UNITARY APPROXIMATIONS TO FRAMED BORDISM

BY J. C. ALEXANDER

Introduction.

The purpose of this note is to exhibit framed bordism homology theory as the inverse limit of other bordism theories; these approximating theories are associated with unitary bordism. Let $k\xi_n$ be the k-fold Whitney sum of the canonical unitary bundle over $BU(n)$ and let $M(k\xi_n)$ be the associated Thom space. With *k* fixed, $M(k\xi_n)$ can be considered the kn^{th} space of a spectrum, which we denote MkU . We denote the homology or cohomology defined by these spectra by the same symbols. Clearly *MIU* is just unitary bordism *MU.* If *k'* divides *k*, there is a canonical map $MkU \rightarrow Mk'U$ defined as follows: let $k = \ell k'$ and consider $\phi_i: BU(n) \to BU(\ell n)$ which is

$$
BU(n) \xrightarrow{\Delta} \times BU(n) \xrightarrow{\textcircled{0}} BU(\ell n).
$$

Then $\phi_i^*(k'\xi_{\ell n}) = k\xi_n$ and hence there is an induced map $\phi_i: MkU \rightarrow Mk'U$. We consider the collection of *MkU* as an inverse system of spectra. Note that there is a canonical map of the sphere spectrum *S* to each *MkU* as the multiplicative unit.

Framed bordism has been denoted by a variety of symbols, such as π^* (classical), Ω_*^{-1} (Buhstaber-Novikov), Ω_*^{-Fr} (Conner-Smith), and S_* (Adams-Ray). Not to be left out, we denote framed bordism by $M1_*$, to emphasize it comes from the Thom spectrum of the trivial group. We will continue to let S denote the sphere spectrum, however. Let X be a space with finitely generated integral homology groups.

The main result of this note is the following.

1.1 THEOREM. The natural map $M1_*(X) \to \text{inv}\lim MkU_*(X)$ is an isomorphism.

If *X* is a finite complex, the same formula holds in cohomology by Spanier-Whitehead duality. It is definitely not true for all spaces; for example, if *X* is a rational space the result is false. Neither is it the case that the sphere spectrum is the inverse limit of the spectra *MkU.* The same result is true at each prime; however it seems difficult to prove this directly. Let $Z_{(p)}$ denote the integers localized at the prime p .

1.2 COROLLARY. For each prime p, there is a natural isomorphism $M1_*(X) \otimes$ $Z_{(p)} \to \text{inv}\lim (MkU_*(X) \otimes Z_{(p)}) = \text{inv}\lim (Mp^rU_*(X) \otimes Z_{(p)})$.

There have been other expressions of $M1_*$ as an inverse limit of homologies, say Y_{γ^*} . However, in these cases the cones of the maps $S \to Y_{\gamma}$ have become more and more connected, so the result is trivial. Such is not the case here, since for example, by the Thom isomorphism, $H_*(MkU)$ is a polynomial algebra on even dimensional generators for each k . Indeed each Φ_k induces an isomorphism on rational homology or homotopy.

As it stands (1.1) is nothing more than a curiosity, for it tells us nothing about $M1_*$. However, the MkU are pleasant in several ways and it may be easier to compute in the MkU_* rather than directly in $M1_*$. For example, $\pi_*(MkU)$ has a large torsion-free part. Hence, elements in $\pi_*(S)$ that are indecomposable (even as Massey products) may become decomposable (perhaps as Massey products) in each of the $\pi_*(MkU)$. This would be reflected in any algebraic machine used to compute; e.g., the Adams spectral sequence. Some of this algebraic machinery has been developed in [4]. Also, it seems possible the ${n*(MkU)}$ can be characterized algebraically, perhaps in terms of formal groups. From this, perhaps $\pi_*(S)$ can be given a purely algebraic characterization.

The elements of $\pi_*(MkU)$ are cobordism classes of triples (M, η, ψ) where *M* is a differentiable manifold embedded in Euclidean space with normal bundle *v* say, η is a complex bundle on *M*, and ψ is a stable equivalence between $k\eta$ and *v.* That is *v* admits a stable reduction of its group to the k-fold direct sum of the standard representation of the unitary group. If $k = 2$, the second copy of *ri* can be conjugated to give *M* a stable symplectic structure. Thus we have a canonical map $M2U \rightarrow MSp$. Such manifolds were mentioned in [3].

2. **Recollections**

We consider [1] a convenient general reference for facts about generalized homologies, derived limit functors, etc. In particular, recall that $MkU_*(X)$ is defined as $\pi_*(MkU \wedge X)$. Concerning inverse limits: all of our index sets I for projective systems will be countable, and all of our groups will be commutative. If ${G_i}_{i \in I}$ is a projective system of finite groups,

(2.1) lim1 *Gi* = 0

by the Mittag-Leffler condition. If

$$
0 \to A_i \to B_i \to C_i \to 0
$$

is a projective system of exact sequences of groups, the basic exact sequence

$$
(2.2) \qquad 0 \to \lim^{0} A_{i} \to \lim^{0} B_{i} \to \lim^{0} C_{i} \to \lim^{1} A_{i}
$$

$$
\to \lim^{1} B_{i} \to \lim^{1} C_{i} \to 0
$$

is obtained. Also we remark that the limit functors defined by *I',* a cofinal subset of *I,* are the same as those defined by *I.*

For any group *G,* let *Tor G* be the torsion subgroup of *G,* and *Free G* = *G/Tor G* the torsion-free quotient of *G.*

3. The proof

Let $\beta_i \in H_{2i}(BU)$, $i = 0, 1, 2, \cdots (\beta_0 = 1)$ be the canonical polynomial generators of $H_*(BU)$ and let $b_i(k) \in H_{2i}(MkU)$ be their counterparts under the Thom isomorphism in $H_*(MkU)$. Let $b(k) = 1 + b_1(k) + b_2(k) + \cdots$. Recall there is a map $\phi_i: M\ell kU \to MkU$. It is elementary to show

$$
(\phi_{\ell})_*b(\ell k) = (b(k))^4
$$

and in particular, if $i > 0$,

$$
(\phi_i)_*b_i(\ell k) \equiv \ell b_i(k)
$$
 modulo decomposables.

Order the monomials in the b_j of degree i by the sum of their exponents, and extend to a linear ordering. With respect to this basis, the matrix of $(\phi_t)_*$: $H_{2i}(M\ell kU) \rightarrow H_{2i}(MkU)$ is triangular with all diagonal entries divisible by ℓ . Focus attention on a prime p, and consider $(\phi_p^{\bullet})_* = (\phi_p)_*^*$. If *s* is large enough (depending on i), the matrix of this map will be zero modulo p . That is:

(3.1) *for each integer* $i > 0$ *and prime p, there exists an integer* $s = s_p(i)$ *such that if* p^* *divides* ℓ *, all elements in*

$$
image ((\phi_{\ell})_{*}: H_{2i}(M\ell k U) \rightarrow H_{2i}(Mk U))
$$

are divisible by p,

(3.2) *for each k*

 \bigcap_{i} $(\text{image}: H_{2i}(M\ell kU) \to H_{2i}(MkU)) = \{0\}$

 $if i > 0.$

The index set for the projective system */MkU)* is the positive integers, ordered by divisibility. Choose and fix a cofinal subset I isomorphic to the positive integers with the linear ordering. Also fix a connected space *X* with finitely generated homology groups. In the homotopy category, according to [2], there exists an inverse limit *Y* of the system of spectra ${MKU \wedge X}_{k \in I}$ and a natural commutative diagram of Milnor exact sequences

$$
0 \to \lim^{+} \pi_{*}(MkU \wedge X) \to \pi_{*}(Y) \to \lim^{0} \pi_{*}(MkU \wedge X) \to 0
$$

(3.3)

$$
\begin{array}{ccc}\n\downarrow h_{1} & \downarrow h_{r} & \downarrow h_{0} \\
0 \to \lim^{1} H_{*}(MkU \wedge X) \to H_{*}(Y) \to \lim^{0} H_{*}(MkU \wedge X) \to 0\n\end{array}
$$

The vertical maps *h* are induced by the Hurewicz homomorphism.

We claim:

(3.4) $\lim^1 H_*(MkU \wedge X)$ *is torsion-free and divisible; hence is a rational vector space,*

 (3.5) h_1 *is an isomorphism.*

To prove (3.4), note that

 $H_i(MkU \wedge X) = \sum_{2i+r=j} H_{2i}(MkU) \otimes H_r(X)$

3

Fix a *j* and a prime *p*. Choose a cofinal subset of *I*, say $I' = \{k_1 < k_2 < \cdots\}$ so that each k_i divides k_{i+1} by p^s where

$$
s = \max \{ s_p(i) \mid 0 < i \leq \frac{1}{2} j \},
$$

the $s_p(i)$ coming from (3.1). Note that

$$
\lim^1 (H_*(MkU) \otimes H_*(X)) = \lim^1 (\tilde{H}_*(MkU) \otimes H_*(X))
$$

where

$$
\widetilde{H}_*(MkU) = \sum_{i>0} H_{2i}(MkU).
$$

By (3.1), each element in the image of

$$
\theta_m = (\phi_{\ell})_* \colon \widetilde{H}_*(Mk_{m+1}U) \otimes H_*(X) \to \widetilde{H}_*(Mk_mU) \otimes H_*(X)
$$

is divisible by $p \ (\ell = k_{m+1}/k_m)$.

Let $\Pi_j = \Pi_m(\tilde{H}_*(Mk_m U) \otimes H_*(X))_j$. Let $\langle x_m \rangle = \langle x_{k_1}, x_{k_2}, \dots \rangle$ be the elements of II_j . Consider $F: \text{II}_j \rightarrow \text{II}_j$ defined by $F \, \langle x_m \rangle = \, \langle x_m \rangle \theta_m$ $x_{m+1} >$. By definition, the sequence

$$
0 \to \lim^0 (\tilde{H}_*(MkU) \otimes H_*(X))_j \to \Pi_j \xrightarrow{F} \Pi_j
$$

$$
\to \lim^1 (\tilde{H}_*(MkU) \otimes H_*(X))_j \to 0
$$

is exact. Call the last term \lim_{j}^{1} for short. Given $\langle x_{m}\rangle \in \Pi_{j}$, let $\langle x_{m}\rangle^{1}$ denote its class in $\lim_{t \to \infty}$

Suppose $p \lt x_m >_1 = 0$; i.e. $p \lt x_m >_1$ $\lt \lt y_m - \theta_m y_{m+1} >$ in Π_j . Let $\theta_m y_{m+1} =$ pz_m ; then $\langle x_m \rangle = \langle z_m - \theta_m z_{m+1} \rangle$, and $\langle x_m \rangle = 0$. That is, \lim_{j} has no p-torsion.

Now suppose given $\langle x_m \rangle \in \Pi_j$. Let $\theta_m x_{m+1} = py_m$. Then $\langle x_m \rangle =$ $p < y_m$ > + $\langle x_m - \theta_m x_{m+1} \rangle$ in Π_j , so $\langle x_m \rangle_1 = p \langle y_m \rangle_1$. That is \lim_{j} is *p*-divisible. Since p and $j > 0$ were arbitrary, (3.4) is proved.

We turn to the proof of (3.5). If $H_*(X)$ is finitely generated in each dimension, so is $MkU_*(X) = \pi_*(MkU \wedge X)$ by the Atiyah-Hirzebruch spectral sequence. In particular, *Tor* $\pi_*(MkU \wedge X)$ is finite in each dimension, as is Tor $H_*(MkU \wedge X)$. Thus by (2.1) and (2.2), we have a commutative diagram

$$
\lim^{1} \pi_{*}(MkU \wedge X) \xrightarrow{\approx} \lim^{1} Free \pi_{*}(MkU \wedge X)
$$
\n
$$
\left| h_{1} \right|^{1} H_{*}(MkU \wedge X) \xrightarrow{\approx} \lim^{1} Free H_{*}(MkU \wedge X)
$$

The stable Hurewicz homomorphism is a rational equivalence, so *h'* is a monomorphism with finite cokernel in each dimension. Let K_k denote the graded group of cokernels. The sequence

$$
0 \to \lim^{0} Free \pi_{*}(MkU \wedge X) \to \lim^{0} Free \ H_{*}(MkU \wedge X) \xrightarrow{\alpha} \lim^{0} K_{k}
$$

$$
\to \lim^{1} Free \ \pi_{*}(MkU \wedge X) \xrightarrow{h'} \lim^{1} Free \ H_{*}(MkU \wedge X)
$$

$$
\to \lim^{1} K_{k} \to 0
$$

is exact by (2.2). By (2.1), $\lim^1 K_k = 0$. For each *k*, the Hurewicz homomorphism breaks up as follows:

$$
\pi_*(X) \to \pi_*(MkU \wedge X)
$$
\n
$$
\downarrow h_x
$$
\n
$$
H_*(X) \to H_*(X) \oplus \tilde{H}_*(MkU) \otimes H_*(X) \to \tilde{H}_*(MkU) \otimes H_*(X) \to 0
$$

The map h_x is the stable Hurewicz homomorphism of X; hence its cokernel is independent of k. By (3.1) , the inverse limit of the cokernel of \tilde{h} is zero. Hence α is surjective, h' is an isomorphism, and (3.5) is proved.

Now let $f: S \wedge X \to Y$ be the natural map and let Cf be the cone of f. Since $\lim^{\circ} H_*(MkU \wedge X) = H_*(X)$ by (3.2), the homology sequence of the cofibration

$$
(3.6) \tS \wedge X \to Y \to Cf
$$

is a splitting of the bottom row of (3.3) . Hence Cf is a rational spectrum by (3.4) and its Hurewicz homomorphism is an isomorphism. By (3.5), the top row of (3.3) is a splitting of the homotopy sequence of (3.6). Therefore

$$
M1_*(X) = \pi_*(S \wedge X) \xrightarrow{\sim} \lim^0 \pi_*(MkU \wedge X) = \lim^0 MkU_*(X)
$$

and (1.1) is proved.

(3.7) *Remark.* Note that, as a corollary, a splitting of the spectrum *Y* has been produced: $Y = (S \wedge X) \vee Cf.$

We turn now to corollary 1.2. It is trivial once it is established that

$$
(3.8) \qquad \lim^{\,0} \ (MkU_*(X) \otimes Z_{(p)}) = (\lim^{\,0} MkU_*(X)) \otimes Z_{(p)}
$$

However, once we know that ${MkU_*(X)}$ converges to finitely generated groups' it is fairly routine to establish (3.8). We leave the details to the reader.

UNIVERSITY OF MARYLAND

REFERENCES

- **[1) J.** F. ADAMS, Stable Homotopy and Generalized Homology, Math. Lecture Notes, University of Chicago, 1971.
- [2] **J.** M. BoARDMAN, unpublished
- [3] D. PORTER, *An algebraic proof that* $[Q^U]_2 = \mathfrak{N}^2$, Proc. A.M.S. **31** (1972), 605-8.
- [4] M. TEMTE, The Adams-Navikov spectral sequence for $\pi_*(M2U)$, Thesis, University of Maryland, 1975.