CODIMENSION ONE ANOSOV FLOWS

BY ALBERTO VERJOVSKY

Introduction

One of the main objectives in the Qualitative Theory of Dynamical Systems
is the study of the orbit structure of diffeomorphisms and flows, and their classi-
fication under the equivalence relation given by topological conjugacy. Great
progress has been made in the case of Anosov Systems (see [1] and [29] for
definitions and background). It was proved originally by Anosov that Anosov
Systems on compact manifolds are C'-structurally stable (there are also proofs
of this fact by Moser [21] and Mather [20]).

For codimension one Anosov diffeomorphisms, Franks [9] has given a prac-
tically complete solution to the classification problem. He proved that a codi-
mension one Anosov diffeomorphism on a compact manifold M is topologically
conjugate to a hyperbolic toral isomorphism, provided that the nonwandering
set of the diffeomorphism is all of M. Furthermore, he proved that two codi-
mension one Anosov diffeomorphisms are topologically conjugate if and only if
they are m-conjugate. Later, it was proved by Newhouse [22] that a codimension
one Anosov diffeomorphism on a compact manifold has as its nonwandering set
the whole manifold.

For codimension one Anosov flows, one does not have such a complete classi-
fication theorem as the one given by Franks for diffeomorphisms. This paper
gives some contributions in this line.

In this work, we obtain among others, the following results:

TaEOREM 1.1. If fi: M — M s a codimension one Anosov flow in the compact
manifold M, then Q(f,) = M. Here Q(f.) denotes the nonwandering set.

CoroLLARY 1.1 The periodic orbits of f. are dense in M and f, is topologically
transitive.

TureorEM 3.1. The universal covering space of M s diffeomorphic to euclidean
space.

TareoreM 3.3. The center of m (M) is either trivial or else it is free cyclic.

TarOREM 3.4. If dim M = 3 and if the center, L, of m (M) is free cyclic and
m (M) /L 1s torsion-free then w1(M ) /L is isomorphic to the fundamental group of a

compact surface M, of genus greater than one. Furthermore, if a€ H (M, Z)
denotes the central extension

a:0 > Z > m(M) - m(M*) — 0,

then M 1is diffeomorphic to the principal circle bundle over M® associated with a.
Hence, M admits a principal S* action.
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TarorEM 4.1. f,: M — M s topologically equivalent to the suspension of a hyper-
bolic toral isomorphism if and only if H'(M, R) = R and every periodic orbit
represents a nontrivial element of H.(M, R).

The results in this paper are contained in my doctoral dissertation written at
Brown University. I wish to thank my adviser Mauricio Peixoto and my col-
leagues at I.M.P.A. in Brazil. I would like to thank J. Palis for suggestions and
encouraging conversations. To Sheldon Newhouse I here express my gratitude
for his paper [22], that was the starting point of my thesis. I also would like
to thank C. Camacho, B. H. Lawson, C. Robinson, and J. Sotomayor, for many
helpful conversations.

§1. Preliminaries

In all that follows M will be a C* manifold which is connected and without
boundary. TM will denote the tangent bundle of M and T,M the fibre at x. If
g:M — M is a C" map (r > 1) we will denote by D.g the derivative at z and by
Dg:TM — TM the derivative bundle map induced by g.

DerFintrioN 1.1. Let fi: M — M be a C" flow (r > 1), generated by the vector
field X; we say that f, is an Anosov flow if:

(1.1) X(m) #0VY m € M.

(1.2) There exists a continuous splitting of TM into a Whitney direct sum,
TM = E°® E*® E', which is invariant under Df, and E* denotes the
line bundle spanned by X.

(1.3) There exists constants C, C*, A > 0 such that for every ¢t > 0
a) | Df. (V)| >Ce* | V| if VeE
b) [ Df. (W) || S Ce* | W if WeE

where || - || denotes the norm induced by a riemannian metric.

Examples of Anosov flows can be obtained by suspension of Anosov diffeo-
morphisms and by the geodesic flows of compact, connected, riemannian mani-
folds with negative curvature. The article [34] is an extensives study of Anosov
flows on infra-homogeneous spaces. For further details, general information,
references and terms not defined here we refer to the papers [1], [2], [12], [29].

Given a flow F,: M — M we denote by Q(F,) its nonwandering set. Explicitely.
Q(F,) is defined by @(F;) = {x € M: Given any neighborhood U of z and T >
0, there exists {, X T, such that F,, (U) N U = &}. We also denote by @(X)
the nonwandering set of the flow generated by the vector field X.

An Anosov flow f,: M — M is said to be of codimension 1 if either dim E* =
1 or dim E° = 1.

It has been conjectured that if f,: M — M is an Anosov flow, then Q(f;) =
M. The following theorem asserts that such is the case if f, is of codimension 1.

TaEOREM 1.1. If fi: M — M is an Anosov flow of codimension 1 in the compact
manifold M (this is always the case if dim M < 4), then Q(f,) = M.
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Anosov flows satisfy Axioms A" and B of Smale (sec [29] for the definition of
these axioms). This is a consequence of the C'-structural stability of Anosov
flows and a general density theorem of Pugh [27]. Hence, we have the following:

CoroLLARY 1.1. If fi: M — M 1s a codimension 1 Anosov flow then the periodic
orbits of i are dense in M and f, is topologically transitie.

‘Before giving the proof of Theorem 1.1, we will need several results valid for
any Anosov flow. The proof of Theorem 1.1 will be postponed to §2.

SprcTRAL DEcoMposITION THEOREM (Smale [29]). If f,: M — M is an Anosov
Slow, then Q(f,) is the disjoint union of closed, tnvariant, indecomposable sets:

Qf) = U--- UQ,.

Furthermore, f; | €; is topologically transitive. The sets €;, (0 < j < m) are
called basic sets (see also [23]).

DerintTION 1.2. A codimension k foliation of class C°, s > 0, of an n-dimen-
sional manifold M, is a decomposition, §, of M into disjoint, connected subsets,
called the leaves of the foliation, such that for each m € M there exists local C°
coordinates (x1, - - -, Z,) so that in a neighborhood of m the leaves are described
by the equations #; = constant, - - -, x = constant.

The following is the Stable Manifold Theorem for codimension 1 Anosov
flows (see [1], [15] and [16]).

ProrostrionN 1.1. If fi: M — M is a C" Anosov flow on M with r 2> 2 and dim
E* = 1, then the distributions E* and E° are uniquely integrable with leaves of
class C". More precisely, there exist foliations W and $ called the strongly unstable

and strongly stable foliations, respectively, so that
a) Both U and $ are invariant under the flow:

fe(u(z)) = u(fu(z))
fe(s(x)) = s(f(2))
where, for z € M, u(z) and s(z) denote the leaves through z of U and §, re-
spectively.
b) u(xz) = u(y) if and only if lim.e d(f—i(z), f=(y)) = 0
s(z) = s(y) if and only if lime d(fi(x), fi(y)) =0
where the distance d is the one given by the riemannian metric on M.

¢) Each leaf u(z) is a C" injectively immersed copy of R (R denotes the
real line). Analogously, each leaf s(x) is a C" injectively immersed
copy of R" %, Furthermore, the foliations U and $ are tangent to the
continuous distributions E* and E°, respectively, and their leaves are
C"-close on compact sets.

It follows from the invariance of U and $ under the flow that there is another
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pair of foliations U and §, tangent to E* @ E' and E° @ E', respectively, and
whose leaves 4(x) are defined by

a(z) = Uier {u(f(2))} = Uyeyw {u(y)}
§(z) = Uier {s(f(@))} = Usey {s(9)}

where y(2) denotes the orbit throught z. Clearly, we have that f,(§(z)) = §(x)
and f.(d4(z)) = 4(x), for all t € R.

If w € U and @, 2, € u, then from inequalities (1.3) it follows easily that for
every t > 0

21)  dfu);fe (@), fo (@) 2 €& d(u; 21, m)
(22) (e () fme (1), e (22)) < €767 d(u; 1, 22).
Similarly, if s € 8 and 1, #, € s, then
(2.3) A(fu(s); Fol@r), fo(@e)) < Ce™ d(s; 21, 22)
(2.4) A(f-i(8); (@), fi(ma)) 2 (€))7 d(s; @, m).
Where d(u; -, -) and d(s; -, -) deﬁote the distances, induced on the leaves of

L and 8, respectively, by the riemannian metric in M.
Using these inequalities, the contraction mapping theorem and the invariance
of U and 8, the following is easy to prove:

ProposITION 1.2. The leaves of U (respectively §) are C" immersed submanifolds
diffeomorphic (with their intrinisc topology) to either R* (respectively R™™') or R
X S (respectively R*™> X S'). The latter cases hold if and only if the leaf contains
ezactly one periodic orbit. Furthermore, if the periodic orbit v belongs to the leaf 4
(respectively §) then the holonomy group of 4 (respectively §) vs isomorphic with Z
and v represents a generator. Evidently, v is also a generartor of m(4) (respectively
m1(8)). The germs representing nontrivial holonomy are local generic contractions
or eTPAnsLons.

Remark 1.2. Hirsch and Pugh [15] have proved that in our case $ is a C* folia-
tion, that is to say, E° @ E'is a C* distribution. However, J. Plante [26] has
examples where $ is not C". Hirsch and Pugh require r > 2.

Let fi:M — M be a codimension one Anosov flow generated by the vector
field X. By the C"-structural stability theorem there is no loss of generality if we
assume that f, is of class C”. Since the roles of E* and E’ are reversed when we
replace X by —X we can assume also that dim E* = 1. Again, there is no loss
of generality if we assume that M is orientable and E" isan orlentable line bundle
since we can achieve this by taking double coverings.

By Proposition 1.1, each 4 € U is diffeomorphic to R. We say that 1 < y, for
two distinet points of M, if y; and y, lie on the same leaf w € U and if the
oriented arc from y; to y» has the orientation of u. If ¢, < y, we let

lys, 1) = {y € uitn < y < ).
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The length of [y1, ¥2] Will be denoted by £[y1, ¥2). If ¥ € w and @ > 0 we will
denote by y -+ a (respectively y — a), the unique point of u such that y + a >
y (respectively y — a < y) and {[y, y + a] = a (respectively £ly — a, y] = a).
Analogously, we define the half-open intervals [y1, ¥2), (y1, %2), (— o, ¥}, [y, ©),
(—=0,9), (y, = ). For a subset A C u we define sup A and inf 4, in the obvi-
~ ous way.

The following proposition guarantees that we can take sufficiently big product
neighborhood sets [29]. We let

B" = {(21, 2, -+, u) = ¢ € R":1a" + --- +x,,2_<_1}

ProrosrrioN 1.3. (2) Given u € U and y1, yo € u with y1 < ys, there exists a
homeomorphism ¢:B"™ X B' — V, where V is a closed neighborhood of (ys, y2)
such that '

a) For everyt € B', o(B*™" X {#}) C § (¢(0, 1))

b) For every x € B"™, o({z} X B") C u (¢(z, 0))

¢) [y, 32 = o({0} X BY).
(ii) Given § € 8, y € 8 and a topological embedding h:B™™" — & such that h(ko)
= y for some ko € B": then there exists a homeomorphism ¢:B"™ X Bl — W
such that

a) (B X {0}) = h(B")

b’) For every t € B', ¢(B™™ X {#}) < § (¥ (ko, 1))

¢) For every k € B", y({k} X B") c 4 (¢(k, 0)).

We will not prove this proposition. We only indicate that part (i) is proved
in exactly the same way as the proof of the long flow box theorem given in [25].
For part (ii) we remark that h is right and left displaceable in the sense of
Novikov (see §3 of [24],) because B" is simply connected, and from this the
existence of ¥ follows directly. The sets V and W are called product neighborhoods
relative to [y, 3] and k(B™ "), respectively.

If K is a subset of M we let

u(K) = Usex u(z), s(K) = U.ex s(z), 4(K)
= U.ex 4(2), and §(K) = U.,ex §(2)

If K is invariant, then 4(K) = 4(K) and s(K) = §(K). In particular §(z)
= §(y(x)) and 4(z) = 4(y(z)), where v(x) will always denote the orbit
through z.

If @(f) = @ U --- UQ, is the spectral decomposition for @(f;), then a basic
set @; for which u(Q;) = Q; is called a sink and a basic set Q; for which s(Q;) =
Q; is called a source. It is a well-known fact that among the basic sets there is at
least one which is a sink and at least one which is a source. It is easy to see that
if ©; is a source then u(%;) is open and that if ©; is a sink then s(€;) is open.
Therefore if we show that some source @ is also a sink then we would have Qo
= 4(Q) = s(%) and & would be both open and closed. Since M is connected,
Theorem 1.1 would follow. This is the key observation of Newhouse in [22]. The
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proof to be given in §2 is modeled after his. Considerable difficulties arise from
the fact that in our case the foliations 4 and § have nontrivial holonomy.

§2. Proof of Theorem 1.1

Let @ be a source. We will show that Qo must also be a sink. The key lemma is
the following:

LemmMa 2.1, (1) If ¢ € Q then (z, ©) N §(z) = .
(2)Ifz € Qthen (—w, z) Ni(x) # .

We will only prove part (1) since the proof of part (2) is similar. For the
sake of simplicity we will divide the proof of Lemma 2.1 in various steps.

Proof of Lemma 2.1 whendim M > 3. Let A = {x € Q:(z, ») N&(z) = J}.
We have to show that A is empty. Suppose A # &. We will arrive to a contra-
diction through a series of propositions.

ProrosiTion 2.1. A is a closed invariant set.

Proof. From Proposition 1.3 it is evident that 4 is closed, and it is obvious
that A is invariant.

ProposiTioN 2.2. A consists entierly of periodic orbits.

Proof. Let « € A. Let y be a point in the a-limit set of v(z). Let V(y) be a
product neighborhood around y. If v(z) is not compact then lim,,, d(§(z); z,
f-i«(x)) = = and therefore, if v () is not compact there exists Ty < 0 such that
(fr, (x), ») N §(z) # &, contradicting the invariance of A. Therefore, v(z)
is compact.

Let 2o € A and v = v(x) the periodic orbit through x,. Since {2, is a source
$(x0) C Q. Since v is the unique periodic orbit contained in §(x,) we have that
for every x € §(20) — 7, (2,0) N §(x0) # . Let usset I' = §(2) — v = §(v)
— v. We define the function ¢:T' — R by ¢(z) = inf {£[z, y]:y € (z, «) N §(v)}.

PROPOSITION 2.3. o(xz) > O0forallz € T.

Proof. If o(x) = 0 for some z € T, then it would follovs; that §(x,) would self-
accumulate and, using long product neighborhoods, one could prove that (z,
o) N §(x0) » & which would be a contradiction.

ProrosITioN 2.4. For z € T let m(z) be the pointin (x, ©) such that £ [z, m(x)]
= o(x). Then there exists a fized y € M such that m(z) € §(y) forall z € T. In
other words: all the points m(x) lie in the same stable leaf when x varies in T.

Proof. Since we are assuming that dim M > 3, it follows by the Jordan-
Brower separation theorem [32], that T' is connected. If z € M and welet V, =
{x € T:m(z) € §(z)} then by Proposition 1.3, it follows easily that V, is open
in T. If 8(z1) # 8(2:) then V., N V., = . This finishes the proof since T is
connected. Hence, we have a well-defined map m:T — 3(y). It is an obvious
consequence of its definition that m is injective.
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ProrosiTiON 2.5. Let y be as wn Proposition 2.4. The function m:T — §(y)
has the following properties:
a) m preserves the flow: m(f,(z)) = fi(m(z))
b) m is a homeomorphism onto its image
¢) 8(y) contains a periodic orbit v,
d) m(T) = §(v1) — 1.

Proof. Parts a) and b) are obvious consequences of the definition of m and the
theorem of invariance of domain (since m is injective).

Proof of ¢). Given a periodic orbit 7, of f;, a subset F < §(¥) is called a“ fence”
for ¥ if F is a topological submanifold of §(¥), homeomorphic to s"° X S,
and such that every orbit in §(¥) — 7 intersects F' in exactly one point. Fences
associated to periodic orbits always exist and, in fact, they can be taken as
boundary components of fundamental domains. Let F be a fence for v and
let us assume that §(y) does not contain a periodic orbit; then it is easy to see
that there exists a point yo € §(y) such that m(F) N s(y) = &. By b) it fol-
lows that m(F) is a topological submanifold of §(y) homeomorphic to S" 7% X
S, and by a), an orbit in §(y) which intersects m(F) has exactly one point of
intersection. Then one can define a continuous and injective map &:m(F) —
s(yo) given by 8(p) = v(p) N s(yo). The compactness of m(F) and the theorem
of the invariance of domain lead to a contradiction since s(yo) is, by Proposition
1.1, homeomorphic to R** Therefore §(y) must contain a periodic obit ;.
Obviously we have m(F) N~ = .

Proof of d). Let F be a fence for v1. The proof of d) reduces to show that m(T')
contains F. Let ut define a map n:m(F) — F by n(p) = v(p) N F. Themap 7
is injective and continuous and the theorem of invariance of domain implies
that n(m(F)) = F. Using a) we conclude that F  m(T). This finishes the
proof of Proposition 2.5.

Let us set H = U.er [z, m(z)] and let us fix ; € T. For each z € [x;, m(2;)]
let H, denote the connected component of §(z) N H which contains z. The rest
of the steps for the completion of Lemma 2.1 (still under the assumption that
dim M > 3) aim at proving that for each z € [z, m(a,)] there exists a single
orbit v. € §(z) such that H, = §(z) — v. and that, furthermore,

Uze[zp miy1Ys C '12('7)

Hence, in particular, v, C 4(vy), which is an absurdity. We observe that, under
the assumption that A ¥ &, v1 must be different from . This is a consequence
of the fact that a periodic orbit must have a homoclinic point and therefore if
v were equal to v1 then, for all z € v, (—, z) N &(y) # &, and one can
check that this is in contradiction to the way that the function ¢, in Proposi-
tion 2.2, was chosen.

ProposITION 2.6. For each z € [x1, m(x1)] the map w,:H, — T defined by w.(w)
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= zif w € [z, m(z)], s a covering map. The flow restricted to T lifts, under w,
to the flow restricted to H,. Clearly =, *(T') is an open invariant subset of H,. ..

Proof. It is easy to see that =, is surjective. Every point in T is evenly covered.
To see this it is enough to consider for each z € T a product neighborhood rela-
tive to the segment [z, m(z)]. The other assertions are self-evident.

ProposrTioN 2.7. For each z € [x1, m(21)], the set $(2) — H.1is a non-empty
connected, closed and invariant subset of §(2).

Proof. The invariance of §(z) — H, and the fact that H, is open in s(z) fol-
lows implicitly from Proposition 2.6. Therefore it is only left to us to prove that
§(2) — H. is connected and non-empty. First, let us suppose that §(z) does not
contain a periodic orbit. In this case §(2) is diffeomorphic to R*™". Let F.be a
fence associated to . It is easy to see that =,  (F) is connected. Let F, = =, (F)
and let us define the injective and continuous map ¢.:F, — s(z) by ;bz(y)
s(z) N y(y). Here we are using the fact that every orbit in s(z) meets 7, in at
most one point, and meets s(z) in exactly one point. Again by the theorem of
invariance of domain it follows that ¢, is a homeomorphism onto its image. The
set F, is a covering space of F homeomorphic to "> X R. Let u:8"" X R —
F. be a homeomorphism. For each real number ¢, . (u(S8"* X {#})) is a home-
omorph of an (n — 3)-sphere in s(z), and therefore is the boundary of a com-
pact, connected set which we will denote by 4,. We can assume that if §; > 4,
then 4,° C A,°. Therefore, the sequence {A4,7}, n = 1, 2, ---, is a nested se-
quence of compact and connected sets. Hence Wy = Mh—; A4, is non-empty,
compact and connected. On the other hand, using the one-point compactifica-
tion of s(z) one sees that W_; = s(2) — U,Z_; A,° is either empty or else is
a nonempty connected set. -

Claim. W_; is empty. Let us suppose the contrary and letx € W_y, y € Wi
Then lim,,., d(§(2); f.(z), f.(y)) = 0. Since §(2) is simply connected, and F, is
a connected submanifold of codimension one in §(z), we have that §(z) — F, is
the disjoint union of two open sets Vo and V1, and we can assume that £ € V,
and y € V,. From the compactness of F one can verify that F, has a uniform
tubular neighborhood 7', totally contained in H,. Since lim,,., d(§(z); fi(z),
Fy)) = 0, and fi(z) € Vo, fi(y) € Vi for all ¢, there exists {, > 0 such that
fi,(z) and f,,(y) belong to H.. This implies that z, y € ¥.(1(8"* X R)) which
is absurd. Hence W_; must be empty. =

If we set W, = {y(y):y € Wy} then W, is also connected and §(z) — H, =
W.. This finishes the proof when §(z) does not contain a periodic orbit. If §(z)
does contain a periodic orbit then by considering the universal covering of §(z)
and lifting the flow, the metric, and the sets H., F'., and proceeding as before, we
prove that §(z) — H, is connected and non-empty in all cases.

ProposiTION 2.8. For each z € [x1, m(21)), the set §(z) — H, consists of a single
orbit v..
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~ Proof. By Proposition 2.7 the set §(2) — H, consists of either a single orbit.or

an uncountable number of orbits none of which is isolated. Let 4; = {z € [,
m(x1)]:8(2) — H. consists of a single orbit} and 4, = {z € [z1, m(21)]:8(2) —
H, consists of an infinite number of orbits}. Since z; € A;, 41 # &. Obviously
4, N4, = &. Using product neighborhoods one sees that A; is open and. if 4,
# (7 it also would be open. Since [, m(z1)] is connected, the proposition follows.

PropostTIoN 2.9. U.epy, mep1 v: C 4(y).

Proof. For each y € M let Cy, = {z € [z;, m(z1)]iv. € 4(y)}. Let z € Cy and
Yo € v.. Let K be a disc that contains y, and z in its interior. Let V be a product
neighborhood relative to K. Then it becomes clear that for every z € [z, m(z1)]
N V, we must have v. = v(p) with p € § (2) N 4(y), therefore z € C,. Hence,
Cy is open in [z1, m(z1)]. If 4(y1) # 4(y.) then Cy, N C,, = &. Since [z1, m(zl)]
is conncected it follows the proposition, because v,, = v C 4(v).

The assumption that A = ¢ leads, by Proposition 2.9 to the absurd conclusion
that 4(y) contains two distinet periodic orbits. Hence A = ¢f and we have
completed the proof of Lemma 2.1 when dim M > 3.

Proof of Lemma 2.1 when dim M = 3. Let A be defined as above. Then if
A # & again A is a closed invariant set that consists of periodic orbits. Let
2o € A. Then 4(xo) is an embedded copy of S' X R and the periodic orbit v (o)

separates §(xo) into two connected components W; and W each of Wthh is an
embedded copy of S* X R.

For every x € W, we define the functions ¢ and m as above. We can do this
since Wi is connected and so there exists a point ¥ 6 M such that m(z) € $(y)
for all z € Wi

The map m: Wy — §(y) is a homeomorphism onto its image, and this map
preserves the flow. Let F be a simple closed curve, contained in W; that is trans-
versal to the flow; then m(F) is a simple closed curve in §(y) such that if it inter-
sects an orbit then it has a unique point of intersection and m(F) is collared by
the flow.

ProrositioN 2.10. There exists a periodic orbit ¥ C §(y). Furthermore, m(Wl)
1s equal to one of the connected. components in which ¥ divides §(y).

Proof. If $(y) does not contain a periodic orbit, then m(F) is the boundary' of
a 2-disc, since, §(y) with its intrinsic topology is diffeomorphic to R’. The index
of the vector field (we restrict ourselves to the flow in s(y)) with respect to m(F)
is different from zero, since, under the circumstances,; we can homotop m(F) to
a differentiable simple closed curve transversal to the flow (a topological manifold
which is collared by a differentiable flow can be isotoped to a differentiable mani-
fold transversal to the flow. See [37]). But this contradicts the Poincaré Index
Theorem since there are no singularities. Hence, §(y) must contain a periodic
orbit which we call .

Now, let W; and W, be the two connected components in which 7 divides
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$(y) and let us assume that m(W;) C W,. Since 7 is a generic, attracting, periodic
orbit in §(y), there exists a differentiable simple closed curve «, contained in
W1, such that every orbit in W, intersects « in exactly one point. Let 6:a — m(F)
be the map defined by §(z) = v(z) N m(F). Then é is continuous and injective
and we must have 8(a) = m(F). Therefore W, = m(W:) and the proposition
has been proven.

Let H = U,cw, [z, m(z)]. Let us fix & € Wi For each z € [&o, m(d)] let H,
be the connected component of H N §(z) that contains z. For each z € [y, m(Zo)]
let w.: H, — Wi be the map defined by =.(y) = zify € [z, m(x)]. Then the proof
given in Proposition 2.6 works as well to prove the following:

ProrosiTioN 2.11. The map m.:H, — Wi s a covering projection for each z €
[#0, m(£0)]. The flow lifts, under ., to the flow restricted to H,, and =, (W) is an
open and nvariant subset of H.,.

Since dim M = 3, it follows that for each y € M, any orbit in §(y) separates
8(y) in exactly two connected components.

ProrosiTiON 2.12. For each z € [Ty, m(Zo)] there exists an orbit v, C §(2) such
that H, is one of the connected componenis in which v, divides §(z).

Proof. Let F C W, be a simple closed curve transversal to the flow in W,.
One proves easily that =, *(F) is connected. There are two cases

a) m, '(F) lifts to a simple closed curve in H.. In this case, proceeding as in
Proposition 2.10, one proves that there exists a periodic orbit v, in §(z)
such that H, is one of the connected components in which v, divides
§(z). For such a z we have proved the proposition.

b) H. doesnot contain a periodic orbit. In this case x,” (F') is homeomorphic
to R and this curve is collared by the flow in §(z). Let g.:m. ' (F) — s(2)
be defined by

9:(y) = v(y) Ns(2).

Then g, is continuous and injective and g.(x,” (F)) is an open interval in s(z)
(here we think of s(z), with its intrinsic topology as being homeomorphic to the
real line). Using the fact that F is compact one shows that =, (F) has a uniform
tubular neighborhood totally contained in H.,.

We claim that s(z) — g.(w, '(F)) is connected. If this were not the case, then
one can pick 2, 21 € s(z2) — g.(m. '(F)) lying in different components. Since
m; '(F) has a uniform tubular neighborhood, there would exist 7 > 0 such that
fr(zo) and fr(z1) are contained in H,, which is a contradiction. Therefore either
g-(7'(F)) = s(z) or else there exists a point 2 € s(z) such that g.(z " (F)) is
one of the components of s(z) — {Z}. Thus to prove the proposition we only need
to prove the following:

Claim. s(z) — g.(w, '(F)) # &. To prove this claim let us consider the set
N = U.cr [z, m(2)]. This set is homeomorphic to §* X [0, 1] and it is filled with
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the oriented and regular family of curves m, ' (F), for y € [&o, m(F)]. This family
determines a continuous flow on N without fixed points. Since each curve m, *(F)
obviously admits a transversal segment, we can apply Poincaré-Bendixon theorem
to conclude that the a-limit sets and «-limit sets of such curves are periodic orbits
of this continuous flow. Therefore, there exists a sequence of points {y;} contained
in =, (F), converging in M to a point 2, € N, and a periodic orbit v,, contained
in §(z) such that H,, is one of the connected components of §(20) — 7., Let
¥ € 7., and K a closed disc in §(2o) that contains % and 2, in its interior. Let V be
a stable product neighborhood relative to K. Let n be large enough so that y, € V.
Then one sees that y(p) Ns(z) € s(2) — g.(m.” (F)) forsome p € V N &(y,) N
#4(). This proves the claim.

For each z € [Z, m(Zo)] let v. be as in Proposition 2.12. Using exactly the same
arguments as in Proposition 2.9, one proves:

ProposiTioN 2.13. Uzé[io,m(io)] vz C A(y(20)).

Thusif A # & we arrive to the absurd conclusion that 4 (x) contains two dis-
tinet periodic orbits y(a0) and 7. Therefore A = & and we have proved Lemma,
2.1 for every dimension of M.

Hence, for every @ € 2 we have

(z, ©) NQ = &
and -

(=, 2) NQ = .
From the fact that Qo is compact we conclude immediately the following

LeMMA 2.2. There exists 8 > 0 such that if y1, y2 € u(Qo) with y» < e and if
Ly, 2] > B; then [y, yo) N Qo # .

Now we are able to prove Theorem 1.1.

Proof of Theorem 1.1. Let Q, be a source and « € Qo arbitrary. Let yi, 12 € u(z)
and 11 < .. By the expanding property of the foliation, there exists 7' > 0 such
that £[fr(11), fr(y2)] > B. Thus by Lemma 2.2 [fz(y1), fr(y2)] N Qo 7 &. There-
fore [y1, y2] N @ # . Since this happens for every pair yi, y» € u(z), with y; <
ye, it follows that u(z) N Qo is dense in w(z). Since Qo is closed it follows that
u(z) C Q. Since z was arbitrary «(Q) = Q. Therefore  is also a sink. Thus
Q(f:) = M. The theorem is proved.

§3. The Universal covering of a manifold supporting a codimension
one Anosov flow

In his paper on foliations [24] Novikov proves that a compact manifold M
admitting a codimension one Anosov flow has trivial second homotopy group
(therefore when dim M = 3 the universal covering of M is contractible). In this
chapter we prove a sharper result proving that in fact, the universal covering of
such a manifold is euclidean space. In particular, M is aspherical. From this re-
sult we derive some consequences related to the fundamental group of M. The
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center of the fundamental group is either trivial or else free cyclic. When dim M
=3 and the center, L, is non-trivial, then M is diffeomorphic to a principal circle
bundlé over a compact 2-dimensional manifold V, of genus greater than one,
provided that m(M)/L is torsion-free. This circle bundle is classified by a €
H*(V, Z), corresponding to the central extension 0 — Z — my (M) — m(V) — 0.
- First we will introduce some notations and prove several facts related to the
associated foliations in a codimension one Anosov flow. From now on f,: M — M
will' denote a smooth codimension on Anosov flow defined in the compact n-
dimensional manifold M. We will always assume that dim E* = 1. We will pro-
vide the universal covering of M with the complete riemannian metric which is
the lifting of a fixed riemannian metric in M. We will always assume that M is
oriented and that E* is an oriented line bundle. If we lift f, to the universal cover-
ing of M then this lifted flow is Anosov with respect to the lifted metric and we
introduce an ordering in its one dimensional strongly unstable leaves as in chap-
ter one, and use similar notations.

The following lemma about the C' codimension one foliation § can be proved
by the methods of Lemma (5.1) of [9] (see also [13]).

LemMa 3.1. Let j: 8" — M be a smooth immesrion of the circle into M, which is
transversal to the leaves of 8. Then j represents a nontrivial element of mi(M).

Lemma 3.2. For each leaf § € § the inclusion map 1:8 — M. induces a mono-
morphism i+:m1(8) — m(M).

Proof. Clearly, we only need to prove this lemma when § contains a periodic
orbit . In such a case y represents a generator of m:(§) and therefore we only
need to show any non-zero multiple of v is not homotopic to a constant in M.
It is easy to see that v is freely homotopic to a smooth curve ¥ C 4(y) which is
transversal to §. Hence by Lemma 3.1 no non-zero multiple of 4 can be homotopic
to a constant.

In all that follows # will denote the universal covering of M, with covering
proj jection p: M — M. Let us denote by W the foliation in 1 which is the lifting
of the stable foliation § and by w(z) the leaf through a point # € #. The one
dimensional foliation in M which is the lifting of A will be denoted by 41 and the
leaf through z by #(%). Let us identify m:(M) with the group of covering (deck)
transformations of the covering p: :M — M. Then each a € m;(M), thought of as
a diffeomorphism a: : M — B, preserves the leaves of W and 4. Furthermore, for
eachz € M, o:i(z) — u(a(m)) and o:w (&) — w(a(Z)) are orientation-preserv-
ing isometries.

As a corollary of the previous lemma we have:

- COROLLARY 3.1. Each leaf w € W is a properly embedded copy of R"™*

Remark 3.1. If h:R — M is a smooth embedding of the real line which is trans-
versal to W then h(4) and k(%) lie in different leaves of ‘W if #; 5= #. Otherwise,
there would exist a simple closed curve transversal to W and homotopic to a
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constant. One gets a contradiction if one applies the arguments of Lemma 5.1 in
[9]. Therefore, each w € W does not self-accumulate.

Lemma 3.3. If § € § then § is dense in M.

Proof. Let D denote the closure of §. It suffices to show that D is open in M.
Let C = {z € M:u(z) N § % &}. Then, C is open in M. Let s prove that C = D.
If z € D, let V be a product neighbrohood of z. Then § 1 V = & and u(z) N
§ NV = . Hence z € C. On the other hand, let z € C be a point belonging
to a periodic orbit of period T > O and let ¥ € u(z) N &. Since limy.e f-nr(y) = 2,
it follows that z € D. By Corollary 1.1 the periodic orbits are dense. Therefore
C < D. So we have that D = C.

Remark 3.2. Analogously, each 4 € U is dense in M. Thefollowing is obvious:
Lemma 3.4. Foreach z € M, Uaer,an a(w(Z)) is dense in /7.

Remark 3.3. We observe that the leaves of the strongly stable or strdngly
unstable foliations may not be dense in M. Such is the case if the flow is a suspen-

sion.
Let U € ‘ﬁand :f)l, T2 E @ With T < To. Let

A&, &) = Uscacs, w(2).
COROLLARY 3.2. The set {a(A(Z1, %)) a € m(M)} is an open covering of M. ‘
The following is a description of the holonomy of §: '

ProposiTiON 3.1. Let w € W be such that there exists a nontrivial o € m(M)
such that a(w) = w then:
i) w s the lifting of 8 € 8 where § contains a periodic orbit v. Let T > 0 be
the minimal period of v.
ii) The subgroup of m (M) that leaves w fixed, which we will denote by G(w),
" 4s free cyclic. Let & € w be such that p(Z) € ~. Then if B is an approprmte
generator of G(w), we have 8" (%) = fur(&) for all n.
iii) If # € w and p(&) € v then for every §j € (%) and every integer n,

8" (w(§)) Na(z) = .
iv) Each B" € G(w) determines a C'-diffeomorphism hpnu(x) — (%) de-
fined by hgs(y) = B"(w(y)) N %(%).

This map has % as its unique fixed point and it is generic. The correspondence
B" —> hgn sets an isomorphism between G(w) and the free cyclic subgroup of
Dift'(4(z) ), generated by hs. If W is of class C” with 7 > 1 then A is also of class
C. .

In all that follows d will denote both the distance given by the fixed riemannian
metric in M and the distance in 7 which is obtained by lifting the riemannian

metric in M to M.
We will denote by ’W and AU the foliations which are the lifting of $ and U
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respectively. Their leaves through a point € # will be denoted by w(z) and
u(x), respectively. It follows from Corollary 3.1 and Remark 3.1 that for each
x € M,w(x) and 4(z) are properly embedded copies of R~ and R, respectively.
Given two points z, y € @ € W, d(w; z, y) will denote the infimum of the lengths
of piecewise smooth paths which lie in % and join z and y. By hyperbolicity we
have lim;,, d(10; fi(2), fi(y)) = lime, d(fi(2), fi(y)) = O for all v € W and
all z, y € 0.

ProposiTiON 3.2. Given N > 0, there exists T > 0 such that d(f(z),z) > N
Jor all t such that | ¢| > T;and all x € M.

Proof. It suffices to show that given N > 0, there exists T > 0 such that
d(fu(z),z) > Nforall¢ > T and all z € M. Let us assume the contrary. Let
K < M be a compact fundamental domain (i.e. a compact set K such that
p(K) = M). Then, under the assumption, there exists a sequence ¢, — « and
a sequence {z,} in K such that z, — y for some y € K and d(f,,(z.), 2.) < N.
Let C be a product neighborhood which contains y in its interior. We can assume
that the sequence {z,} is contained in C. Then, f, (C) N K = &, where K =
{x € M:d(z, K) < N}. But one can see immediately that this implies that
4(y) self-accumulates which is a contradiction since % (y) is a properly embedded
copy of R®.

Remark 3.4. From Proposition 3.2 it is very easy to prove that given any com-
pact set K C M and N > 0, there exists T > 0 such that K N f,(w(K)) = &
for all ¢t with | ¢ | > T, where %(K) = U.ex w(z).

ProposiTION 3.3. If w € W s such that there exists a € w (M) with a(w) = w,
then, given N > 0 arbitrary, there exists an integer m > 0 such that d(, o" (1))
> N forallw C wand everyn € Z suchthat|n| > m.

Proof. For each 8,7 > 0Oand w C wlet A(y, %) = {zx € w:z = f,(y) for some
y€wand |t| < g}. Let A5(®) = {z € wid(z,w) < §}. A simple argument using
Remark 3.4 shows that given 6 > 0 there exists T > 0 such that A4;(w) C
A(T,w), for all 7 contained in w. By Proposition 3.1 there exists  ## 0 such that
a"() = fn () for all n € Z. From this the proof is immediate.

Our next aim is to compare the growth of d(w, z, y) with respect to d(z, y).
This is done by means of Lemma 3.5 below. First, we will need some more defini-
tions and propositions.

Letu > 0and Q, = {(z,y) € M X M:z,y € sforsomes € $ and d(s; z, y)
= u}. If we define 7:Q, — M by 7 (z, y) = z, then using the exponential map we
see that, for small p, = is a continuous locally trivial fibre bundle over M with fibre
8" ~*. We take such a u and observe that Q, is a compact subset of M X M.

Remark 3.5. It follows directly from hyperbolicity that if z, y € M are such
that ¥  y and z, y € s for some s € 8§, then there exists ¢t € R such that (f.(z),
fi(y)) € Q.. Furthermore, given T > 0 there exists n > 0 such thatif z, y € M
are any pair of points which lie in the same strongly stable leaf s € $ and have the
property that d(s; z, y) > #, then (f.(z),f«(y)) € Q. for somet > T.
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For each (z, y) € Q,, let (z, y) denote the set of smooth paths a:I — M
such that «(0) = z, a(1) = y, and « is homotopic with end-points fixed to a path
B8:1 — M such that 8(I) C s(z).

Given a curve a:l — M let @(7) = a;(7) 4+ éu(7) + @i(r) denote the de-
composition of the tangent vector &(7) into its components with respect to the
splitting TM = E° ® E* & E'.

For any smooth a:I — M let

f(a) = f(ly I &(7) || d=,
denote its length and let

t(a) = [o] a(r) || dr.

ProrpostTionN 3.4. There exists > 0 such that any smooth « such that (d(O),
a(l)) € Q, and £;(a) < 8 does not belong to 2(a(0), a(1)) (i.e., a s not homotopic
with end-points fized to a curve lying entirely in a strongly stable leaf).

Proof. Let @ C M be an unstable leaf in M. Let ®:% X D™ — M be a diffeo-
morphism onto a tubular neighborhood of @ obtained, as usual, via the exponen-
tial map. More precisely, let (Vi(x), - - -, Vaa(2)), 2 € %, be a smooth trivializa-
tion of the normal bundle of % by an orthonormal framing. Let D™ = {(#, - - - ,
tns) € R™2: 37717 < 1} and let ®:@ X D™ * — M be defined by

fI’(QJ, (tl, Tty t"—Z)) = €XPg (E{‘_Z ftiVi(x))'

Then for ¢ > 0 sufficiently small ® is an embedding onto a closed uniform tubular
neighborhood, U, of 4. It is a simple matter to see that we can choose ¢ small so
that for any « € @ the set A(2) = {y € w(z):d(w;z,y) = u} is disjoint from 0.
We go through all this because we want to emphasize the following facts which
are easily verified: ’

'llhere exist constants ki, k» > 0 such that for any z € Interior () and v €
T-M

ki | D27 (0) [ < [0 ]| < ko || D27 (o) [Is

where ||-||; denotes the norm with respect to the product metric in @ X D"

Therefore, there exists 8 > 0 such that if «:] — M is any curve such that a(0)
€ 4 and £(a) < & where

b(a) = [o] é(r) [l dr

and a,(7) denotes the strongly stable component of the tangent vector corre-
sponding to the splitting TM = E° @ E* @ F'; then

a(l) C @ (u X <% D"“2>>.

Hence, no such path can be the lifting of a path in M which is homotopic, with
end points fixed, to a curve lying in a strongly stable leaf.
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Since p(@) is dense in M, it follows that any curve « such that « € Q(a:, y)
for some (z, y) € @, must necessarily satisfy £:(a) > 6.
This proves Proposition 3.4.

ProposiTION 3.5. Given k > O there ¢xists T > 0 such that if (z,y) € Q,‘ and
a € Q(z y) then £(f_oa) > k for all t > T.

Proof. Let us choose a riemannian metric for which E° and E* @ E' are or-
thogonal. Naturally, such a metric may only be continuous. Let #(«) denote the
length of the smooth curve a with'respect to this new metric. There exist constants
ki, ke > Osuch that ky |5 || < || v || < k2 || 7 ||, where| | denotes our original
smooth norm and ||~ || denotes the norm for the new metric. Let £,(a) =
Jo || @(7) || dr. Then there exists § > 0 such that if (z,9) € Quand & € (z, y)
than £,(a)- > §. Therefore for such a, £(f_rca) > kil(f-va) > kb, (f_oa) >
K3¢" for suitable positive constants K and A which are obtained by hyperbolicity
and the comparison of norms. Hence, we can take 7' > (1/\) log (k/K3). )

‘LemMa - 3:5. Given' k > 0, there exists ¢ > 0 such that for all ® € W and all
z, y € W such that d(®; x, y) > ¢, we have d(z, y) > k. .

" Proof. The proof follows directly from Proposition 3.5 and Remark 3.5.

- Let z € M be arbitrary. Since /7 is simply connected and w(z) is a closed, sim-
ply connected smooth submanifold of codimension one in M it follows that there
exists two open, connected, simply connected and disjoint sets V1(z) and V,(z)
such that M — w(z) = Vi(z) U Vz(z) and aV(z) = dVa(2) = w(z). Hence, if
21 and 2 lie in the same leaf % € A and if 2z, < 2, then there exists an open and
connected set B(zi, #) such that (21, z2) C B(z, z) and B(z;, ) = w(z) U
’LU(Zz) Obv1ous1y, B(z, #) is saturated by the leaves of W. With these notations,
together with the definition given below Remark 3.3, we have the following:

PropoSITION 3.6. For all @i € W and all x, y € @ such that z < y we have thé
identity: B(x,y) = A(z, y).

Proof. Clearly, A(z, y) < B(x, y). Therefore it is only left to prove that if
7 € B(z, y) thenw(a;) N (2, ¥) # &. Let us assume the contrary. Let L =
{z: € B(z, y):w(z) N (z,y) = S}. Then if L # & we will arrive to a ¢ontra-
diction. If 4L is the topological boundary of L, then using long product neighbor-
hoods one sees that dL is a union of leaves of ‘W and, by hypothesis 0L = &f.
Let z € aL. It follows immediately from the definitions of B(z, y) and L that
2 € B(z, y) and w(z) N[z, y] = &. For every § > 0 there exists z;  z such
thatz; € (2 —'8,2z + 8) and w(z1) N (z,y) #* &. We can assume, without loss of
generality, that z; € (2 — 8, 2) (the arguments below are exactly the same when
21 € (2, 2+ 6)). Hence, w(z) N (z, y) = & for all z, € [z, 2). This follows
trivially from the fact that each w € %W separates M and also from the fact that
A(z, y) is connected. Therefore, we have a one-to-one, continuous map ¥:{z, 2)
= (z, y) defined by ¥(z) = w(z) [V (2, y). That this map is well-defined and
one-to-one follows from Remark 3.1. Since W is.a C" foliation it follows that, in
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fact; ¥ is a C" map. Let 2y = ¢(21) and @, = sup ¢([z, 2)), then [z, z.] C [z, yl.
Let ¢:[21, 22] — R be defined by ¢(2) = ¢ where ¢ is the unique real number such
that f,(¢(2)) € w(Z). Then using long product neighborhoods one sees that ¢
is continuous. We claim that under our hypothesis

Supﬁﬁ[:vl,zz) |‘P(2) | < o,

If this were not the case, then we could take % € W such that 1 contains a point
& such that the orbit through p (&) is periodic or prime period, say, r > 0 and such
that b N [z1, 2:) # &. We can do this because the periodic orbits are dense in M.
If | ¢(2) | were unbounded, then since p(w(%)) is dense in M and p(w(E)) =
UOS;SJ flp(@(Z)); and also because d([21, 23], [z1,2]) < ® we would conclude the
existence of N > 0 such that d(w@, a" (1)) < N for arbitrarily large values of n,
where o € m1(M) is such that a(w(E)) = w(E), as given by Proposition 3.1. This
would wontradict Proposition 3.3. Hence | ¢(Z) | is bounded, and it is easy to see
that this implies that

SUDs€ 1,29 A (2, For (W (2))) < 0.
On the other hand if L = &f
, SUP3€ (o129 A(B(2); 2, Forar (¥ (2)))
has to be unbounded, because if it were bounded then using a stable long product
neighborhood, relative to a closed disc contained in w(z), which contains 2z, and
which has sufficiently large diameter one could prove immediately that z € w(x2)

which would be a contradiction. Thus if L % & we have a contradiction be-
cause Lemma 3.5, implies that

SUPz€ 1 e) A (2, Fon (W (2))) = .

Hence, A(z, y) = B(z, y). Using Proposition 3.6 the following proposition fol-
lows easily.

ProposITION 3.7. Let 2; < yi, 4 = 1, -+, m be pownts in M such that N =
Uy A (i, y:) is connected. Then for any two points by, by € N with w(by) # w(by),
there exists an embedding u:I — M, transversal to W, such that p(0) = by, u(1) = b,
and p(I) C N.

' PRQPOSITION 3.8. Let w1, we € W be such that wi 7 ws. Then, there exists an
embedding u:I — M such that p is transversal to W, u(0) € wy, and u(1) € w..
Furthermore any two such embeddings meet exactly the same leaves of .

Proof. Fix ¢,y € M with z < y. Let 21 € w; and 2, € w,. Let 6:1 — M be a
path such that §(0) = ; and §(1) = x,. Then, by Corollary 3.2, compactness,
and- connectedness of I, there exists a1, -+, a, € m(M) such that N =
U™, a;(A(z, y)) is connected and 8(I) < N. By Proposition 3.7, there exists
u:l — M, transversal to W, such that u(0) = z; and u(1) = . That any two
smooth paths, transversal to W, which join w; with w, must meet the same leaves
of W is an easy consequence of Proposition 3.6.
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We can introduce a total order in W. We say that wy < w. if there exists a
positively oriented transversal u:I — M such that 1(0) € wyand u(1) € w,. The
relation “<” is obviously reflexive, transitive and antisymmetric by the previ-
ous propositions.

ProposITION 3.9. There exists a smooth embedding h:R — M such that h(R)
intersects, transversally, every leaf of “W.

Proof. Let & be the set of all embeddings 7:R — M which are transversal to W.
‘We introduce a preordering in & as follows: we say h < hy, if for every # € R
there exists &, € R such that w(hi (1)) = w(ha(f2)). Given a totally ordered sub-
set of & it is easy to construct an embedding h:R — M which is an upper bound
for that subset. Thus, by virtue of Zorn’s Lemma, there exists a maximal element
h € &. This maximal embedding meets all leaves of W.

CoROLLARY 3.3. There exists a C' submersion g:# — R such that W =
{g7'(t):t € R}. That is to say, W comes from a C' submersion onto the real line.

Proof. Let £ = h(R) where h:R — M is an embedding that meets, trans-
versally, every leaf of W. Let g: M — R be given by g(z) = r (w(z) N £).
Then g satisfies the requirements in Corollary 3.3. because W is a C" foliation.

COROLLARY 3.4. There exists a monomorphism k:m(M) — Diff* (R) given by
K(a) = goaoh where h and g are as in the previous corollary. For each a € m (M),
k(a):R — R is a C" diffeomorphism that has either no fixed points or else the fived
points are generic.

Proof. That k is a homomorphism follows from the fact that m (M) acts on W.
If the kernel of k were nontrivial then every leaf of W would not be simply con-
nected, which is absurd. If k(a) has a fixed point then due to the holonomy of ‘W
this fixed point has to be generic.

By Corollary 3.3, there exists a C* submersion g:# — R which induces W.
Next we show that each compact set in /7 is contained in an open subset of i1
which is diffeomorphic to euclidean space. We will also show that ¢ is locally
trivial. All of this is accomplished by means of the global hyperbolicity of f..

We recall that we had provided M with a fixed, smooth, riemannian metric
{, ). Let V be the smooth riemannian connection given by this metric. The con-
nection V induces a connection V() in each leaf § € §. We have a C* map H;:Gs
— M, where G; = {v € E° @ E":||v| < 8} is the 3-disc bundle associated with
the C' riemannian bundle E° @ E' and where the riemannian metric in E* @ E'
is the one induced by ( , ). This map is given explicitly by

Hi(v(z)) = exps (v(2)),

where v(x) is a vector in the fibre over xz, and exp, is the exponential map at z.
of the leaf §(x), with respect to V($(x)). For 6 > 0 sufficiently small Hs maps,
for each x € M, the ball

Bi(z) = {v(z) € E' @ E:||v(z) | < 8.
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diffeomorphically onto a closed ball which lies in §(x) and contains z in its in-
terior. Let (, ) be the metric in M which is the lifting of ( , ), to the universal
covering p: M — M. Then p is a local isometry with respect to these two metrics.
Let £° @ E' be the bundle in M which covers E° @ E" and, so, is tangent to W.
Using a similar definition asthat of H;, we obtain a C' map F;:Gs; — M, where
G ={v € B @ E':|5| < 8. Here | " || denotes the norm with respect to
(", ), and we are taking & as above. Clearly, poF; = H;o(Dp | G;). Then, F;
maps
Bi(2) = {v(2):0(2) € B @ E:':] 0(@) || < 9}.

diffeomorphically into a closed ball in w(Z).

Let h:R — M be an embedding which meets, transversally, every leaf of W.
Let T:R X R — I be defined by T(t1, ) = fi,(h(t1)). Then T is a proper em-
bedding of R*into M which is also transversal to W. Let

P; = {0(2) € Gz € M, (u(2), X(%)) = 0}.

where X(z) = (d/dt)(fi(%)) |i=. Then, P; is a C* bundle over M with typical
fibre the closed (n — 2)-dise,
D" = {a € R":fla| < 1}.

and projection (v(%)) = &. Let K; = {v(&) € Ps:& € T(R®)}. Then K; is the
total space of the bundle = | K;:K; — T(R?). Since T'(R?) is contractible this
bundle is trivial. Hence, K; is diffeomorphic to R* X D" . Let F = F; | K;. For
8 > 0 sufficiently small, F is a C* embedding. Therefore, F(Kj;) is also C* diffeo-
morphic to R? X D" %. We denote by A4; the interior of F5(K;). We have that A,
is C" diffeomorphic to elucidean space through a C" diffeomorphism that takes the
foliation induced by W in A; to the foliation in R™ whose leaves are the hyper-
planes @; = constant.

If we let vi, = {T(ty, t2):t € R}, then Ny, = F(K;) N w(h(#)) is a closed
tubular neighborhood of the curve #.,, considered as a submanifold of w(h(t)).
In fact, what we are just doing is to obtain a tubular neighborhood, in w(h(#) ),
by means of Fermi coordinates.

It follows from the compactness of M and from the fact that p: M — M is a
local isometry, that N, is a uniform tubular neighborhood, in w(k(#)), of the
curve v,,. Hence, for any point & € w(h(#)) there exists ¢, > 0 such that f.(z)
€ N, for all ¢ > %. To see this consider the strongly stable leaf through z,
w(%), and let § = w(&) N v,,. Then since lim,., d(f:.(z), f:(7)) = 0, it follows
that for some # > 0, f.(Z) belongs to the e-neighborhood of v.,, for all ¢ > t.

ProposrTioN 3.10. Every compact set K < M s contained in an open subset
whach s diffeomorphic to euclidean space.

Proof. Let K C M be any compact set. By the above remarks, for every & € I
there exists t(z) > 0 such that f.(%) is contained in 4; for all ¢t > #(%). Since K
is compact, there exists T > 0 such that fr(K) C A;. Therefore K C f_r(45).
The proposition follows since f_r(A;) is diffeomorphic to euclidean space.
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We recall the following lemma of Brown and Stallings [6] [31]: Let M be a
paracompact manifold such that every compact subset is contained in an open
set diffeomorphic to euclidean space. Then M itself is diffeomorphic to euclidean
space.

TarorEM 3.1. If fi: M — M 1is a codimension one Anosov flow on the compact
manifold M, then the universal covering of M s diffeomorphic to euclidean space.

The following is a sharper result:

TeEOREM 3.2. There exists a C'-diffeomorphism f: M — R”, taking leaves of “W
onto the hyperplanes x; = constant.

Proof. To prove the theorem it suffices to show that there exists a complere
nonsingular, smooth vector field defined in all of #, which is transversal to W,
and such that every orbit of this vector field meets every leaf of W. This is ac-
complished by constructing a suitable vector field in 4; and then “blowing up”’
this vector field to all of M, by means of f..

Since M is compact and f; Anosov, it is easy to see that there exists + > 0
such that f,(4;) C As., where A; denotes the closure of A;. Then, N = A; —
f(4s), is a fundamental domain, in the sense that for every z € M — T(R?)
there exists a unique integer m such that fm,(z) € N. Then, via F:K; — M, and
using the fact that F is essentially a C' diffeomorphism from R* X D" into /M
which takes {point} X D" into leaves of W, one can easily construct a complete,
smooth vector field ¥ in a neighborhood of the smooth manifold with boundary
Aj; with the following properties:

i) Y is transversal to W
ii) Every orbit of ¥ meets every leaf of W
iii) There exists a neighborhood, 0, of 8(f,(A4s)) such that for every z € ©

Y(z) = Df(Y(f=(2))).

Define the vector field Z: M — TH by
J Y(z) if z€ 4,
Z(z) = A Dfme(Y(Fomel))) if £ ¢ A; and m is the unique integer such that
\fmr(z) € N.
It follows directly from the constructions above that Z is a well-defined, complete,
nonsingular smooth vector field such that every orbit of Z meets, transversally,
every leaf of ‘W. Thus, we have proved the theorem.
We observe that Theorem 3.2 implies immediately that g: i/ — R is a locally
trivial fibre bundle.

Remark 3.6. Theorem 3.1 is false if the Anosov flow is not codimension one.
For example, if Th(M) is the unit sphere bundle of a compact, smooth manifold
M with negative sectional curvature and if n = dim M > 2, then, since

ma(Toy(M)) =

T1(M) cannot be covered by euclidean space.
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We have the following obvious corollary:
COROLLARY 3.5. If n = dim M < 4 and M admits an Anosov flow then M = R™.

COROLLARY 3.6. Let fi: M — M be a codimension one Anosov flow on the com-
pact, connected, smooth manifold M. Then

1) M is an Eilenberg-MacLane space K(m (M), 1)

2) m(M) has finite cohomological dimension.

3) m(M) has no elements of finite order.

4) Let diim M = n. Then, every locally-flat embedding f: 8™ — M can be ex-
tended to an embedding of the closed n-disc, H:D™ — M. Therefore M s ir-

. reducible.

5) If x € M 1s such that §(z) does not contain a periodic orbit then any « €
mi( M, x) can be represented by a smooth curve transversal to 8.

Proof. We will only prove 4), since 1), 2) and 3) are standard (see [17]) and
5) follows from the fact that a(w) 7 w for all o € m (M) where w € W denotes
a lifting, to M, of §(x). ‘

By Theorem 3.1 there exists a covering map r:R" — M. We recall that a topo-
logical embedding f: 8" — M™ is said to be locally-flat, if for every x € 8™
there exists a neighborhood U of f(z) in M", and a homeomorphism of pairs

h:(0, 0 NFS™™)) = (R, R™™). (See [18])

Now, let f:8" ™ — M be a locally flat embedding. Since » > 3 by hypothesis,
there exists an embedding f: 8"~ — R" such that wof = f. We have that f is also
locally flat since m is a local homeomorphism. By Schoenflies Theorem (M.
Brown [5]), f extends to a topological embedding F: D" — R". Then F(D") pro-
jects into M, under , in a one-to-one fashion. Otherwise, there would exist a
nontrivial « € m (M) such that «(F(D™)) N F(D") s . Therefore, either
a(F(D™)) < F(D") or else o *(F(D™)) C F(D™). By Brower’s Fixed Point
Theorem, « would have a fixed point. This would be absurd. Thus 4) is proven
by setting H = moF.

‘Now we will assume that f,: M — M is a codimension one Anosov flow, such
that § is a C* foliation. Then, W is also a C” foliation. By Corollary 3.4, there
exists an injective representation k:m (M) — Diff’(R). In the following theorem
we will think of each a € m(M) as a C*-diffeomorphism a:R — R. In all that
follows L will denote the center of m ().

‘_THEOREM 3.3. The center of m(M) is either trivial or else it is free cyclic.

Proof. Suppose L is non-trivial and let « € L be a non-trivial element. Then «
cannot have a fixed point. Let us suppose the contrary and let «(t) = ¢. Then
considering either a or o™, we can assume that &(¢) < 1 and that U C R is a
neighborhood of ¢ such that MNaso a"(U) = {t}. Since the periodic orbits are dense
in M, there exists a nontrivial 8 € m(M), and € U,  # ¢, such that 8(f) = &.
This contradicts Kopell’s Lemma 1 (a) in [19]. Therefore has no fixed points.
Let ¥y € m(M) and ¢ € R be such that v(¢) = ¢ and let L(¢) be the orbit of ¢
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by the center of m(M). Then for any { € L(t), v(f) = L It is easy to see that if
L = Z, then L(¢) is dense in R. Since v has only isolated fixed points, it follows
that L must be isomorphic with Z.

CoroLLARY 3.7. If L ~ Z, then there exists a monomorphism k:m(M)/L —
Dif? (8Y) such that if k(a): 8" — S has a periodic point, then either k(&) is struc-
turally stable or else & is an element of finite order in m(M ) /L. Furthermore, m(M)/
L s not abelian.

Proof. Let «:R — R be a generator of L. Since « has no fixed points we may
assume, using a new reparametrization of R if necessary, that « is the translation
a(t) = t + 1. For each B € m(M)/L, we define k(B): 8" — S by k() (™) =
€™ where B:R — Risa representative in the coset 8. It is easy to verify that
k is well defined and a monomorphism. The rest of the corollary follows from the
holonomy properties of § and Kopell’s Lemma.

TarorREM 3.4. If dim M = 3 and L = Z then M admits an effective action of S*
without fized points. If m(M)/L is torsion free, then mi(M) /L s isomorphic to the
fundamental group of a compact surface M, of genus greater than one. Furthermore
if a € H* (M®, Z) corresponds to the central extension a:0 — Z — m(M) —
m(M*) — 0, then M is diffeomorphic to the principal circle bundle, £, associated to
a. Hence, M admits a principal circle action. Both foliations § and 4l can be made
transversal to the orbits of this circle action by differentiable isotopies of M and there
is an inequality |x(£)| < |x(M")|, where x(£) and x(M") denote the Euler Char-
acteristics of the circle bundle and M*, respectively.

Proof. By Waldhausen ([35], [28]) every irreducible, orientable, closed three
manifold, which is aspherical and with non-trivial center in its fundamental
group, admits a smooth and effective action of S'. By the results of Conner and
Raymond [7] [28] it follows that if L & Z, then this action must be principal
and that M — M/ §' is classified by the extension a € H* (M®, Z). William Thurs-
ton’s Thesis [33] says that under our hypothesis the foliations § and 4 can be
made transversal to the orbits of this principal circle action. The inequality
follows from a result of Wood [38].

Remarks 3.7. Theorem 3.1 says that if f,;: M — M is a codimension one Anosov
flow, with M compact, then =, (M) is a uniform space form. It is not known which
discrete groups can act freely, properly discontinuously and uniformly in R™
(see Wall [36] for space form problems). It is known [36] that a free poly-cyclic
group of rank n (a P-group of rank n, [36]) acts freely, properly discontinuously
and uniformly in R".

We conjecture that if (M "*") is a P-group and if M"*" admits a codimension
one Anosov flow fi: M — M™* then f, is topologically conjugate to the sus-
pension of a codimension one hyperbolic toral isomorphism. Clearly, if f,: M+ —
M™ is topologically conjugate to a hyperbolic toral isomorphism f: T" — T*,
then, since m(M) = Z" X ;Z (semidirect product), m(M) is a P-group of rank
n.
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If dim M = 3 and if = (M) is a P-group then it follows from a theorem of
Stallings [30] (we recall that M is irreducible) that M fibres over S' with the torus
T® as fibre. When dim M > 5 and m(M) is a P-group it follows from Farrell’s
thesis ([8] [36]) that M fibres over S'. Thus the conjecture seems to be true.
We also conjecture that Theorem 3.4 remains true when dim M > 3. That is to
say, if m(M)/L ~ Z then M admits an effective, smooth action of S". Theorem
I1.7 of [11] somewhat supports this conjecture.

§4. Existence of global cross-sections for codimension one Anosov flows

In this chapter we give a necessary and sufficient condition for the existence
of a smooth global cross-section for a codimenison one Anosov flow fi: M — M.
The conditions are given in terms of the first integral homology group of M, and
also in terms of the way in which the periodic orbits, oriented by the flow, and
considered as integral 1-cycles, enter into this group.

Since the periodic orbits are dense in M, one expects, intuitively, that if the
periodic orbits are, homologically positive multiples of a particular one, then the
flow admits a global cross-section. This is the germ of the idea that led us to
Theorem 4.1.

If a codimension one Anosov flow f;: M — M admits a global cross-section
=", then the Poincaré map f:Z" — =" induced on this cross-section is a
codimension one Anosov diffeomorphism. Since Q(f,;) = M we have that Q(f) =
=", Then it follows from Franks (Theorem 6.3 of [9]), that =" is homeo-
morphic to the (n — 1)-torus, 7" = 8§ X --- X &, and that f is topologi-
cally conjugate to the hyperbolic toral isomorphism induced by f«: Hy (=", Z) —
Hy(Z", Z). From this we conclude that if a codimension one Anosov flow
admits a global cross-section =", then it is topologically equivalent to the sus-
pension of a hyperbolic toral isomorphism.

Definition 4.1. Given a diffeomorphism f: N” — N”, let N (f) be the smooth
manifold obtained as the quotient space of N” X R under the free and properly
discontinuous action of Z given by ¢m(z,t) = (f"(z),t+ m), m € Z.

Let ,(f):N""(f) — N"(f) be the flow induced by the flow ¢;(z, s) = (=,
t + s). Then, (¥.(f) ;N""(f)) is called the suspension flow associated with .

Definition 4.2. Let g.:N" — N" be a nonsingular, smooth flow on the com-
pact, connected smooth n-manifold N. A compact, connected, codimension one
smooth submanifold =" < N™ is called a cross-section for g, if

1) =" meets transversally the flow.

2) For every z € =", there exists ¢(z) > 0 such that g.o(z) € ="

If 2" is a cross-section for g;:N" — N", then there exists a smooth repara-
metrization §,:N” — N™ such that §;(Z"") = =" . Then §;: 2" - 2" " is a
diffeomorphism called the Poincaré map of (g.; ="*; N"). For each z € N™
there exists a unique t(z) € (0, 1] such that ¢.)(z) € =", and the smooth
map F:N™ — 8" given by F(z) = ¢"*® is a locally trivial submersion. Therefore,
if g;:N" — N" admits a cross-section =", then N" fibres over S' with fibre
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=", and N™ is obtained from =" X I by attaching differentiably the ends
through §i. As a differentiable manifold, N* depends only on =" and the
pseudo-isotopy class of ¢i. Furthermore, m(N") = m(Z"") X,2Z (sermdlrect
product), where o: Z — Aut (m(Z")) is glven by

p(m) = (f™)eim(Z") — m(2™).

If f:N" — N" is a diffeomorphism and (¥.(f), N**'(f)) its suspension flow
and if 7:N™ X R — N""'(f) denotes the quotient map, then =(N™ X {0}) pro-
jects onto a cross-section for ¥,(f). We have a natural fibering F;:N" " (f) — §'
given by Fy(m(z, 1)) = "

If a flow g,:N" — N adnnts a cross-section 2", with Poincaré map ¢:
=" — =", then there exists a diffeomorphism h:N™ — 2"(g,) such that the’
fbllowing diagram commutes:

N )

jg: - ‘lllft(gl)

N s |
THEOREM 4.1. Let fi: M™ — M" be a codimension one Anosov flow on the com-
pact, connected, orientable smooth manifold M. Then f. is topologically equivalent
to the suspension of a hyperbolic toral isomorphism A:T"™ — T if and only if
rank (Hi(M, Z)) = 1, and the periodic orbits represent non-trivial elements in
the free part of Hi(M, Z).

Proof of necessity. If fixM"™ — M" is topologlcally equlvalent to the suspension
of A:T™ — T", then m(M) = Z"" X ,Z. That is to say, m(M) is the
semidirect product of Z" with Z, via the homomorphism ¢: Z — Aut(Z"™)
given by o(m) = A™:Z"" — Z" . In other words, m:(M) consists of pairs
(@;m) where @ = (al, e, @n1) € 2", m € Z; and multiplication is given by
(@;m1) (@;ms) = (& + A™(&);m + ms). The subgroup G = {(a;0):
@ € Z"'} is normal. Since m(M)/G & Z it follows that [m(M), m(M)] C G.
On the other hand, let (@; 0) € G be arbitrary. We want to solve in the group
m1(M) the equation

(@;0)™ = (0;1) (b50) (0; —1) (—b;0).

where 0 = (0, ---,0) and m € Z. That is to say, we want to find m € Z and
b € Z", such that (a;0)™ is the simple commutator [(0; 1), (5;0)]. This is
equivalent to findingm € Z and b € Z" " such that ma = (4 — I)b. Since 4 is
hyperbolic, it follows that A — I is invertible in the rationals and from this one
obtains the required m and b. From this it follows immediately that rank (H.(M,
Z)) = 1. Since f, is topologically equivalent to a suspension, there exists F: M —
S' such that restricted to any periodic orbit, has positive degree. Hence, all
periodic orbits represent positive multiples of a suitable generator of the free
part of Hiy(M, Z).
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Proof of sufficiency. Conversely, suppose that rank (Hi(M, Z)) = 1 and that.
all periodic orbits represent non trivial elements of the free part-of Hi(M, Z)..
Let. W:m (M, 25) — Z be the homomorphism given by ¥ = mop where :m (M,
%) — Hi(M, Z) is the Hurewicz homomorphism and =: H:(M, Z) — Z is the
projection homomorphism onto the free part of Hy(M, Z) Then, since §" is
asphencal there exists a differentiable map g:(M, zo) — (8, 1) such that
ge:m(M, z) — m(S", 1), isequal to ¥ and such that g restricted to any periodic.
orbit has nonzero degree Furthermore, as g« is an eplmorphlsm We can assume
that 1. € S'is a regular. value of g and that N™™ ' = g7 (1) is a connected sub-
manifold of M. That we can choose g such that g* (1) is connected is contained
in the proof of the fibration theorem of Browder and Levine [4], _and it also fol-
lows by the methods of Stalhngs [30].

Since N™™ does not disconnect M, we can “spht” M along N -t . That is to
say, there exists a smooth, connected manifold W whose boundary, aW con-
sists of two submanifolds N; and N each one diffeomorphic to N™; and if we
“glue”, differentiably, N1 and N; by means of a diffeomorphism h:Ny— N, then
the resulting smooth manifold M is diffeomorphic to M by a dlffeomorphlsm
F:M — M such that F(N,) = F(N,) = N"7. Let M be the smooth manifold,
without boundary, obtained from W X Z, by identifying N2 X {m} with N, X
{m +:1} via the diffeomorphism hn(z, m) = (h(z), m + 1), for each m € 2.
If ¢:W X Z — M denotes the quotlent map of this ldentlﬁcatlon then M is
the union of the manifolds W; = ¢(W X { }), 1 € Z..There exists a natural
diffeomorphism o2 — M such that o(W,) = W iy1 and such that the free and
properly discontinuous action generated by this diffeomorphism has orbit space
diffeomorphic with M. Furthermore, if 5: M — M denotes the projection then
p:M — M defined by p = Fop is the regular infinite cyclic covering. associated
with Ker(\I') and, therefore, its group of deck transformations is isomorphic to Z
and we may assume that the action is given by «. Furthermore, there emsts a
smooth map §: M — R such that the diagram: Co

M—~—>R

Is e

M-_9,g
is commutative.

If we provide M with the riemannian metrlc which is the lifting of one in M,
and if f,: M — M denotes the lifting of f,, then f, is a cod1mens1on one Anosov
flow on M.

Since exp«ogis = grops: Hy(M, Z) — Z is the trivial homomorphlsm we see
that ft does not contain a periodic orbit (if f; had a periodic orbit, then this
periodic orbit would cover a periodic orbit in M which would represent an ele-
ment. of torsion in Hy(M, Z)). Hence, both the alpha and omega limit-sets of
fe are empty. Otherwise, the proof of M. Hirsch in Proposition 1.7 of [9], for
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diffeomorphisms, can be adapted to show the existence of a periodiec orbit for
fi. Therefore, for every & € M and every integer m, there exists ¢(m, %) > 0
such that f,(£) ¢ U%=—_, W, for all ¢ such that |f| > ¢(m, &). This means, pre-
cisely, that for every & € M, lim,., §(f: (&)) is equal to either © or — .

Let A = {# € M:lim,,, §(fu(%)) = o} and A_ = {& € M:lim,,e §(f(Z)) =
—o},thenAd, U A_ = Mand A, N A_ = &. Butboth A, and A_ are of the
second category of Baire which can be easily obtained from the fact that both
A and A_ are saturated by the stable leaves of the flow f,, and whose projections
are dense in M. Hence, either A, = & or A_ = . By a reversal of time we
may assume that A, = M.

For any continuous map 0: M — S, let F1: M X R — §' be defined by Fi(z,
t) = 8(fi(z)) and let Fy(z, ¢) = 6(z). Then, since F; is homotopic to Fs, it
follows that the map A9: M X R — 8 defined by A0 = F,F,' (where we use
the natural group structure in the set of maps from M X R into S') is homotopic
to a constant. Let Ag: I X R — R be such that expeA8 = A;6. Then, Ad(z, t)
measures the net change in argument of the angular function 8, along the piece
of trajectory going from x to f.(x). If 6 is such that Af is strictly increasing along
trajectories, then, as was observed by Birkhoff [3], 67'(1) is a (topologicai)
cross-section for the flow.

From above, it follows that for each Z € M, lim,,., §(f.(&)) = « and it is
very easy to see that this implies that lim;.. Ag(z,t) = . '

Hence, by Theorem 1 in Fuller [10] it follows that there exists a continuous
G: M — S, homotopic to g, and such that for each z € M the map ¢t — AG(z, t)
i8 a strictly increasing function of ¢. Thus G is an angular function such that the
argument is strictly increasing along trajectories of f,. Using flow boxes and the
fact that AG increases along trajectories, one verifies easily that G7'(1) is a
compact, flat submanifold of M. In fact, there exists a homeomorphism H:[—1,
1] X G*(1) — V, where V is a neighborhood of G™'(1), such that, for each = €
G (1), H(0,z) = zand H([—1,1] X {2}) is a connected piece of trajectory of
the flow. Since G'(1) is bicollared by a smooth flow it follows by [37], that given
€ > 0 there exists a continuous isotopy h,: M — M, 0 < s < 1, such that d(h.(z),
) < e¢forallz € Mands € I;and hy(G (1)) is a smooth submanifold of M
which is transversal to the flow. Hence, f; admits a smooth global cross-section,
and by the remarks preceding the theorem we have proved sufficiency.

Remark 4.2. Theorem 4.1 can be rephrased as follows:

A codimension one Anosov flow fi:t M — M is topologically equivalent to the
suspension of a hyperbolic toral isomorphism if and only if H'(M, Z) = Z and
for every periodic orbit v, the inclusion iy — M induces a monomorphism i
H'(M, Z) — H'(v, Z). Furthermore, if H'(M, Z) = Z and if every periodic orbit
is not cohomologically trivial (in the above sense) and if g: M — S' is such that its
homotopy class [g] € [M, S, generates H'(M, Z) (here we use the isomorphism
M, S\~ H'(M, Z) of Eilenberg-MacLane) then, there exists a differentiable
map G: M — 8, homotopic to g, and such that G is a locally trivial submersion, and
G7(1) is a cross-section for fu.
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Remark 4.2. Using exactly the same arguments in the proof of the sufficiency
part of Theorem 4.1, we can prove the following theorem:

Let fi2: M — M be an Anosov flow on the compact, connected, smooth manifold M
(with f: not necessarily of codimension one). If Q(f:) = M, and if there exisis an
eptmorphism ox:Hy(M, Z) — Z such that for each periodic orbit ¢s([y]) #= 0
(where [y] denotes the homology class of v), then f, admits a cross-section, obtained
as ¢ (1) where p: M — 8" is a locally trivial submersion having as induced homo-
morphism, in first integral homology groups, ¢+. Hence f; is topologically equivalent
to the suspension of an Anosov diffeomorphism.

Remark 4.3. Theorem 4.1 is a partial answer to a conjecture given by Plante
in [26].

An Ezample. Let M* be the unit tangent bundle over a compact riemannian
surface with constant negative curvature. Let g,: M® — M® be its geodesic flow
andlet TM = E° @ E* ® E" be its Anosov splitting into a Whitney sum. Then,
as is well known, E°, E* and E' are real analytic line bundles. Then E*° & E'
gives an analytical foliation. Let the 2-dimensional distribution E° @ E' be
given by the map T': M’ — G,(M®) where G,(M®) denotes the Grassmanian
bundle of planes over M°. Let C'(M?®, G2(M?)) denote the space of sections with
the C" topology. We claim that there exists € > 0 such that if T is any integrable
distribution contained in the e-neighborhood of T, in C(M°, Go(M?®)), then T
does not contain a compact leaf.

Proof. Let X be the vector field of g; and let Y be a nonsingular, smooth, vector
field which generates the line bundle E*. Let § > 0 be sufficiently small so that
X = X 4+ §Y is an Anosov vector field. Let € > 0 be sufficiently small so that
any integrable distribution T in the e-neighborhood of I'is transversal to X and
the leaves of T meet every periodic orbit of the flow generated by X (the latter
is possible since the leaves of T' are dense in M). Then, every such T does not
have a compact leaf. Otherwise, if T had a compact leaf, =, this compact leaf
would meet, transversally, every orbit of the codimension one Anosov flow
generated by X. This would be true because = meets every periodic orbit and
by a theorem of Newhouse [23] if a flow on a compact manifold satisfies Axiom
A’, then every orbit contains a periodic orbit on its closure. Hence, 2 would be a
cross-section for the flow generated by X and, therefore, = would be a 2-torus
and M*® would be a torus bundle over S'. This would be a contradiction because
one can prove that a 3-manifold which is a suspension manifold of a hyperbolic
linear isomorphism A:T* — T has trivial centre in its fundamental group, and,
in our case, this centre is free cyclic.

Remark 4.4. M. Hirsch has very general results of this type in [14].

CeNTRO DE INVESTIGACION DEL IPN
REFERENCES

[1] D. V. ANosov, Geodesic flows on closed riemannian manifolds with negalive curvature,
Proc. Steklov Inst. Math. 90 (1967).



76 ALBERTO VERJOVSKY

{2] V. I. ArvoLD AND A. Avez, Ergodic problems of classical mechanics, Ben] amm, New
York, 1968. .
[3] G. BirkrOFF, Dynamical systems, Amer. Math. Soc. Collog. Pubhcatlon, Prov1deuce
R.1.,9 (1927).
4] w. BROWDER AND J. LevINE, Fibering manifolds over 8!, Comment. Math. Helv. 40
(1965), 153-60.
[5] M. BrowN, A proof of the generalized Schoenflies Theorem, Bull. Amer. Math. Soc 66
(1960), 74-6.
[6] ——, T'he monotone union of open n-cells is an open n-cell, Proc. Amer. Math Soc.,
12 (1961), 812-14,
[7] P. E. ConNER aND F. Raymonp, Actions of compact Lie groups on aspherical mani-
folds, Topology of Manifolds, Ed. J. C. Cantrell and C. H. Edwards, Jr., Mark-
ham, Chicago, 1969.
18] F. T. FARREL, The obsiruction to fibering a manifold over a circle, Bull. Amer. Math
Soc., 73 (1967), 741-44.
9] J. FRANKS Anosov diffeomorphisms, Global Analysis, Proc. Symp. Pure Math., AMS .
. X1V (1970), 61-93.
[10] F. B. FoLLEr, On the surface of section and periodic trajectories, Amer. J. Ma,th , 87
(1965), 473 80.
[11] D. H. GérrLIEB, A certain subgroup of the fundamental group, Amer. J. Math., 87 (1965),
840-56.
[12] J. HapAMARD, Les surfaces & courbures opposées et leurs lignes geodésiques, J. Math.
Pures Appl (1898), 27-73.
[13] A. HaiérLiGER, Varietes feuilletées, Ann. Scoula Norm. Sup. Pisa (3) 16 (1962), 367—97
[14] M. HirscH, Foliations and noncompact iransformation groups, Bull. Amer. Math. Soc.,
76 (1970), 1020-23.
[15] M. Hirscr aANp C. PucH, Stable manifolds and hyperbolic sets, Proc. Symp. Pure Math.,
AMS, XIV (1970), 133-63.
16] ‘M. HirscH, J. Paus, C. PueH, aNp M. SHUB, Nezghborhoods of hyperbolic sets, Invent
Math. 9 (1970), 121-34.
[17] S. Hvu, Homotopy theory, Academic Press, New York, 1959.
[18] R. C. KIRBY Lectures on triangulations of manifolds, Mimeographed U.C.L. A 1969.
[19] N. KopELL, Commuting diffeomorphisms, Global Analyms Proc. Symp. Pure Math
AMS, XIV (1970), 165-84. _
[20] J. MaTHER, Appendiz in “‘Differentiable dynamical systems”’, Bull. Amer. Math. Soc.,
’ 78 (1967), 747-817.
[21] J. MosER, On a theorem of Anosov, J. Differential Equations b (1969), 411-40.
[22] 8. Newaousge, On codimension one Anosov diffeomorphisms, Amer. J. Math., 92 (1970),
716.
[28] ——, Hyperbolic limit sets, Tans. Amer. Math. Soc. 167 (1972), 125-50.
[24] S. P. Novikov, Topology of foliations, Trudy. Moskov Mat. Obsc., 14 (1965), 248-78.
[25] M. M. PerxoTo, Teoria geométrica das equagoes diferenciais, 7° Coloquio Brasileiro de
Matemé.tlca 1969.
[26] J. PLanTE, Anosov flows, Mimeographed, University of Berkeley, California, 1971
[27] C. PugH, An improved closing lemma and a general density theorem, Amer. J. Math,, 89
(1967), 1010-21. ‘ _
[28] F. RaymonD, Classification of the actions of the circle on 3-manifolds, Trans. Amder.
Math. Soc., 181 (1968), 51-78.
[29] S. SmavLE, Differentiable dynamical systems, Bull. Amer. Math. Soc., 78 (1967), 747-817.
[30] J. R. StarLiNgs, On fibering certain 3-manifolds, Topology of 3-Manifolds and Related
Topics, Ed. M. K. Fort, Jr. Prentice-Hall, N.J., 1962.



CODIMENSION ONE ANOSOV FLOWS 77

[81} ———, The piecewise linear structure of BEuclidean space, Proc. Cambridge Philos. Soc.,
68 (1962), 481-88.

[32] E. Spanier, Algebraic Topology, McGraw-Hill, N.Y., 1966.

[33] W. TrURSTON, Foliations on 3-manifolds which are circle bundles, Thesis, University
of California, Berkeley, 1972.

[34] P. TOM’I’ER, Anosov flows on infra-homogeneous spaces, Global Analysm, Proc. Symp.
in Pure Math., AMS, XIV (1970), 299-327.

[35] F. WALDHAUSEN, Elne Klasse von 3-dimensionalen Mannigfaltigkeiten, I. II, Invent.
Math. 3 (1967), 308-33; 4 (1967), 87-117.

[36] C. T. C. WaLt, The topological space-form problems, Topology of Manifolds, Ed J.C.

) Cantrell and C. H. Edwards, Jr., Markham, Chicago, 1969.

[37] F. W. WiLsoN, Smoothing derivatives of functions and applications, Technical Report
66-3, Center for Dynamical Systems, Brown University, R. 1., 1966.

[38] J. Woop, Bundles with totally disconnected structure group; Comment. Math. Helv., 46
(1971), 257-73.





