_n to X on C[0, 1]. The second lemma shows that the sufficient condition of the first holds for $X_n = Y_n(\omega)$ and X = B, for *P*-almost all ω , thus completing the proof of the theorem.

A complex-valued function f on C[0, 1] is said to satisfy a Lipschitz condition of order one if there is a constant $M \ge 0$ such that

$$|f(x) - f(y)| \le M \sup_{0 \le t \le 1} |x(t) - y(t)|, x, y \in C[0, 1].$$

LEMMA 1. Let X_n , $n = 1, 2, \dots$, and X be random elements of C[0, 1] defined respectively on probability spaces $(\Omega_n, \mathfrak{F}_n, P_n)$, $n = 1, 2, \dots$, and $(\Omega, \mathfrak{F}, P)$. If

$$\int f(X_n) dP_n \to \int f(X) dP$$
 as $n \to \infty$

for all bounded complex-valued functions f on C[0, 1] that satisfy a Lipschitz condition of order one, then X_n converges weakly to X as $n \to \infty$.

Proof. Let $f(x) = \exp iuw(x, \delta)$, where $u \in (-\infty, \infty)$ is fixed, and $w(x, \delta) = \sup_{|t-s|<\delta|} |x(t) - x(s)|$ is the modulus of continuity of $x \in C[0, 1]$, with fixed $\delta > 0$. Using the inequality $|e^{i\alpha} - 1| \leq |a|$ for real a, and the inequality $|w(x, \delta) - w(y, \delta)| \leq 2 \sup_{0 \leq t \leq 1} |x(t) - y(t)|$, we obtain $|f(x) - f(y)| \leq 2 |u| \sup_{0 \leq t \leq 1} |x(t) - y(t)|$, and since this holds for all u, we have by hypothesis that $w(X_n, \delta)$ converges weakly to $w(X, \delta)$ as $n \to \infty$; in particular, $P_n[w(X_n, \delta) \geq \epsilon] \to P[w(X, \delta) \geq \epsilon]$ as $n \to \infty$, for $\epsilon > 0$, which implies that $\{X_n\}$ is tight (see [1], Theorem 8.2).

Now let $f(x) = \exp i\Sigma_{j=1}^m u_j x(t_j)$, where $t_1, \dots, t_m \in [0, 1]$ are fixed,

 $u_1, \dots, u_m \in (-\infty, \infty)$ are fixed, and $x \in C[0, 1]$. Again using the inequality $|e^{ia} - 1| \leq |a|$ we find $|f(x) - f(y)| \leq \sum_{j=1}^{m} |u_j| \sup_{0 \leq t \leq 1} |x(t) - y(t)|$, and since this holds for all u_1, \dots, u_m , by hypothesis it follows that $(X_n(t_1), \dots, X_n(t_m))$ converges weakly to $(X(t_1,), \dots, X(t_m))$ as $n \to \infty$.

Since the finite-dimensional distributions of X_n converge weakly to those of X, and $\{X_n\}$ is tight, the lemma is proved (see [1], Theorem 8.1).

LEMMA 2. For all bounded complex-valued functions f on C[0, 1] that satisfy a Lipschitz condition of order one,

$$2^{-n} \Sigma_{\tau \in \gamma_n} f(Y_n(\omega, \tau)) \to \int C[0,1] f dB \text{ as } n \to \infty$$

for P-almost all ω .

Proof. For $0 \leq k \leq n$, define a random element $Y_{n,k}$ of C[0, 1] on $(\Omega \times \gamma_n, \mathfrak{F} \times \mathfrak{G}_n, P \times P_n)$ as follows: for $\omega \in \Omega, \tau \in \gamma_n, t \in [0, 1]$,

$$Y_{n,k}(\omega, \tau; t) = 0, 0 \le t \le k/n,$$

$$n^{-1/2}(S_j(\omega, \tau) - S_k(\omega, \tau)), t = j/n, j = k, \cdots, n,$$

linear on $[(j-1)/n, j/n], j = k + 1, \cdots, n.$

For f satisfying the hypothesis of the lemma, let

$$\begin{split} \varphi_n(\omega) &= 2^{-n} \Sigma_{\tau \in \gamma_n} f(Y_n(\omega, \tau)), \, \omega \in \, \Omega, \\ \varphi_{n,k}(\omega) &= 2^{-n} \Sigma_{\tau \in \gamma_n} f(Y_{n,k}(\omega, \tau)), \, \omega \in \, \Omega. \end{split}$$

We will show that

- 1. $P[\varphi_n \varphi_{n,k_n} \to 0 \text{ as } n \to \infty] = 1$, with $k_n \to \infty$, $k_n n^{-1/2} \to 0$ as $n \to \infty$.
- 2. $E\varphi_{n,k_n} \to \int_{c[0,1]} f dB$ as $n \to \infty$, with $k_n \to \infty$, $k_n n^{-1/2} \to 0$ as $n \to \infty$.
- 3. $P[\varphi_{n,k_n} E\varphi_{n,k_n} \to 0 \text{ as } n \to \infty] = 1$, with $k_n = \text{ integer part of } n^{1/3}$.

These three steps clearly prove the lemma.

Proof of 1.
$$|\varphi_n - \varphi_{n,k}| \leq 2^{-n} \Sigma_{\tau \in \gamma_n} |f(Y_n(\tau)) - f(Y_{n,k}(\tau))|$$

 $\leq M 2^{-n} \Sigma_{\tau \in \gamma_n} \sup_{0 \leq i \leq 1} |Y_n(\tau, t) - Y_{n,k}(\tau, t)|$
 $\leq M 2^{-n} \Sigma_{\tau \in \gamma_n} \sup_{1 \leq j \leq k} n^{-1/2} |S_j(\tau)|$
 $\leq M 2^{-n} n^{-1/2} \Sigma_{\tau \in \gamma_n} \Sigma_{\theta \in \tau' \in \gamma_{k,\tau'} \leq \tau} |X(\theta)|$
 $= M 2^{-n} n^{-1/2} \Sigma_{j=1}^k 2^{n-j} \Sigma_{\theta \in \xi_j} |X(\theta)|$
 $= M n^{-1/2} \Sigma_{j=1}^k Z_j,$

where $Z_j = 2^{-j} \Sigma_{\theta \in \xi_j} | X(\theta) |$, $j = 1, \dots, k$, are independent, with $EZ_j = \mu$ and $\operatorname{Var} Z_j = 2^{-j} \sigma^2$, where $\mu = E | X(0) |$ and $\sigma^2 = \operatorname{Var} | X(0) |$.

Hence $|\varphi_n - \varphi_{n,k}| \leq Mn^{-1/2} \Sigma_{j=1}^k (Z_j - \mu) + M\mu kn^{-1/2}$, and since $\Sigma_{j=1}^{\infty} \operatorname{Var} Z_j < \infty$ implies that $\Sigma_{j=1}^{\infty} (Z_j - \mu)$ converges almost surely (see [7], p. 236), step 1 is proved.

Proof of 2. $E\varphi_{n,k} = E\varphi_n + E(\varphi_{n,k} - \varphi_n)$, where clearly $E\varphi_n = Ef(Y_n(\zeta_n))$.

Since φ_n and $\varphi_{n,k}$ are uniformly bounded, because f is bounded, then by step 1 and the Lebesgue dominated convergence theorem, $E(\varphi_{n,k_n} - \varphi_n) \to 0$ as $n \to \infty$. Now by Donsker's theorem (see [1], Theorem 10.1), $Y_n(\zeta_n)$ converges weakly to B as $n \to \infty$, and therefore $E\varphi_n \to \int_{c[0,1]} f dB$ as $n \to \infty$, and step 2 is proved.

Proof of 3. Let $A_{n,k} = \varphi_{n,k} - E\varphi_{n,k}$, and $T_{\tau} = \sum_{\tau' \in \gamma n} f(Y_{n,k}(\tau')), \tau \in \gamma_k$. $T_{\tau}, \tau \in \gamma_k$, are independent and identically distributed, and

$$A_{n,k} = 2^{-n} \Sigma_{\tau \in \boldsymbol{\gamma}_k} (T_{\tau} - ET_{\tau});$$

hence $E | A_{n,k} |^2 = 2^{-2n+k} E | T_{\xi_k} - ET_{\xi_k} |^2 \le 2^{-2n+k} E | T_{\xi_k} |^2$, and since f is bounded, say by $K, E | T_{\xi_k} |^2 \le K^2 2^{2(n-k)}$, so that $E | A_{n,k} |^2 \le K^2 2^{-k}$.

Since $2^{-n^{1/3}} < n^{-2}$ for large *n*, by Chebyshev's inequality and the Borel-Cantelli lemma we have, for $k_n =$ integer part of $n^{1/3}$, $P[|A_{n,k_n}| > \epsilon$ infinitely often] = 0 for all $\epsilon > 0$, which finishes the proof.

Centro de Investigación del IPN Universidad Autónoma Metropolitana (Iztapalapa)

References

- [1] P. BILLINGSLEY, Convergence of Probability Measures, Wiley, (1968).
- [2] T. E. HARRIS, The Theory of Branching Processes, Springer-Verlag, (1963).
- [3] A. JOFFE AND A. R. MONCAYO, On sums of independent random variables defined on a binary tree, Bol. Soc. Mat. Mexicana., 18, N° 1, (1973), 50–4.
- [4] ——, Random variables, trees, and branching random walks, Advances in Math., 10, N° 3, (1973), 401–16.
- [5] B. P. KHARLAMOV, The number of generations in a branching process with an arbitrary set of particle types, Theor. Probability Appl., 14 (1969), 432–49.
- [6] A. N. KOLMOGOROV, Über das logarithmisch normale Verteilungsgesetz der Dimensionen der Teilchen bei Zerstückelung, Dokl. Akad. Nauk SSSR, 31 (1941), 99–101.
- [7] M. Loève, Probability Theory, Third Edition, Van Nostrand, (1963).
- [8] P. E. NEY, The limit distribution of a binary cascade process, J. Math. Anal. Appl., 10 (1965), 30-6.
- [9] ——, The convergence of a random distribution function associated with brancing processes, J. Math. Anal. Appl., 12 (1965), 316-27.
- [10] A. J. STAM, On a conjecture by Harris, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 5 (1966), 202–06.