ON EQUIVARIANT MAPS OF LOW CODIMENSION FROM REAL PROJECTIVE SPACES TO SPHERES

BY JACK UCCI*

0. Introduction

Let $P^{(n)}$ be real projective *n*-space P^n if *n* is odd, and the union of two real projective *n*-spaces $P_1^n \cup P_2^n$ with $P_1^n \cap P_2^n = P^{n-1}$ if *n* is even. $P^{(n)}$ admits a fixed point free involution, as does the n-sphere (the antipodal map) . The *coindex* of $P^{(n)}$ is the least integer *k* for which there exists an equivariant map $P^{(n)}$ \rightarrow *S*^k. We study the set of all elements of $\pi_{n+k}S^n$ which admit representatives of the form

$$
S^{n+k} \subset S^{(n+k)} \xrightarrow{\pi} P^{(n+k)} \xrightarrow{f} S^n
$$

where f is equivariant (see §2 for the definition of $S^{(n+k)}$). For low values of *k* $(\leq 3) our results are nearly complete. Application is made to give new informa$ tion on coindex $P^{(n)}$ for $n \leq 16$.

Notations and unreferenced results concerning the homotopy groups of spheres can be found in Toda's book [10].

1. Equivariant elements of π_3S^2

The standard Z_m -action (S^{2k-1}, λ_m) is given by $\lambda_m(z_1, \dots, z_k)$ = $(e(1/m)z_1, \cdots, e(1/m)z_k)$, where $e(x) = \exp(2\pi ix)$. For definitions and preliminaries of equivariant maps, we refer the reader to [6, §2]. In particular, we will make use of

PROPOSITION 1.1 (Folkman [6]) (i) Let (X, T_2) be a Z_m -action with X *path connected,* $(2k - 1)$ -simple and $T_2 \sim id$. Then for any map $f:(S^{2k-1}, \lambda_m)$ \rightarrow (X, T_2) and any $\alpha \in \pi_{2k-1}X$, there exists a map $g: (S^{2k-1}, \lambda_m) \rightarrow (X, T_2)$ *such that* $[g] = [f] + m\alpha$.

(ii) Let (X, T_2) be a \mathbb{Z}_m -action with X path connected, n-simple for $n = 1$, $2, \dots, 2k-1$ and $T_2 \sim id$. Suppose Hom $(Z_m, \pi_{2i-1}X) = \text{Ext } (Z_m, \pi_{2i}X) = 0$ *for* $i = 1, 2, \dots, k - 1$. *If* $f, g: (S^{2k-1}, \lambda_m) \to (X, T_2)$ are maps, then $[g] - [f]$ $=$ *ma for some* $\alpha \in \pi_{2k-1}X$.

Folkman's proofs of (i) and (ii) are valid with the weaker hypothesis " $(T_2)_* : \pi_{2k-1}X \to \pi_{2k-1}X$ is the identity isomorphism" replacing the hypothesis " $T_2 \sim id$ ". Furthermore, if the hypothesis $T_2 \sim id$ in 1.1 *(i)* is eliminated, then the proof in [6] establishes the weaker conclusion $[g] - [f] = \sum_{j=0}^{3} (T_2)^j \ast \alpha$.

LEMMA 1.2 (i) *There exists a map* $f:(S^{2k-1}, \lambda_m) \rightarrow (S^{2k-1}, \lambda_m)$ *of degree d if* and only if $d = mj + 1$ for some j.

^{*} Supported in part by NSF Grant GP-34108.

(ii) Let $m = 2^r \geq 2$. There exists a map $f: (S^{2k-1}, \lambda_{2m}) \rightarrow (S^{2k-1}, \lambda_m)$ of *degree d if and only if* $d = 2mj + \epsilon 2^k$ *, where* $\epsilon = 1$ *for* $k \leq r$ *and* $\epsilon = 0$ *for* $k > r$.

Proof. The identity map is a map $(S^{2n-1}, \lambda_m) \to (S^{2n-1}, \lambda_m)$ of degree 1, and there is the map $s_k : (S^{2k-1}, \lambda_{2m}) \to (S^{2k-1}, \lambda_m), m = 2^r \geq 2$, given by $s_k(z_1, \dots, z_k) = 1/\sqrt{|z_1|^4 + \dots + |z_k|^4} (z_1^2, \dots, z_k^2)$, of degree 2^k . Both assertions (i), (ii) then follow from 1.1 (i)-(ii).

We say $\alpha \in \pi_{2k+1}S^l$ is *equivariant* if there exists a map $f : (S^{2k+1}, \lambda_4) \to (S^l, \lambda_2)$ with $[f] = \alpha$. For all $k \geq 1$, LEMMA 1.2 (ii) determines all the equivariant elements of $\pi_{2k-1}S^{2k-1}$. The Z₄-action λ_4 on S^{2k-1} induces a Z₂-action $\bar{\lambda}_2$ on P^{2k-1} . Thus by naturality of the Hopf classification theorem all equivariant elements of $[P^{2k-1}, S^{2k-1}]$, i.e. those elements represented by maps \bar{m} satisfying $\bar{m} \bar{\lambda}_2 = \lambda_2 \bar{m}$, are also determined.

Conner and Floyd [4] use the Z_4 -action on S^3 given by $\lambda_4'(z_1, z_2) = (-\bar{z}_2, \bar{z}_1)$. Since both λ_4 , λ_4 ['] are orthogonal actions, there exists an orthogonal map (S^3, λ_4) \rightarrow (S³, λ_4'). Thus we may use either action.

Let $\beta \in \pi_3 S^2 \cong \mathbb{Z}$ be the generator represented by the Hopf construction of the complex multiplication $S^1 \times S^1 \to S^1$. Then $h_0(z_1, z_2) = z_1/z_2$ defines a map $(S^3, \lambda_4) \rightarrow (S^2, \lambda_2)$ representing the element $-\beta$. Here S^2 is the one-point compactification of the complex plane and $\lambda_2(z) = -\overline{z}^{-1}$ is the antipodal Z_2 -action.

THEOREM 1.3 $d \cdot \beta \in \pi_3 S^2$ *is equivariant if and only if* $d = 4\ell - 1$ *for some* ℓ .

Proof. For any ℓ Lemma 1.2 (i) provides a map $f\ell : (S^3, \lambda_1) \to (S^3, \lambda_1)$ of degree $4\ell + 1$. The composition $h_0 f_\ell$ then is a map $(S^3, \lambda_4) \to (S^2, \lambda_2)$ representing $(4\ell + 1)$ $(-\beta) = (4(-\ell)-1)\beta \in \pi_3S^2$.

Conversely, let $\psi_q : \pi_n S^k \to \pi_n S^k$ be the homomorphism induced by left composition with a map $S^* \to S^*$ of degree q. Then ψ_q satisfies the property $H\psi_q$ $\vec{p} = \psi_{q^2}H$, where $H: \pi_nS^k \to \pi_nS^{2k-1}$ denotes the Hopf homomorphism. $H: \pi_3S^2$ $\rightarrow \pi_3S^3$ is an isomorphism, so the relation $H(\lambda_2)_{\mathscr{B}} = H\psi_{-1} = \psi_1H = H$ implies that $(\lambda_2)_* : \pi_3 S^2 \to \pi_3 S^2$ is the identity isomorphism. Because $\pi_2 S^2 \simeq Z$, the other hypotheses of 1.1 (ii) obtain, so we may conclude that $[g] - [f] \in 4\pi_3S^2$ for any two maps $f, g: (S^3, \lambda_4) \to (S^2, \lambda_2)$.

 $h_k(z_1, z_2) = (z_1/z_2)^{2k+1}$ defines a map $(S^3, \lambda_1) \rightarrow (S^2, \lambda_2)$ for every integer k. The subset $h_k^{-1}S^1 = \{ (re(\theta_1), re(\theta_2)) | r = 1/\sqrt{2} \} \cong S^1 \times S^1$ is an equivariant torus in S^3 and the restriction $h_k \mid h_k^{-1}S^1$ defines a map $(S^1 \times S^1, \lambda_4) \rightarrow (S^1, \lambda_2)$ of type $(2k + 1, -(2k + 1))$. As h_k is the Hopf construction of its restriction $h_k | h_k^{-1}S^1$, h_k represents the element $-(2k+1)^2\beta \in \pi_sS^2$. The maps h_k exhaust those equivariant elements of π_sS^2 represented by Hopf constructions of maps $(S^1 \times S^1, \lambda_4) \rightarrow (S^1, \lambda_2)$. More precisely,

PROPOSITION 1.4 *There exists a map* $(S^1 \times S^1, \lambda_1) \rightarrow (S^1, \lambda_2)$ *of type* (m, n) *if and only if* $m = -n = 2k+1$ *for some k.*

Proof. For any *k* the map $h_k(e(\theta_1), e(\theta_2)) = e((2k+1)(\theta_1 - \theta_2))$ is equivariant and has type $(2k + 1, -(2k + 1))$. Conversely, suppose $f: (S^1 \times S^1,$

14 JACK UCCI

 λ_4' \rightarrow (S^1, λ_2) has type (m, n) . As $\lambda_2 \sim id$ we have $f\lambda_4' = \lambda_2 f \sim f$ and so $m =$ $-n$. But Theorem 1.3 implies that no element of $2\pi sS^2$ is equivariant (a fact already proved in [4]), and the Hopf construction then shows that no type of the form $(2n, -2n)$ can have an equivariant representative. (Alternatively, the trivial fact that maps $\ell_j: (S^1, \lambda_4) \to (S^1 \times S^1, \lambda_4)$ exist representing $((2j + 1)\iota,$ $-(2j + 1)$ *i*) $\in \pi_1(S^1 \times S^1)$ together with Lemma 1.2 (ii) imply that types $(2n, -2n)$ do not have equivariant representatives.)

2. **Codimensions 1 and 2**

For $0 \leq i \leq k$ let

$$
e_{2i} = \{(z_1, \cdots, z_{k+1}) \in S^{2k+1} | z_j = 0 \text{ for } j > i+1, z_{i+1} = | z_{i+1} |
$$

$$
e_{2i+1} = \{(z_1, \cdots, z_{k+1}) \in S^{2k+1} | z_j = 0 \text{ for } j > i+1, 0 \leq \arg z_{i+1} \leq \pi/2 \}.
$$

The collection $\{\lambda_i^j e_i \mid 0 \leq j \leq 3, 0 \leq i \leq k\}$ defines a cell decomposition of S^{2k+1} equivariant with respect to the cellular map λ_4 . The subcomplex $S^{2j-1} \cup e_{2j} \cup \lambda_4e_{2j}$ defines a sphere S^{2j} , and we have $S' \subset S^{(i)} \subset S^{i+1}, \ell \leq 2k$, where $S^{(l)}$ denotes the l -skeleton.

The Z₄-action λ_4 on $S^{(l)}$ induces a Z₂-action $\bar{\lambda}_2$ on the quotient space $P^{(l)}$ $= S^{(l)} / \lambda_i^2$. $P^{(2k+1)}$ is the usual real projective space P^{2k+1} and $P^{(2k)} =$ $P^{2k-1} \cup \bar{e}_{2k} \cup \bar{\lambda}_2 \bar{e}_{2k}$, where \bar{e}_{2k} is the image of e_{2k} under the quotient map. Observe that $P^{(2k)} = P_1^{2k} \cup P_2^{2k}$, where $P_1^{2k} = P_{2k-1} \cup \bar{e}_{2k}$, $P_2^{2k} = P_{2k-1} \cup \bar{e}_{2k}$ are even dimensional real projective spaces and P_1^{2k} is the usual one in P^{2k+1} .

Now we may extend our definition of equivariant elements. We say $\alpha \in \pi_k S'$ is *equivariant* if there exists a map fi. $S^k \subset (S^{(k)}, \lambda_4) \to (S^l, \lambda_2)$ with $[f_1] = \alpha$.

LEMMA 2.1 (i) $0 \in \pi_{n+k} S^n$ is equivariant if and only if some element of $\pi_{n+k+1} S^n$ *is equivariant.*

(ii) *If* $\pi_{n+k}S^n$ has an equivariant element, then so does $\pi_{m+k}S^m$ for all $m \geq n$. (iii) *If* $0 \in \pi_{n+k-1}S^n$ is equivariant, then $0 \in \pi_{m+k-1}S^m$ is equivariant for all $m \geq n$.

Proof. (i) Since $0 \in \pi_{n+k}S^n$ is equivariant, there exists an inessential map $mi: S^{n+k} \subset (S^{(n+k)}, \lambda_4) \rightarrow (S^n, \lambda_2)$. So we may extend *mi* over e_{n+k+1} , and then by equivariance over $S^{(n+k+1)}$ to a map m'. Now $[m'i]$ is an equivariant element of $\pi_{n+k+1}S^n$. Conversely, if $x \in \pi_{n+k+1}S^n$ is equivariant, then the restriction of any equivariant representative of x to S^{n+k} is equivariant and represents $0 \in \pi_{n+k} S^n$.

(ii) If $x \in \pi_{n+k}S^n$ is equivariant, then $i_{\sharp}x \in \pi_{n+k}S^{n+1}$, where $i : (S^{(n)}, \lambda_2)$ $\subset (S^{(n+1)}, \lambda_2)$, is both equivariant and 0. This observation together with (i) and induction imply (ii).

(iii) is trivially implied by (i) and (ii).

Let $\pi_1 : S^{2k} \to P_1^{2k}$ be the usual quotient map, and let $p : S^{2k} \to S_1^{2k}$ V S_2^{2k} be the map collapsing S^{2k-1} to a point.

LEMMA 2.2. (i) There exists a homotopy equivalence $h: P^{(2k)} \rightarrow P_1^{2k} \vee S^{2k}$ such that $h\pi i : S^{2k} \subset S^{(2k)} \to P^{(2k)} \to P_1^{2k}$ $\check{\vee} S^{2k}$ is the map $\pi_1 + (\pm)$ in

(ii) If $h_1: P_1^{2k} \vee S^{2k} \to P^{(2k)}$ is a homotopy inverse of h, then $(h\bar{\lambda}_2 h_1)^*(g)$ $= -g$ mod the summand $H^{2k}(P^{2k}; Z)$ where g is a generator of the summand $H^{2k}(S^{2k};\mathbb{Z})$ in $H^{2k}(P_1^{2k} \vee S^{2k};\mathbb{Z})$.

Proof. (i) Let $[P] \in P_1^{2k}$ be the basepoint, where $P = (0, \dots, 0, 1) \in e_{2k}$ $\subset S^{(2k)}$. We have $e_{2k} = S^{2k-1} * \{P\}$ where the join variable t is 0 at points $x \in S^{2k-1}$ and is 1 at the point P. Set

$$
A = \{ [x, t, P] \in e_{2k} \mid 0 \le t \le \frac{1}{2} \}
$$

$$
B = \{ [x, t, P] \in e_{2k} \mid \frac{1}{2} \le t \le 1 \}
$$

so that $A \cup B = e_{2k}$. Furthermore, $p(A)$ and $p(B)$ are standard hemispheres of S_1^{2k} such that $p(A) \cap p(B) = S_1^{2k-1}$. In this notation the antipodal map of S_1^{2k} is given by $p[x, t, P] \rightarrow p[-x, 1 - t, P].$

The attaching maps of the cells \bar{e}_{2k} , $\bar{\lambda}_2 \bar{e}_{2k}$ are precisely the same map, so we may deform $P^{(2k)}$ by sliding the cell $\bar{\lambda}_2 \bar{e}_{2k}$ off ${P_1}^{2k}$ to form the homotopically equivalent space P_1^{2k} V S^{2k} . In fact, an explicit homotopy equivalence $h : P^{(2k)}$ - P_1^{2k} V S^{2k} is given by

$$
h(\pi[x, t, P]) = \pi[x, 2t - 1, P] \qquad \pi[x, t, P] \in \bar{e}_{2k}, \quad \frac{1}{2} \leq t \leq 1
$$

$$
h(\pi[x, t, P]) = \pi[x, -2t + 1, P] \qquad \pi[x, t, P] \in \bar{e}_{2k}, \quad 0 \leq t \leq \frac{1}{2}
$$

 $h | \bar{\lambda}_2 \bar{e}_{2k} = \text{any relative homeomorphism of } (\bar{\lambda}_2 \bar{e}_{2k}, \bar{\lambda}_2 \bar{e}_{2k}) \text{ onto } (S^{2k}, [P]).$

It is easy to check that the composition $h\pi i$ is the map $\pi_1 + (\pm)id$, using the above description of the antipodal map of S_1^{2k} .

(ii) The assignment

$$
[e_{2i+1} \t; \lambda_i^j e_{2i}] = -1, 1, 0, 0
$$
 according as $j = 0, 1, 2, 3$;
 $[e_{2i} \t; \lambda_i^j e_{2i-1}] = 1$ all j

extends uniquely to a Z_4 -invariant incidence function on S^{2k+1} . The cochains x_1 , x_2 assuming values 1, 0, resp. 1, 1, on the cells \bar{e}_{2k} , $\bar{\lambda}_2 \bar{e}_{2k}$ represent generators \bar{x}_1 (of infinite order), \bar{x}_2 (of order 2) of $H^{2k}(P^{(2k)}; Z) \cong Z + Z_2$. Assertion (ii) follows easily from the fact that $\bar{\lambda}_2 * x_1 = -\bar{x}_1 + \bar{x}_2$.

THEOREM 2.3. (Conner, Floyd [4]) $\ell \cdot \eta_3$ is equivariant if and only if ℓ is odd. Proof. In the homotopy commutative diagram

which defines \bar{m}_1 **V** \bar{m}_2 up to homotopy, we have $[\bar{m}_1] = 0 \in [P_1^4, S^3]$, by the Steenrod classification theorem, and $[\bar{m}_2] = \eta_3$ by the essentiality of \bar{m} [3, Theorem 3.12]. But then $[mi] = \eta_3$ from Lemma 2.2 (i).

The suspension $Sm : S^{2k+2} \to S^{l+1}$ of a map $m : (S^{2k+1}, \lambda_4) \to (S^l, \lambda_2)$ is equivariant with respect to λ_4 (defined on e_{2k+2}) and λ_2 , and hence extends to a map \widetilde{m} : $(S^{(2k+2)}, \lambda_4) \rightarrow (S^{l+1}, \lambda_2)$. As $\widetilde{m}i = Sm, \widetilde{m}$ is called the *equivariant suspension* of *m*. *suspension* of *m.* .

The Z₄-actions ($S^{2(k+\ell)+3}$, λ_4), ($S^{(2(k+\ell)+2)}$, λ_4) can be viewed as the join Z₄actions $(S^{2k+1}, \lambda_4) * (S^{2l+1}, \lambda_4)$, $(S^{2k+1}, \lambda_4) * (S^{(2l)}, \lambda_4)$, and $(S^{k+l+1}, \lambda_2) \cong (S^k)$ $(\lambda_2) * (S', \lambda_2)$. Thus for $f_i : (S^{(k_i)}, \lambda_4) \to (S^{l_i}, \lambda_2), i = 1, 2$ and k_1, k_2 not both ${\rm even, } f_1*f_2 \text{ defines a map } f_1*f_2 : (S^{(k_1+k_2+1)}, \lambda_4) \to (S^{k_1+k_2+1}, \lambda_2).$

LEMMA 2.4. *There exists a map* \bar{m} : $(P^{(2k)}, \bar{\lambda}_2) \rightarrow (S^{2k}, \lambda_2)$ *representing the* e *lement of order 2 in* $[P^{(2k)}, S^{2k}] \cong \mathbb{Z}_2 + \mathbb{Z}$ if and only if $k = 1$.

Proof. Let $\overline{m}_1 = \overline{m} | P^{(2)}$ for any map $\overline{m} : (P^3, \overline{\lambda}_2) \rightarrow (S^2, \lambda_2)$. $[\overline{m}_1]$ is in the kernel of $(\pi i)^* : [P^{(2)}, S^2] \to [S^2, S^2]$, since $\bar{m}_1 \pi i$ extends to $\bar{m} \pi$ over S^3 . As coindex $P^{(2)} = 2$, \bar{m}_1 must be essential ([3] Theorem 3.12) and so $[\bar{m}_1]$ is the element of order 2.

By cellular approximation the induced map $\bar{m}: P_4^{2k} = P^{(2k)}/\bar{\lambda}_2 \rightarrow P^{2k}$ of any given map $\overline{m}: (P^{(2k)}, \overline{\lambda}_2) \longrightarrow (S^{2k}, \lambda_2)$ is homotopic to a cellular map. By the covering homotopy property \bar{m} is homotopic to a cellular map \bar{m}_1 . The determination of the equivariant elements of $\pi_{2k-1}S^{2k-1}$ (Lemma 1.2 (i)) and the naturality of the Hopf classification theorem imply that $[\bar{m_1}'] = [\bar{m_1} | P^{2k-1}]$ must correspond to N times a generator of $H^{2k-1}(P^{2k-1};\mathbf{Z})$, where N is odd or

even according as
$$
k = 1
$$
 or $k > 1$. In the commutative diagram
\n $H^{2k-1}S^{2k-1} \xrightarrow{\delta_1} H^{2k}(S^{2k}, S^{2k-1}) \xrightarrow{j_1^*} H^{2k}S^{2k}$
\n $\overline{m'}_1^*\Big\downarrow \qquad \qquad \qquad \int f \qquad \qquad \downarrow \overline{m}_1^*$
\n $H^{2k-1}P^{2k-1} \xrightarrow{\delta_2} H^{2k}(P^{(2k)}, P^{2k-1}) \xrightarrow{j_2^*} H^{2k}P^{(2k)}$
\nwe may select generators $g; g_1, \lambda_2^*g_1; \hat{g}$ for the top line such that $\delta_1(g) = g_1$

 $+\lambda_2^*g_1, j_1^*g_1 = -j_1^*\lambda_2^*g_1 = \hat{g}$; and generators *h*; *h*₁, $\bar{\lambda}_2^*h_1$; \bar{x}_1 , \bar{x}_2 such that $\delta_2 h = 2(h_1 + \bar{\lambda}_2 * h_1), j_2 * h_1 = \bar{x}_1, j_2 * (h_1 + \bar{\lambda}_2 * h_1) = \bar{x}_2$ (the element of order 2). Now $\delta_2(\bar{m_1}')^*(g) = 2N(h_1 + \bar{\lambda_2}^*h_1)$, so if $f(g_1) = ah_1 + b\bar{\lambda_2}^*h_1$, then $f(g_1 + b\bar{\lambda_2}^*h_1)$ $\lambda_2^* g_1 = (a + b)(h_1 + \bar{\lambda}_2^* h_1) = 2N(h_1 + \bar{\lambda}_2^* h_1)$. *N* is even when $k > 1$, so $a = b =$ an odd integer cannot occur. Thus the element of order 2 in $H^{2k}(P^{(2k)}; \mathbf{Z})$ is not in the image of $\bar{m_1}^*$.

THEOREM 2.5. Let $k \geq 1$

- (i) $\ell \cdot \eta_{2k+2}$ *is equivariant if and only if* ℓ *is even.*
- (ii) $\ell \cdot \eta_{4k+1}$ *is equivariant if and only if* ℓ *is even.*

Proof. (i) For $k \geq 1$ Lemma 2.4 implies that any map $m : (S^{2k+3}, \lambda_4) \rightarrow$ (S^{2k+2}, λ_2) induces a map \bar{m} whose restriction to P_1^{2k+2} is inessential. Hence m is homotopic to some map $\tilde{m}q\pi : S^{2k+3} \to P^{2k+3} \to P^{2k+3}/P_1^{2k+2} = S^{2k+3} \to S^{2k+2}$ and as deg $q\pi = \pm 2$, (i) follows.

(ii) Any representative $f: S^{\ell} \to S^{\ell-1}$ of $\eta_{\ell-1}$ induces an isomorphism $f^*: \widetilde{KO}^{\ell-2}S^{\ell-1} \to \widetilde{KO}^{\ell-2}S^{\ell}$. In fact, since $S^{\ell-1} \cup_f e^{\ell+1} \sim \Sigma^{\ell-3}CP^2$, we have an exact sequence

$$
\widetilde{KO}^{\ell-2}S^{\ell-1} \xrightarrow{\delta} \widetilde{KO}^{\ell-1}S^{\ell+1} \to \widetilde{KO}^{\ell-1}(\Sigma^{\ell-3}CP^2)
$$

where $\delta = s^*f^*$ and s^* is the suspension isomorphism. As $\widetilde{KO}^{t-1}(\Sigma^{t-3}CP^2) \cong$ $\widetilde{KO}^2(CP^2)$ is free abelian [7], f^* must be an isomorphism.

Apply \widetilde{KO}^{4k} to the diagram

to obtain the commutative diagram

The map j sends P_a^{4k+2} , P_b^{4k+2} homeomorphically onto P_1^{4k+2} , P_2^{4k+2} respectively. If $j_i: P^{4k+1} \to P_i^{4k+2}$ is the usual inclusion, then $j_i^* : \tilde{KO}^{4k-1}P_i^{4k+2} \to$ $\widetilde{KO}^{4k-1}P^{4k+1}$ is epic [7], and so from the Mayer-Vietoris sequence, j^* is monic.
The requirement $\bar{\lambda}_2 j = jT$ defines a map $T: P_a^{4k+2} + P_b^{4k+2} \rightarrow P_a^{4k+2} + P_b^{4k+2}$.
 $\widetilde{KO}^{4k}P^{4k+2}$ is cyclic of order 4N

 $\cong Z_{4N} + Z_2$. We may select generators h_a , h_b of $\widetilde{KO}^{4k}P_a^{4k+2}$, $\widetilde{KO}^{4k}P_b^{4k+2}$, and
generators g_1 , g_2 of $\widetilde{KO}^{4k}P^{(4k+2)}$ such that $T^*h_a = h_b$, $j^*g_1 = h_a \oplus h_b$ and j^*g_2 = $2Nh_a \oplus 0$. Hence $\bar{\lambda}_2^*g_1 = g_1$ while $\bar{\lambda}_2^*g_2 = 2Ng_1 + g_2$. So if $\bar{m}^*g = n_1g_1 + n_2g_2$ for $g \neq 0$ in $\widehat{KO}^{4k}S^{4k+1}$, then $\lambda_2^* = \text{identity}$ and $\overline{m}^*\overline{\lambda_2}^* = \lambda_2^*\overline{m}^*$ imply $n_1g_1 +$
 $n_2g_2 = (n_1 + 2Nn_2)g_1 + n_2g_2$ in $\widehat{KO}^{4k}P^{(4k+2)}$. Hence $n_1 \equiv n_1 + 2Nn_2 \pmod{4N}$ and so n_2 is even. However n_1 must also be even, since the map $\overline{m} | P^{4k+1}$ is in-
essential and the kernel of $i^* : \overline{KO}^{4k}P^{(4k+2)} \to \overline{KO}^{4k}P^{4k+1}$ is contained in $2KO^{4k}P^{(4k+2)}$. Hence $i^*m^* = 0$ and consequently, mi is inessential.

 $0 \in \pi_5 S^4$ is equivariant and so by Lemma 2.1 (iii) $0 \in \pi_{n+1} S^n$ is equivariant for all $n \geq 4$. By Lemma 2.1 (i) $\pi_{n+2}S^n$ has an equivariant element for all $n \geq 4$.

THEOREM 2.6. Let $k > 1$.

(i) $\ell \cdot \eta_{4k}{}^2 = \ell \eta_{4k+1} \eta_{4k}$ is equivariant if and only if ℓ is even.

18 JACK UCCI

(ii) Both elements $0 \cdot \eta_{4k+1}^2$ and η_{4k+1}^2 are equivariant. Similarly both elements $0 \cdot \eta_{4k+2}^2$ and η_{4k+2}^2 are equivariant.

(iii) $\ell \cdot \eta_{4k+3}^2$ is equivariant if and only if ℓ is even.

Proof. We use the notations T, j, h_a, h_b, g_1, g_2 defined in the proof of Theorem 2.5 (ii). Recall that $\tilde{K}\tilde{O}^{4k}P^{4k+2}$ is cyclic of order $4N$. As λ_2 is defined on an evendimensional sphere, $\lambda_2^* g = -g$ for a generator g of $\tilde{K}O^{4k}S^{4k}$. If $\bar{m}^* g = n_1g_1 + n_2g_x$ where $\bar{m}: (P^{(4k+2)}, \bar{\lambda}_2) \rightarrow (S^{4k}, \lambda_2)$, then $\bar{\lambda}_2^* \bar{m}^* = \bar{m}^* \lambda_2^* = -\bar{m}^*$ implies that

 $n_1g_1 + n_2g_2 + (n_1g_1 + 2Nn_2g_1 + n_2g_2) = (2n_1 + 2Nn_2)g_1 + 2n_2g_2 = 0$

in $\tilde{K}\tilde{O}^{4k}P^{(4k+2)}$. Hence both n_1 and n_2 are even and image $\bar{m}^* \subset 2 \cdot \tilde{K}\tilde{O}^{4k}P^{(4k+2)}$ Hence $i^* \pi^* m^* = 0$ and by Adams [1], $\bar{m} \pi i = m i$ is inessential.

(ii) First $0 \cdot \eta_1^2$ is equivariant and so $0 \cdot \eta_1^2$ is equivariant for all $n \geq 4$. To show that η_{4k+1}^2 is equivariant, consider any inessential map \bar{m} : $(P^{4k+1}, \bar{\lambda}_2)$ \rightarrow (S^{4k+1} , λ_2) (such exist by Lemma 1.2 (ii)). Using the homotopy extension property, we extend \bar{m} over P_1^{4k+2} to a representative \hat{m}_1 of the generator of $\pi^{4k+1}P_1^{4k+2} \simeq Z_2$ [11]. We further extend \hat{m}_1 by equivariance to a map $\bar{m}_1 : (P^{(4k+2)}, \bar{\lambda}_2) \rightarrow (S^{4k+1}, \lambda_2)$. By Theorem 2.5 (ii) $\bar{m}_1 \pi i$ is inessential, so m = $\bar{m}_1\pi$ extends to a map $m_2 : (S^{4k+3}, \lambda_4) \rightarrow (S^{4k+1}, \lambda_2)$.

We assert that $[m_2] = \eta_{4k+2}^2$. There is the homotopy commutative diagram

since $\bar{m}_2 \mid P^{4k+1}$ is inessential. As \hat{m}_1 represents a generator of $\pi^{4k+1} P_1^{4k+2}$, $\hat{m} \sim$... $f \circ p_1 : P_1^{4k+2} \to P_1^{4k+2}/P^{4k+1} \simeq S^{4k+2} \to S^{4k+1}$ with $[f] = \eta_{4k+1}$ [11]. Hence $[\bar{m}_a]$ $= \eta_{4k+1}$. Also $Sq^2 \neq 0$ on $H^{4k+2}(P^{4k+4}; \mathbb{Z}_2)$ and $H^{4k+2}(P^{4k+4}; \mathbb{Z}) \cong \mathbb{Z}_2$ imply that $[p\pi] = \eta_{4k+2} + (\pm 2)\iota$. Hence $[m_2] = \eta_{4k+1}\eta_{4k+2} + 2[\bar{m}_b] = \eta_{4k+1}^2$.

By equivariant suspension the result for $\pi_{4k+4}S^{4k+2}$ follows immediately.

(iii) For any $\overline{m}: (P^{4k+5}, \overline{\lambda}_2) \longrightarrow (S^{4k+3}, \lambda_2), \overline{m} \mid P^{4k+3}$ is inessential. This provides a homotopy commutative diagram

In this case $Sq^2 = 0$ on $H^{4k+4}(P^{4k+6}; \mathbb{Z}_2)$ and so $[p\pi] = 0 \cdot \eta_{4k+4} + (\pm 2)\iota$. Hence $[m] = 0.$

3. **Codimension 3**

We write $(s, t) \equiv (m, n) \pmod{(p, q)}$ if $s \equiv m \pmod{p}$ and $t \equiv n \pmod{q}$.

THEOREM 3.1. (i) $s\nu_4 + t\omega \in \pi_7S^4$ *is equivariant if and only if* $(s, t) = (2, 5)$, $(6, 3)$ *or* $(10, 1)$ $(\text{mod } (12, 6))$.

(ii) Let $j \geq 5$. If $\ell \cdot \nu_j$ is equivariant, then $\ell \equiv 0 \pmod{12}$.

(iii) Let $j \geq 5$. If $j \neq 6, 7$, then both $0 \cdot v_j$ and $12 \cdot v_j$ are equivariant, and if $j = 6$ or 7, then $0 \cdot \nu_i$ is equivariant.

Proof. (i) For any $m:(S^7, \lambda_4) \rightarrow (S^4, \lambda_2)$ Lemma 2.3 implies that the restriction $\bar{m} | P^{(4)}$ of the induced map \bar{m} is inessential, and so we have a homotopy commutative diagram

where the homotopy equivalence \sim is given in [9]. Also in [9] is the result that $[p\pi] = \tilde{\eta} + (\pm 2)\iota$. As coindex $P^5 = 4$, $\bar{m} | P^5$ must be essential ([13] Theorem 3.12), and so $[\bar{m}_1] = \pm \bar{\eta}$ [2]. Hence if $[\bar{m}_2] = d_1 \nu_4 + d_2 \omega$, then $[m] = \pm \bar{\eta} \circ \tilde{\eta}$ $+ 2 (d_1 \nu_4 + d_2 \omega) = 2 d_1 \nu_4 + (2 d_2 \pm 3) \omega$. (Here $\bar{\eta}$ is chosen so that $\bar{\eta} \circ \tilde{\eta} = 3\omega$.) Next $\lambda_2 m = m\lambda_4 \sim m$, since $\lambda_4 \sim id$. Also, as is well known, the homomor-

phism $\lambda_{2*}: \pi_7S^4 \to \pi_7S^4$ is given by $\lambda_{2*}(\nu_4) = \nu_4 - \omega$, $\lambda_{2*}(\omega) = -\omega$ and so we have

$$
[m] = 2 d_1 \nu_4 + (2 d_2 \pm 3) \omega = [\lambda_2 m] = \lambda_{2\#}[m] = 2 d_1 \nu_4 + (-2 d_1 - 2 d_2 \mp 3) \omega.
$$

Hence the relation $2 d_1 + 4 d_2 \equiv 6 \pmod{12}$. But then d_1 must be odd, from which we easily deduce that $(2 d_1, 2 d_2 + 3) \equiv (2, 5), (6, 3)$ or $(10, 1)$ (mod $(12, 6)$.

Conversely, there exists a map $g : (S^7, \lambda_4) \to (S^4, \lambda_2)$, say $[g] = s\nu_4 + t\omega$ with *s*, *t* satisfying the stated condition. Note for $\alpha = \nu_4$, $\sum_{j=0}^{3} (\lambda_2)^j{}_{j} \alpha = 4\nu$ 2ω and so for any other pair (s_1, t_1) satisfying the condition, there exists an integer *N* such that $s_1\nu_4 + t_1\omega = [g] + \sum_{j=0}^3 (\lambda_2)^j{}_j (N \nu_4)$. Hence Folkman's result Proposition 1.1 (i) implies that $s_1v_4 + t_1\omega$ is equivariant also.

(ii) The homomorphism $(\lambda_2)_{\#}: \pi_{2k+1}(S^{2k-2}) \to \pi_{2k+1}(S^{2k-2}), k \geq 4$, is multiplication by -1 . Hence $[m] = [m\lambda_1] = [\lambda_2 m] = -[m]$ and so $2[m] = 0$. In $\pi_{2k+1}S^{2k-2} \cong Z_{24}$, this means that $[m] = \ell \cdot \nu_{2k-2}$ where $\ell \equiv 0 \pmod{12}$.

The self map $\bar{\lambda}_2' = h \bar{\lambda}_2 h_1$ of P_1^{2k+2} \vee S^{2k+2} , where $h: P^{(2k+2)} \to P_1^{2k+2}$ \vee S^{2k+2} is a homotopy equivalence and h is a homotopy inverse of h_1 , induces the nontrivial isomorphism on the summand $H^{2k+2}(S^{2k+2};\mathbb{Z})$ mod $H^{2k+2}(P^{2k+2};\mathbb{Z})$ by

Lemma 2.2 (ii). In the homotopy commutative diagram

the equivariance condition $m\bar{\lambda}_2 = \lambda_2 m$ implies $\bar{m}h_1 \bar{\lambda}_2' \sim \lambda_2 m h_1$ and so $2[\bar{m}_2] = 0$. Moreover, from Rees [9] we have $2[\bar{m}\pi_1] = 0$. Hence $2[mi] = 2([\bar{m}_1\pi_1] + [\bar{m}_2\pi_2])$ $= 0.$

(iii) The equivariant suspensions of the equivariant elements $2\nu_4 + 5\omega$, $14\nu_4 + 5\omega$ are the elements $12\nu_5$, $0.\nu_5$. The join of $2\nu_4 + 5\omega$ and $2\omega_1$ is $0.\nu_6$. while for $j \geq 5$ the join of $0 \cdot \nu_j$ and 2_{ι} is $0 \cdot \nu_{j+2}$. Finally $12\nu_{4k}$ (resp. $12\nu_{4k+2}$) is the join of η_{4k-3}^2 (resp. η_{4k-1}^2) and $(2\ell+1)\eta_2$ (resp. $(2\ell+1)\eta_2$).

4. Further results

Instead of seeking the least k for given n for which there exists a map $(P^{(n)}, \bar{\lambda}_2) \rightarrow (S^k, \bar{\lambda}_2)$, we can fix k and ask for the largest n that such a map exists. The latter point of view is suggested by the obstruction theory for extending equivariant maps [6, §2]. For $k \leq 3$ this *n* has been determined in [4]. The following result extends this information somewhat.

THEOREM 4.1. (i) $\ell \cdot \omega_5 = \ell \cdot [\iota_5, \iota_5] \in \pi_9 S^5$ is equivariant if and only if ℓ is even. (ii) $\ell \cdot \nu \eta^2 \in \pi_{10} S^5$ is equivariant if and only if ℓ is odd.

(iii) Infinitely many elements of $\pi_{11}S^6$ are equivariant, and no element of $\{N \cdot \omega_6 \in \pi_{11}S^6 \mid N \text{ odd}\}\$ is equivariant.

(iv) $0 \in \pi_{13}S^7$ is equivariant; $0 \in \pi_{14}S^7$ is not equivariant.

(v) Infinitely many elements of $\pi_{15}S^8$ are equivariant.

Proof. (i) Randall [8] has shown that ω_5 is not even projective, i.e. ω_5 admits no representative of the form $f\pi: S^9 \to P^9 \to S^5$. Since $0 \in \pi_8 S^5$ is equivariant, the only other element of $\pi_{9}S^5$, namely 0, must be equivariant.

(ii) (i) implies that some element of $\pi_{10}S^5$ is equivariant. If $0 \in \pi_{10}S^5$ is equivariant, then some element x of $\pi_{11}S^5$ is also equivariant. But then the join construction implies that the join x*x of x with itself in $\pi_{23}S^{11}$ is equivariant. However $x*x = 0$ for all elements x in $\pi_{11}S^5$ [10] and so some element of $\pi_{k+13}S^k$ is equivariant for all $k \ge 11$. For $k = 12$ this contradicts results of [5], and so (ii) is proved.

(iii) By (ii) we have that $\pi_{k+5}S^k$ has an equivariant element for all $k \geq 5$. If $x \in \pi_{11}S^6$ is equivariant, then so is $x + 4y$ for any $y \in \pi_{11}S^6$, because $(\lambda_2)_* : \pi_{11}S^6 \to \pi_{11}S^6$ is the identity isomorphism and we may apply Folkman's Prop. 1.1 (i). This Proposition also establishes the second assertion of (iii), since ω_6 (and also $-\omega_6$ by an identical argument) is not projective [8].

(iv) Using (iii) we have an inessential map $im : (S¹¹, \lambda_4) \rightarrow (S⁰, \lambda_2) \rightarrow (S¹, \lambda_2)$ and hence a map $m_1i : S^{12} \subset (S^{12}, \lambda_4) \rightarrow (S', \lambda_2)$. $[m_1i] = 0$ since $\pi_{12}S' = 0$, so m_1 extends to a map $m_2 : (\hat{S}^{13}, \lambda_4) \rightarrow (\hat{S}^7, \lambda_2)$ which by construction satisfies, the homotopy commutative diagram

Now $H^{14}(P^{14}; \mathbb{Z}) = \mathbb{Z}_2$ and $Sq^2 = 0$ on $H^{12}(P^{14}; \mathbb{Z}_2)$ so $[p\pi] = 0 \cdot \eta_{12} \pm 2\iota$, But then $[m_2] = 0$ since $\pi_{13}S' = Z_2$. If $0 \in \pi_{14}S'$ were equivariant, some element *y* of $\pi_{15}S^7$ would be also. But then the join $y*y = 0 \in \pi_{31}S^{15}$ [10] would be equivariant, thus implying that $\pi_{k+17}S^k$ contains an equivariant element for all $k \geq 15$, a contradiction for $k = 16$ [15].

(v) By 1.1 (i) it suffices to show that some element of $\pi_{15}S^8$ is equivariant. As some element of $\pi_{14}S^7$ is equivariant, this is implied by Lemma 2.1 (i).

Our results on equivariant maps give the following table for the coindex of $P^{(n)}$:

For $n \leq 6$ these results were first given in [4].

Some open questions in low codimension: Is η_{4k+3} equivariant ($k \geq 1$)? Are $12\nu_6$, $12\nu_7$ equivariant? Is $0 \in \pi_{11}S^6$ equivariant? The answers to these questions would determine all equivariant elements in $\pi_{n+k}S^n$ of codimension ≤ 5 for all *n.*

SYRACUSE UNIVERSITY

REFERENCES

- [1] J. F. ADAMS, *On the groups* J(X)-IV, Topology, 6(1966), 21-71.
- [2] M. G. BARRATT AND G. F. PAECHTER, A note on $\pi_r(V_{n,m})$, Proc. Nat. Acad. Sci. USA, **38** (1952), 119-21.
- [3] P. E. CONNER AND E. E. FLOYD, *Fixed point free involutions and equivariant maps,* Bull. Amer. Math. Soc., 66(1960), 416-41.
- [4] ----- AND -----, *Fixed point free involutions and equivariant maps.* II, Trans. Amer. Math. Soc., **105**(1962), 222-28.
- [5] ----- AND -----, *Periodic maps which preserve a complex structure*, Bull. Amer. Math. Soc. 70(1964), 575-79.
- (6] JoN FOLKMAN, *Equivariant maps of spheres into the classical groups,* Mem. Amer. Math. Soc. No. 96(1971).

22 JACK UCCI

- [7] M. FUJII, *K 0-groups of projective spaces,* Osaka J. Math., 4(1967), 141-49.
- [8] D. RANDALL, *Projectivity of the Whitehead square,* Proc. Amer. Math. Soc. 40(1973), 609-11.
- [9] E. REES, *Symmetric maps*, J. London Math. Soc. (2) 3(1971), 267-72.
- [10] H. TODA, *Composition methods in homotopy groups of spheres,* Ann. of Math. Study No. 49(1962).
- [11] R. **W.** WEST, *Some cohomotopy of projective space,* Indiana Univ. Math. J. **20(1971),** 807-27.