ON EQUIVARIANT MAPS OF LOW CODIMENSION FROM REAL
PROJECTIVE SPACES TO SPHERES

By Jack Uccr*

0. Introduction

Let P'™ be real projective n-space P" if n is odd, and the union of two real
projective n-spaces Pi* U P," with P," N P," = P" " if n is even. P'™ admits a
fixed point free involution, as does the n-sphere (the antipodal map). The coin-
dex of P'™ is the least integer k for which there exists an equivariant map p™
— S*. We study the set of all elements of m,,,S” which admit representatives
of the form :

Sn+k c S(n+k) ™ P(ﬂ+k) f S
where f is equivariant (see §2 for the definition of S™). For low values of k
(<3) our results are nearly complete. Application is made to give new informa-
tion on coindex P'™ for n < 16.
Notations and unreferenced results concerning the homotopy groups of spheres
can be found in Toda’s book [10].

1. Equivariant elements of r;S?

The standard Zn-action (S*7, \.) is given by Am(zy, ---, @) =
(e(1/m)zy, - -+, e(1/m)z;), where e(xz) = exp (2wix). For definitions and pre-
liminaries of equivariant maps, we refer the reader to [6, §2]. In particular, we
will make use of

Prorosrrion 1.1 (Folkman [6]) (i) Let (X, T») be a Zmn-action with X
path conmected, (2k — 1)-simple and To ~ id. Then for any map f:(S™ 7, Am)
— (X, T2) and any o € w1 X, there exists a map g : (S A\n) — (X, T2)
such that [g] = [f] + ma.

(ii) Let (X, Ts) be a Zu-action with X path connected, n-simple for n- = 1,
2, -+ ,2k — 1 and Ty ~ id. Suppose Hom (Zm, mi 1X) = Ext (Zn, m2:X) =0
Jori=1,2,--«,k— 1.Iff, g : (S M) = (X, Ts) are maps, then [g] — [f]
= ma for some a € wop1X.

Folkman’s proofs of (i) and (ii) are valid with the weaker hypothesis
“(T2) g : mop1X — w1 X i8 the identity isomorphism” replacing the hypothesis
“Ty ~ 1d”. Furthermore, if the hypothesis 7> ~ ¢d in 1.1 (%) is eliminated, then
the proof in [6] establishes the weaker conclusion [g] — [f] = D om0 (T%') g

Lemma 1.2 (i) There exists a map f : (8%, An) — (8*7, \n) of degree d if
and only of d = mj + 1 for some j.

* Supported in part by NSF Grant GP-34108.
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(ii) Let m = 2" > 2. There exists a map f: (8%, Mam) — (8%, A\n) of
degree d if and only if d = 2mj + 2*, where e = 1 fork < rand ¢ = 0 for k > r.

Proof. The identity map is a map (8™, An) — (8™, \) of degree 1, and
there is the map s :(S™ 7, Aam) — (8% An), m = 2" > 2, given by
sz, ooy @) = V]alt+ - + [a]t (22, ---, &), of degree 2°. Both
aggertions (i), (ii) then follow from 1.1 (i)—(ii).

We say a € mui1S° is equivariant if there exists a map f : (8™, A) — (8%, \o)
with [f] = @. For all k > 1, Lemma 1.2 (ii) determines all the equivariant ele-
ments of mu_iS¥ ", The Zs-action \s on S " induces a Zs-action Xs on P
Thus by naturality of the Hopf classification theorem all equivariant elements
of [P*, 8%, i.e. those elements represented by maps 7 satisfying mke = \offi,
are also determined. '

Conner and Floyd [4] use the Zs-action on S* given by M\, (71,20) = (—2 z2, Z1).
Since both Ay, s’ are orthogonal actions, there exists an orthogonal map (S°, \s)
— (8%, \/). Thus we may use either action.

Let 8 € m3S® =2 Z be the generator represented by the Hopf construction of
the complex multiplication S* X 8" — §. Then (21, 23) = 21/2; defines a map
(8% \) = (8% ;) representing the element —g. Here S is the one-point com-

pactification of the complex plane and )\2(2’)‘ = —z ' is the antipodal Zs-action.

TarorEM 1.3 d-8 € m38” is equivariant if and only if d = 4 — 1 for some £.

Proof. For any £ Lemma 1.2 (i) provides a map f¢ : (8%, A) — (8%, \) of
degree 4¢ 4+ 1. The composition hqfe then is a map (S, \/) — (8% \) repre-
senting (4¢ + 1) (—B) = (4(—£)—1)8 € mS™

Conversely, let ¢, : m,8* — 7,8 be the homomorphism induced by left com-
position with a map S* — S* of degree ¢. Then ¢, satisfies the property Hy,

;I/,_,zH where H : 7,8 — 7,8 denotes the Hopf homomorphism. H s w3 S?
— 8% is an 1somorphlsm 8o the relation H(N) ¢ = Hy_1 = Y. = H implies
that (M) g : msS8® — msS” s the identity isomorphism. Because m3S® ~ Z, the
other hypotheses of 1.1 (ii) obtain, so we may conclude that [g] — [f] € 4mS®
for any two maps f, g : (8%, \/) — (8% o).

he(z1, 22) = (21/22) 1" defines a map (S°, \) — (8% o) for every integer .
The subset b "S" = {(re(6y), re(6:)) | r = 1/4/2 }== §' X §"is an equivariant
torus in S° and the restriction 7z | by S" defines a map (S* X S, \) — (S, Ng)
of type (26 + 1, —(2k + 1)). As ke is the Hopf construction of its re-
striction hy | ba"S", hs, represents the element —(2k + 1)’8 € mS®. The maps
I exhaust those equivariant elements of r3S” represented by Hopf constructions
of maps (8" X 8%, ) = (8, \2). More precisely,

Prorosition 1.4 There exisis a map (S' X 8%, A) — (8%, \s) of type (m, n)
if and only if m = —n = 2k-+1 for some k.

Proof. For any k the map hi(e(61), e(6:)) = e((2k + 1) (61 — 6)) is equi-
variant and has type (2k + 1, — (2% + 1)). Conversely, suppose f : (8" X §',
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M) — (8%, N;) has type (m, n). As \s ~ id we have fA/ = Mof ~ fand som =
—n. But Theorem 1.3 implies that no element of 2mS” is equivariant (a fact
already proved in [4]), and the Hopf construction then shows that no type of
the form (2n, —2n) can have an equivariant representative. (Alternatively, the
trivial fact that maps £; : (S, M) — (8" X 8%, \/') exist representing ((2j + 1),
—(27 + 1)) € m(8" X S") together with Lemma 1.2 (ii) imply that types
(2n, —2n) do not have equivariant representatives.)

2. Codimensions 1 and 2

For0 <7< klet
€y; = {(zl’ ceey, zk+1) 6 S2k+1|2j = O fOI‘ j > 7/ + 1, 21'+1 = lzi'+1 |}
i1 ={(21, - - ,2601) € 8¥ |2, =0 for j>i4+1,0<argziy < 7/2).

The collection {Ae; |0 < j < 3,0 < ¢ < K} defines a cell decomposition of
S** equivariant with respect to the cellular map M. The subcomplex
S U ep; U \es; defines a sphere 8%, and we have 8° < 8 < 8§, ¢ < 2k,
where 8 denotes the £-skeleton.

The Zsaction A, on S8 induces a Zs-action X, on the quotient space P’
= 89/ P®™™ is the usual real projective space P*'' and P =
P* 7 U &y, U Xofr, where &, is the image of ey, under the quotient map. Observe
that P® = P U Py* where P = P* ' Ueéy, P = P* 1 U Ry are even
dimensional real projective spaces and P;™* is the usual one in P***,

Now we may extend our definition of equivariant elements. We say a € m.S*
is equivariant if there exists a map fi: 8* < (8%, M) — (8, \.) with [fi] =

Lemma 2.1 (i) 0 € m4.8™ ¢s equivariant if and only if some element of Tnir41S”
8 equivariant.

(i) If myxS™ has an equivariant element, then so does T. xS™ for all m > n.

(iii) If 0 € muyaS™ is equivariant, then 0 € Tuyp1S™ 1s equivariant for all
m > n.

Proof. (i) Since 0 € m,,:S™ is equivariant, there exists an inessential map
mi : 8" < (8", \) — (8%, \). So we may extend mi over e,i41, and
then by equivariance over "™ to a map m’. Now [m'7] is an equivariant
element of m,x118". Conversely, if 2 € 7,1+ 1S™ i8 equivariant, then the re-
striction of any equivariant representative of z to 8"** is equivariant and repre-
sents 0 € m,S".

(i) If & € muS™ is equivariant, then iyx € m,wS™, where 7 : (8™, \o)
C (8P ), is both equivariant and 0. This observation together with (i)
and induction imply (ii).

(iii) is trivially implied by (i) and (ii).

Let m : 8% — P,** be the usual quotient map, and let p : 8% — 8™ v S
be the map collapsing ™" to a point.
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Lemma 2.2. (i) There exists a homotopy equivalence h : P™ — Py §%
such that ki : 8% < 8™ — P® P v 8% isthe map m + (&)d.

(i) If hy : P v 8% — P® 45 a homotopy inverse of h, then (hishy)*(g)
= —g mod the summand H*(P*; Z) where g is a generator of the summand
H™(8%; Z) in H*(P* v §%; Z).

Proof. (i) Let [P] € P/™* be the basepoint, where P = (0, ---, 0, 1) € ex
c S®. We have ey, = S¥ '%{P} where the join variable ¢ is 0 at points
z € 8®™'and is 1 at the point P. Set

B = {lx,t,Pl€en|s <t <1}

so that A U B = ey. Furthermore, p(A) and p(B) are standard hemispheres of
S$:** such that p(4) N p(B) = 8. In this notation the antipodal map of
Sy"* is given by plz, t, P] — pl—=z, 1 — ¢, P].

The attaching maps of the cells &, A8y are precisely the same map, so we
may deform P*® by sliding the cell Ay off P to form the homotopically equiva-
lent space Py** v S8¥. In fact, an explicit homotopy equivalence h : P®® —
Py* v 8% s given by

h(‘lr[:C,t,P])=1f[$,2t—l,P] T[x,t,P]Gézk, %Stﬁl
h(nlz,t, P]) = nlz, — 20 + 1, P] =z, t, P]Cen, 0<t<3

h | Nz = any relative homeomorphism of (Ms8a , Neéaz) onto (8%, [P]).

It is easy to check that the composition Anz is the map m + (=)7d, using the
above description of the antipodal map of S,*.
(ii) The assignment

lesis i Mesi] = —1,1,0,0 according agsj = 0, 1, 2, 3;
[625 Z)\4562¢_1] =1 all ]

extends uniquely to a Zsinvariant incidence function on S**'. The cochains
21, Tz assuming values 1, 0, resp. 1, 1, on the cells &y, , A& represent generators
& (of infinite order), &, (of order 2) of H*(P®; Z) =~ Z + Z, . Assertion (ii)
follows easily from the fact that Ngxaxy = —&; + %2 .

TuaeorEM 2.3. (Conner, Floyd [4]) £-us is equivariant if and only if £ is odd.

Proof. In the homotopy commutative diagram

7
St 89 — ™, 8
T m Ty V e

—————

P(4), X2 '—T P14 V S4
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which defines 7, V 7z up to homotopy, we have [;] = 0 € [Py, 8%, by the
Steenrod classification theorem, and [,] = 73 by the essentiality of m [3, Theo-
rem 3.12]. But then [m7] = ns from Lemma 2.2 (i).

The suspension Sm : 8**? — 8 of a map m : (8%, A) — (8% N) is
equivariant with respect to \s (defined on exy) and A;, and hence extends to a
map 7 : (SP*® \) — (8, N). As Wi = Sm, # is called the equivariant
suspenston of m.

The Zs-actions (S™*t978 ), (S®*H94D \)) can be viewed as the join Zs-
actions (8% A)*(S* ), (8% M) (8P, Ay, and (81, ) = (8%
Ao) x(S%, Ns). Thus for fi : (8*?, \) — (8%, N), 4 = 1, 2 and ¥, k. not both
even, fixfs defines a map fuxfa : (SETE1D \) — (STt ).

Lemma 2.4. There exists a map i : (P®®, X)) — (8%, \y) representing the
element of order 2 in [P*® 8™ =2 Z, + Z if and only if k = 1. ’

Proof. Let iy, = | P® for any map 7 : (P, ) — (8%, \o). [] is in the
kernel of (w)* : [P®, 8% — [8?% 87, since 7iymi extends to mr over S°. As coin-
dex P® = 2, i, must be essential ([3] Theorem 3.12) and so [i] is the element
of order 2.

By cellular approximation the induced map # : P = P /%, — P* of any
given map 7 : (P X)) — (8%, \y) is homotopic to a cellular map. By the
covering homotopy property # is homotopic to a cellular map ;. The de-
termination of the equivariant elements of T2 187" (Lemma 1.2 (i)) and the
naturality of the Hopf classification theorem imply that [#] = [ | P™ ]
must correspond to N times a generator of H**(P*"; Z), where N is odd or
even according as k = 1 or k > 1. In the commutative diagram

LGl 01 H%( S2k, SP1 i H*S%

FE-ip1 82 (P, PP 5 FpR

we may select generators g; ¢y, Ao'¢1 ; ¢ for the top line such that &(g) = ¢
+ )‘2*91 , J'1*g1 = —j1*)\z*gl = §; and generators h; hy, Ne'hy 3 %1, % such that
&h = 2(h + '), 52" = F1, o (hs + No*h1) = &, (the element of order 2).
Now 8(7)*(§) = 2N(h + X'h), so if f(¢1) = ahy + bRk, then f(g1 +
M) = (a + b) (b + ) = 2N(h + A'hi). N is even when k > 1, so
a = b = an odd integer cannot occur. Thus the element of order 2 in H 2’”( P(w; Z)
is not in the image of ;™.

TreEOREM 2.5. Let k > 1
(1) £-n2wy2 18 equivariant if and only if £ is even.
(ii) £-nap1 s equivariant of and only if £ is even.

Proof. (i) For k > 1 Lemma 2.4 implies that any map m (S N) —

2k+2 . — . . k+2 o . .
(S**2 %\,) induces a map 7% whose restriction to Py *2 is inessential. Hence m
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is homotopic to some map figr : S¥*° — P*** _, p¥te/p ¥t . gHHs _, gt
and as deg gr = +2, (i) follows. ,

(ii) Any representative f:S8° — 8“7 of 7, induces an isomorphism
* KO 28" — KO“?S'. In fact, since 87 U, ¢ ~ =7°CP% we have an
exact sequence

Kottt ) KO8 s K"ét-1( =-0pY)

Wllere 5 = s*f* and s* is the suspension isomorphism. As KO**(Z°CP?) =
KO*(CP? ) 18 free abelian [7], f* must be an isomorphism.
Apply KO* to the dlagram

4k+1
S+

\ / (4 is disjoint union)

Pa4k+2 P 4k+2 P(4k+2) )\

S4k+2 C S(4k+2) e

to obtain the commutative diagram

K04kS4k+1 K04kS4k+2

\

K’b4kP(4k+2) K04kP 4k+2 o K04kP 4k+2

The map j sends Pa“““, P homeomorphically onto Py**% Py"*™* regpec-

tively. If ji : P**' — P#**% i3 the usual inclusion, then j;* : KO*'P#* —
KO" ' p*+! ig epic [7], and so from the Mayer-Vietoris sequence, j* is monic.

The requlrement %j = jT defines a map T : P 4 P**? — pt*+*

Pt KO* P ig cyclic of order 4N [7] and so from Lemma 2.2 KO‘”‘PW‘“)
1‘—_’ Ziy + Zs. We may select gencrators h, , hy of KO*p KO*P w2 and
generators ¢; , gs of KO"P%* guch that T he = hs i = he @ hy and 5¥gs
= 2Nh, @ 0. Hence A:*g1 = g1 while "2 = 2Ng1 + ¢2. So if 79 = mags + nsge
for g % 0 in @4'"S4k+l, then A\* = identity and @™ " = N7 imply mg; -+
nege = (n1 + 2Nn2)g1 + nege in KO*P**® Hence ny = ny + 2Nns (mod 4N)
and so n, is even. However n; must also be even, since the map 7 | P** is in-
essential and the kernel of ¥ : KO"P“* — KO*P*' is contained in
2KO*P“*? Hence i*m™ = 0 and consequently, m is inessential.

0 € mS* is equivariant and so by Lemma 2.1 (iii) 0 € m,.1S" is equivariant
for alln > 4. By Lemma 2.1 (i) 7,428” has an equivariant element for all n > 4.

TueoreMm 2.6. Let k > 1.
() -’ = Engqana is equivariant if and only if € is even.
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(i) Both elements 0-nuss” and nuys® are equivariant. Szmzlarly both elements
0- a2 and "74k+2 are equivariant.
(iil) £-na4s ts equivariant if and only if £ is even.

Progf. We use the notations T, 7, A, , ks , g1, g2 defined in the proof of Theorem
2.5 (ii). Recall that KO‘"’P‘"c+2 is cyelic of order 4N. As A\ is deﬁned on an even-
dimensional sphere, \2*g = —g¢ for a generator g of KO*S8*. If m* g = mgr + nagr
where 7 : (P X,) — (8%, \y), then N,*7* = @*\" = —m” implies that

mgr + nage -+ (ugr + 2Nnegy + nsge) = (2 + 2Nn2) g1 + 2nage = 0

in KO*P“**®_ Hence both n; and n, are even and image m* < 2. KO*P**®
Hence " r*m™* = 0 and by Adams [1], mmi = mz is inessential.

(ii) First 0-9, is equivariant and so 0-7,” is equivariant for all n > 4. To
show that 74 is equivariant, consider any inessential map 7 : (P“‘H, X2)
— (8% \) (such exist by Lemma 1.2 (ii)). Using the homotopy extension
property, we extend m over Py**? to a representative 7, of the generator of

4"“P #+2 ~ 7, [11]. We further extend #u by equivariance to a map
(P“k‘m Ra) — (8% ;). By Theorem 2.5 (ii) iy is 1nessent1al 80 m

= 7iym extends to a map ms : (S‘"“L3 M) — (8 ). .
We assert that [ms] = naqs’. There is the homotopy commutative diagram

4k+3 mse 4k+1
SHT A S N
T mavmb

P4k+3, )—\2 > P4k+3/P4k+} ~ S47c+2 v S4k+3

: — dk+1 + . * P 4k+1p 4k+2 4 °
since 7y | P**" is inessential. As 7, represents a generator of =**"'P*™* i '~

fop L P Pyt /P4-k+1 S g o [f] = nan [11]. Hence [id]

= g1 . Also Sq ;é 0 on H‘“”J’Z(P“k+4 Zz) and H*?(P**, 7) >~ 7, 1mply that
[p7] = naps2 + (£2) . Hence [me] = nupianaie + 2[mb] ekt

By equivariant suspension the result for myu;48*** follows 1mmedlately

(ifi) For any  : (P*"® x;) — (S4k+3 Ae), 77 | P¥ g 1nessentla] This pro-
vides a homotopy commutative diagram

m 4
Sék+5’ . , S k+3’ A

m

P4k+§, e P pts /P4k+3 ~ Sy R eai)

In this case 8¢ = 0 on H¥*(P**%; Z,) and so [pr] = 0-nups + (2£2).. Hence
[m] = 0. - ‘
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- 3. Codimension 3
We write (s, ) = (m, n) (mod (p, q)) if s = m (mod p) and ¢t = n (mod q).

TueorEM 3.1. (i) svs + tw € mS* is equivariant if and only if (s, t) = (2, 5),
(6, 3) or (10, 1) (mod (12, 6)).

(i) Letj > 5.1If £-v; s equivariant, then £ = 0 (mod 12).

(iii) Let 7 > 5. If j 5= 6, 7, then both 0-v; and 12-v; are equivariant, and if
7 = 6 or7,then 0-v; is equivariant.

P}‘oof. (i) For any m : (8", M) — (8%, A;) Lemma 2.3 implies that the re-
striction 7 | P® of the induced map 77 is inessential, and so we have a homotopy
commutative diagram

S, A m = 8 N

T m ’ﬂ_’h V ?—ﬁg
P’ % — P/Pf ~ (8 Uye®) v §

where the homotopy equivalence ~ is given in [9]. Also in [9] is the result that
[pr] = 7 + (£2).. As coindex P° = 4, 7 | P° must be essential ([13] Theorem
3.12), and so [71] = =4 [2]. Hence if [Mg] = dizs + dew, then [m] = *507
4+ 2 (dws + dow) = 2 dvs + (2ds & 3)w. (Here 4 is chosen so that 70 7 = 3w.)
Next Aym = mAy ~ m, since Ay ~ 7d. Also, as is well known, the homomor-
phism Agy : S — mS* is given by Ney(vs) = m — w, My(w) = —w and so we
have -

[m] = 2 d11/.4 + (2 dz =+ 3)(,0 = [)\27’2] = )\2#[’"’2] = 2d11/4 + ('—2 dl -_ 2d2 + 3)(.0

Hence the relation 2d; + 4d; = 6 (mod 12). But then d; must be odd, from
which we easﬂy deduce that (2d;,2d: + 3) = (2, 5), (6, 3) or (10, 1) (mod
L (12,6)).

Conversely, there exists a map g: (8", M) — (8%, N), say [g] = sws + to
with s, ¢ satisfying the stated condition. Note for o = v, D omo (\) g = 4v —
2w and so for any other pair (s1 , 1) satisfying the condition, there exists an
integer N such that s + fiw = [g] + D 3—0 (\) 4(Nvs). Hence Folkman’s
result Proposition 1.1 (i) implies that s;vs + fiw is equivariant also.

(ii) The homomorphism (As) # : Tae1 (8% %) — morsa(S™ %), k > 4, is multi-
plication by —1. Hence [m] = [m\] = [Mm] = —[m] and so 2[m] = 0.
In o 28™? ¢ Zy, , this means that [m] = £-ve_s where £ = 0 (mod 12).

The self map Xy’ = hXehs of P2 v S¥'2 where h : P#*? s p 2+ y g¥+2

- is a homotopy equivalence and h is a homotopy inverse of h; , induces the non-

trivial isomorphism on the summand H***(S**?; Z) mod H*"(P™***; Z) by
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Lemma 2.2 (ii). In the homotopy commutative diagram

1
m
S?JH—Z cC S(2k+2), )\4 S2k—31, )\2

hr _ _ _
T+ T T by = M1 V

k+2. 2%+
P12+ Vsk+2

the equivariance condition X, = Ay implies ke ~ Aok and so 2[s] = O.
Moreover, from Rees [9] we have 2[mm] = 0. Hence 2[mi] = 2([fymi] + [Fiama])
= 0.

(iii) The equivariant suspensions of the equwanan‘u elements 2114 + 5w,
14v», + 50 are the elements 12p5 , 0-»5 . The join of 2y, + 5w and 2, i8 0-vs,
while for j > 5 the join of 0-»; and 25 is 0-v;,2 . Finally 12v4 (resp. 12v442) 18
the join of nu_s” (resp. nu—s") and (2£ 4 1) 7 (resp. (26 + 1) ns).

4. Further results

Instead of seeking the least k for given n for which there exists a map
(P(”), %) — (8, \y), we can fix k and ask for the largest n that such a map
exists. The latter point of view is suggested by the obstruction theory for ex-
tending equivariant maps [6, §2]. For k < 3 this n has been determined in [4].
The following result extends this information somewhat.

THEOREM 4.1. (i) £-ws = £-[15, 5] € mS is equivariant if and only if £ is even.

(ii) £-vn® € w108’ is equivariant if and only if £ s odd.

(i) Infinitely many elements of wuS° are equivariant, and no element of
{N-ws € 7uS°® | N odd} is equivariant.

(iv) 0 € 718" is equivariant; 0 € .S’ s not equivariant.

(v) Infinitely many elements of m15S° are equivariant.

Proof. (1) Randall [8] has shown that ws is not even projective i.e: ws admits
no representative of the form fr : 8° — P° — S Since 0 € mS’ is equlvarlant
the only other element of 8°, namely 0, must be equlvanant '

(ii) (i) implies that some element of m,S° is equivariant. If 0 € mS° is
equivariant, then some element 2 of 7,8’ is also equivariant. But then the join
construction implies that the join zxx of z with itself in m3sS™ is equivariant.
However zxz = 0 for all elements z in 71,8’ [10] and so some element of T 418"
i8 equivariant for all k¥ > 11. For k = 12 this contradicts results of [5], and so
(ii) is proved.

(iii) By (ii) we have that m,5S* has an equivariant element for all k > 5.
If € 7uS°® is equivariant, then so is z + 4y for any y € muS°, because
(N) g : m1uS® — 78° is the identity isomorphism and we may apply Folkman’s
Prop. 1.1 (i). This Proposition also establishes the second assertion of (iii),
since wg (and also — ws by an identical argument) is not projective [8].
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(iv) Using (iii) we have an inessential map im : (S, A) — (8%, A) — (87, 2),
and hence a map myi : 8 < (8™, \) — (87, Ny). [mgg] = 0 since 8" = 0,
80 my extends to a map ms : (S, A\ — (87, %) which by construction satisfies,
the homotopy commutative diagram

Sl3 me S7

P13 P13/P11 ~ SIZ v Sl3
D

Now H*(P"; Z) = Z, and Sq” = 0 on H*(P"; Z;) so [pr] = 0-m1s & 2. But
then [my] = 0 since 738" = Z,. If 0 € muS” were equivariant, some element
y of 158" would be also. But then the join y*y = 0 € 8™ {10] would be equi-
variant, thus implying that m:41S* contains an equivariant element for all
k > 15, a contradiction for k = 16 [15].

(v) By 1.1 (4) it suffices to show that some element of mS® is equivariant.
As some element of m,S” is equivariant, this is implied by Lemma 2.1 (i).

(Our results on equivariant maps give the following table for the coindex of
p™

n ' | 23 [4]567 | 8910 11| 12 |13[14|15] 16
.coindex P® | 2 |3| 4 I 5 ‘ 6 | 6or7 I 7 |7I 8 I 8or9

For n < 6 these results were first given in [4].

Some.open questions in low codimension: Is nu.s equivariant (& > 1)? Are
126 , 12»; equivariant? Is 0 € 71,8° equivariant? The answers to these questions
would determine all equivariant elements in m,4xS" of codimension < 5 for
all n.
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