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Introduction

Consider a tree and a collection of independent and identically ‘distributed
random variables indexed by its nodes. For each realization of the random
variables, and each branch of length » of the tree, there is a Donsker path asso-
ciated to their partial sums on the branch. A stochastic process is defined by
choosing at random one of the branches of length n and taking the corresponding
Donsker path. We are interested in proving functional central limit theorems for
such processes, as n — o, that hold for almost all realizations of the random
variables. _

For the partial sums of length n on certain deterministic trees, and on Galton-
Watson trees, central limit theorems holding almost surely have been proved by
Stam [10], and by Joffe and Moncayo [4]. Previous and related work has been
done by Harris {2], Kharlamov [5], Kolmogorov [6], and Ney [8, 9]. -

Joffe and Moncayo first tested their ideas on a binary tree [3]. Following them,
we also try first on a binary tree, and in this paper we prove an invariance prinei-
ple for this case. This result of course implies that of [3], and although our ap-
proach has some- similarities with that work, it is simpler and more-general; in
particular, we can avoid the detailed use made there of characteristic functions.

Notation, Deﬁnit_ions, Resulfs, and Proofs

For eachn = 1, 2,:-- , v, denotes the set of all binary sequences (i.e., se-
quences ‘of zeros and ones) of length.n, ®, is'the algebra of all subsets of v, , and
Py is the uniform probability measure on ('yn , (Bn) Expectatlon on the probabll—
ity space (yn , Bn , Pn) is written E, :

v = Uj—1vais a binary tree. Its branches are denoted 7,80 7 € v, meansthat 7
is a branch of length n. The particular branch 0 --- 0 € «, is denoted ¢, . The
nodes are named 6, so § € 7 means that ¢ is a node in the branch 7. The set of
nodes at the ends of the branches in v, is written &, , so £, is the nth generation of
nodes. ® = U5 £, is theset of all nodes of thetree v (we exclude the first node).

For7 € ypand 7 € vn, With k& < n, the notation 7 < 7" means that the first
k nodes of 7" are the nodes of 7 (so 7 is an extension of 7). For 7 € v, and k < n,
vy is the set of branches {7 € v,:7 < 7} (i.e., the extensions of 7 of size n).
CleiLrly, the cardinality of v, is 2%, and for 7 € v, and k < n, v% has cardinality
2",

Let {X(68), 6 € O} beindependent and identically distributed random vari-
bles, with mean zero and variance one, defined on a probability space (@, §, P).
The notations £ and Var refer to expectation and variance on this space. For
T € 9., and a natural number k, 1 < k < n, Si(7) = Zperreqpr <X (0) is the
sum of the random variables on the first k£ nodes of the branch 7.
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On the product probability space (2 X v», F X ®B., P.X P,) we define a
random element Y, of C[0, 1] as follows: for w € 2,7 € v, ,¢ € [0, 1], '

YVolo, 7;8) = 028w, 7), t = k/n, k = 0, 1, n,
linear on [(k — 1)/n, k/n], k = 1, .:. n

These are the Donsker paths on the branches of v, . For fixed w € Q, the random
process { YV, (w, «;t),t € [0, 1} on (yn , ®», P,) represents a (uniform) random
choice of one of the 2" Donsker paths. In the model of [3], the (random) distribu-
tion of the positions of the elements belonging to the nth generation was con-
sidered; now we are taking with each element in the nth generation the positions
of its whole line of ancestors.

The invariance principle is the

TrEOREM. The sequence or processes { Y (w, +; 1), € [0, 1]} converges weakly to-a
standard Brownian motion process B for P-almost all o.

Consequently, for any measurable f:C[0, 1] — (— «, ») whose discontinuity
set has B-measure zero, f(¥,(w, *)) converges weakly to f(B) as n — =, for
P-almost all w; and if f is bounded, E,f(YVa(w, +)) = 27"Z,ey, f(¥V (w, 7)) —
[ oto,ufdB as n — o, for P-almost all . In particular, the functional f(z) = x(l),
z € C[0, 1), yields the central limit theorem of [3].

Progf. The proof is presented in two lemmas. The first lemma gives a sufficient
condition for weak convergence of X, to X on €0, 1]. The second lemma shows
that the sufficient condition of the first holds for X, = Y,(w) and X = B, for
P-almost all w, thus completing the proof of the theorem.

-A cormplex-valued function f on C[0, 1] is said to satisfy a.Lipschitz condition
of order one if there is a constant M > 0 such that :

| f(&) — f(y) | < M supocia | 2(1) — y(t) |, 2,y € C[0, 1]

Lemma 1. Let X, ,n = 1,2, -+, and X be random elements of C[0, 1] defined
respectively on probability spaces (Qn, Fn, Pn),n = 1,2, -+ ,and (2, F, P). If

ff(Xn>dPn — ff(X)dP as n —

Jor all bounded complex-valued functions f on C|0, 1] that satisfy a Lipschitz condi-
tion of order one, then X, convergesweakly to X asn — .

Proof. Let f(z) = exp tuw(z, §), where u € (— oo, ») is fixed, and w(z, §) =
SUpP|i—si<s | €(t) — z(s) | is the modulus of continuity of z € C[0, 1], with fixed
5 > 0. Using the inequality | ¢ — 1| < |a| for real a, and the inequality
| w(z, 8) — w(y, )| < 2 supocicr | 2(8) — y(t) |, we obtain |f(z) — f(y)] <
2 | w | supo<i<a | z(t) — y(¢) |, and since this holds for all u, we have by hy-
pothesis that w(X, , §) converges weakly to w(X, §) as n — oo ; in particular,
Pw(X,,8) > ¢ — Pw(X,8) > ¢ asn—> o, for e > 0, which implies that
{X,} is tight (see [1], Theorem 8.2).

Now let f(z) = expiZjemu,a(t;), where &, - ,tn € [0, 1] are fixed,
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U, *++ ,Um € (— o, ) are fixed, and = € C[0, 1]. Again using the inequality
le” — 1] < |alwefind|f(z) — f(y) | £ Zfes | u; | supocics | 2(8) — y(2) |,
and since this holds for all %i, -+ ,us, by hypothesis it follows that
(Xa(t), -+, Xu(tn)) converges weakly to (X(4,) -+, X({n)) 38 n — oo.

Since the finite-dimensional distributions of X,, converge weakly to those of X,
and { X,,} is tight, the lemma is proved (see [1], Theorem 8.1).

LemMma 2. For all bounded complex-valued functions f on C[0, 1] that satisfy a
Lipschitz condition of order one,

272 ey, (Yulw, 7)) = [ cooufdB as n — o
Jor P-almost all w.

Proof. For 0 < k £ n, define a random element Y, of C[0, 1] on
(X Y0, FX B, P X P,)asfollows:forw € Q,7 € v, ,t € [0, 1],

Yar(ow,7;t) = 0,0 <t < k/n,
w2 (8w, ) — B(w, 7)), t =j/m, 5=k, -, n,
linearon [(7 — 1)/n,j/nl,7=k+ 1, --- ,n.

For f satisfying the hypothesis of the lemma, let

27" 2 ey f(Yu(w, 7)), 0 € @,

27" 2y f(YVap(w, 7)), 0 € Q.

San(w)

©On .k ( w )
We will show that

1. Plon — ¢ui,—0asn— =] =1, withk, — o, kan ™ > 0asn — o.
2. Epu i, — fg[o,nde as n — o, with k, — o, ko > 0asn— .
3. Plenk, — Eoni,—0asn— o] = 1, withk, = integer part of n',

These three steps clearly prove the lemma.

Proof of 1. | on — @ni | < 27" Zreny | F(Ya(1)) — f(Yai(7)) |
< M2 ey suposi<a | Ya(r,t) — YVou(r, t) |
< M27"Z ey, supici<n | Si(7) |
< M2 S e, Zoerreqpr<s | X(0) |
=M 2_"n_1/22’§=12"_j2555,~ | X(0) |
= Mn sk 7,

where Z; = 2_j29egj | X(8)|,7 = 1,---, k, are independent, with EZ; = u
and Var Z; = 27", where p = E | X(0) | and o* = Var | X(0) |.

Hence | ¢n — @up | < Mn P2t _(Z; — ) + Mukn™"”, and since Zj=, Var Z,
< o implies that = (Z; — u) converges almost surely (see [7], p. 236), step 1
1s proved.

Proof of 2. E¢ni = E¢n + E(¢ni — ¢n), where clearly Eon = Ef(Ya($n))-
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Since ¢, and ¢, x are uniformly bounded, because f is bounded, then by step 1 and
the Lebesgue dominated convergence theorem, E(en i, — ¢n) — 0 as n — o,
Now by Donsker’s theorem (see [1], Theorem 10.1), Y,({») converges weakly
to B asn — o, and therefore g, — [cp0,ufdB asn — o, and step 2 is proved.

Proof of 3. Let Aui = onk — Bong,and Ty = Zpeqnf(Yar(7)), 7 € e .
T.,7 € v, are independent and identically distributed, and

App = 27"2e (T. — ET.);

hence E | A ° = 27%E | Ty, — ET;, |° < 27"E | T}, |°, and since f is
bounded, say by K, E | T, | < K*2*"™ sothat E | A, | < K*27"

Since 27" < n*for large n, by Chebyshev’s inequality and the Borel-Cantelli
lemma we have, for k, = integer part of n'”, P[| A, 4, | > e infinitely often] =
0 for all ¢ > 0, which finishes the proof. .
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