LIMITS OF INTEGRALS INVOLVING n-TUPLY PERIODIC FUNCTIONS
By Jost A. CANAVATI

1. Introduction

The object of this paper is to give a generalization of the following result due
to L. Fejér [4]. (See also [2], p. 67).

Frsfrs LeMMa: If fel' (1—, «f, dz) has period 2w and g is a bounded measura-
ble function of period 2w, then

(1.1) lim st fﬁ,, g(tz)f(z) dz = 21——1r ff,, g(z) dr ff,r f(z) dz.

The result we prove here (Theorem 2.1) is stated under the more general hy-
pothesis that g and f are functions ‘defined on R", with g an n-tuply periodic
" essentially bounded function.and f an integrable function. There is no periodicity
condition on f. The idea of the proof of Theorem 2.1 is essentially the one given
in [2]: One checks formula (2.2) for a dense class of functions in L' (R", dz),
and then one proves the general case by taking limits. But unlike in [2], where
the class of all step functions in |—, «[ is used, we found more convenient for
the proof of our general result, to use the class of all continuous functions in R™
with compact support. However, we would like to remark that we could have
used the class of all step functions on R™ as well. Another consequence of The-
orem 2.1 will be the well known:

RIEMANN-LEBESGUE LEMMA: If f ¢ L' (R", dr) then its Fourier transform

1

(1.2)  f@) = O fRn f(z) exp (—1it.z) de, te =tbao +---+ thn
18 a function which vanishes at infinite i.e.,

(1.3) limy - 7(2) = 0,

where |t | denotes the Euclidean norm of the vector t = (I, -++ , t).

In section 3 we rephrase Theorem 2.1 within the framework of probability
theory (Corollary 3.1) and explore some of its consequences.

2. The Main Result

Let us recall that for a real or complex valued function ® on R™ a “period”
is a vector peR" such that &(z + p) = &(z), zeR".

It is well known [3] that the set of periods of ® forms an additive subgroup of
R", which is closed if ® is continuous, and there are (n + 1) (n + 2)/2 catego-
ries of such closed subgroups of R". If pi, - - , p. are n linearly independent
vectors in R”, the set of all linear combinations myp; +- - - + m.p, with integer
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coefficients my , - - - , m, represents an important subgroup. A function on R
where each element of such subgroup is a period is called “n-tuply periodic”
i.e., ¢ satisfies.

(2.1) &(z + mup1 +- - -+ map.) = (), xeR”
where the m,’s are arbitrary integers.

TrarorEM 2.1: Suppose @ is an n-tuply periodic function on R™ and let

B={rpi+ - 4+mp. |0<r<1,i=1,2,--- ,n}

be the “fundamental parallelepiped” spanned by the periods py, -+ , Pn . If ®eL”
(R™, dx), then for every feL'(R™, dx) one has
1
| B
where ®,(z) = ®(hxr, -+ , batn), t = (f1, -+, &), m{) =ming,1 <7< n
and | B | denotes the n-dimensional volume of the fundamental parallelepiped B.

(2.2) iMoo |z ®:(2) flz) do = [ ®(2) do [z f(z) dz,

Proof: Without loss of generality we can assume that & and f are real valued
functions, also that

(2.3) [s®(z) de = 0,

considering the n-tuply periodic function ¥(z) = &(z) — ¢, where
1
= — |p®(z) da.
e [B] fB (z) dx

The proof is divided in two steps.
Step I: Suppose first that
(24) D= €= (1707 70)7 CttyPn = 6y = (O: e :07 1)

If f = ¢, where ¢ is a continuous function with compact support, then there is
an integer N > 0 such that

(2.5) supp (¢) S ]=N,N[X --- X ]=N, N[ = Qv .
For ¢ = 1,2, ---, n we partition the interval [— N, N] into the subintervals
[=N, =NItl/t, k:/te, (ks + 1) /8], ki = —N[t], -« -,
- 1,0,1, ---, N[t] — 1, [N[t:])/t: , N],

where [f] denotes the “greatest integer” function.

(2.6)

Note that the first and last intervals in (2.6) are reduced to a point when
t; is a positive integer and, in this case, (2.6) gives a partition of [—N, N] into
2Nt; subintervals of equal length. Also since

limt—mo [t]/t =1
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we have
(2.7)  supp (¢) S 1=Nltl/t, NitJ/6[X -+ - X]=Nlt]/ta ,Nlta]/t]
when m(t) > 0 is large enough.

Now (2.6) induces a subdivision of the closure Qu of Qy into closed subblocks
@, .--- .1, Whose interiors are pairwise disjoint

(2.8) Qv = Unpreity Qipen oty -

If all the ¢/s are positive integers, then all the subblocks Q... , in (2.8) have
volume equal to '

1
[ Qkyeee ey | = ORI
Since ®eL(R", dx), there is a number aeR such that
(2.9) ®(z) > a a.e.in R™
Hence if we let
(2.10) I(t) = [r,®u(2)d(2) de,

then we have
I(t) = [oy 2(2)9(2) dz = Doy Japa e yn Be(2) () d
= D treskn J oy, [B:(2) — dlop(z) dw + Dkireibn S Qe 00(2) da.
From (2.9) and the mean value theorem for integrals [5] we have
I(t) = Dby iy S(Yhyooe by Jaryoon, [Be(z) — aldz + a Jayo(2) de,
where yi,,....k, €Qy.....k, -
If we make use of (2.1), (2.3), (2.4) and (2.7) we see that for m(¢) > 0
large enough one has
I(t) = — a2 ke ®Wbre) | Qoo | + @ [ay $(2)da,
and since ¢ is Riemann integrable on ¢y we must have
1m0 I(t) = 0.

Suppose now that feL'(R", dz) is any integrable function. Since the set of
all continuous functions ¢ with compact support is dense in L'(R", dz) [6].
Given ¢ > 0 there is a such ¢ with

@1) S =l = fa &) ~ (@) da < g
Using (2.11) we obtain
| [an®u(2)f(z) dz | < | [on®u(2)[f(2) — ¢(2)] dz | + | [a®:(2)d(2) dz |

< [@llollf = ol + | Jan ()b (2) dz |

< 3;— + % =¢ if m(t) > 0islarge enough.
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Step II: Suppose now that the linearly independent pericds pr, - -: ', pn are
arbitrary. Then there is a non-singular linicar transformation '7:R* > R™ siich
that T'(e;) = p:i1' < 7 < n. From the change of variables formula for Lebesgue
integrals [5] we have

S @, (2)f(2) dz = | det T | [zn ®;0T (2)foT () dz.

Clearly &7 is an n-tuply periodic function satisfying the hypothesis of Step I
and foT e L' (R", dz). Thus (2.2) holds.

As a consequence of the previous theorem we have the following result which
includes Fejérs lemma and the one-dimensional Riemann-Lebesgue lemma as
particular cases:

CoROLLARY 2.2: Suppose ® is a periodic function on R with period p > 0.
If® eL” (R, dz), then for every feL'(R, dx) one has
. -] 1 P -
(2.12) limys s 2o ®(t2)f(z) dz = - JRa(z) dz [Z. f(2) da.
Proof: In view of Theorem 2.1 it suffices to prove (2.12) for the caset — — «,
and this is easily done.

The proof of the n-dimensional Riemann-Lebesgue lemma using Corollary
2.2 is straightforward (See, for example, [7], p. 316).

3. Some Consequences of the Main Result

Let ®(R™) denote the s-algebra of all Borel subsets of B” and let @ be any
o-algebra of Lebesgue measurable subsets of R* with B(R") C @. Then we have:

CoroLLARY 3.1: Let u: @ — R be a measure with u (B™) = 1 and du << dz.
If ® is a bounded n—tuply periodic function on R™ and if ®eL'(R™du), then
. 1
(3.1) limp > fm ®(x) du(z) = m fB ®(z) du.

Proof: Since du< <dz, then it follows from the Lebesgue-Radon-Nikodym
theorem [6] that there exists a nonnegative @-measurable function f on R"
such that

(3.2) [an®.(2) du(z) = [ ®:(2)f(2) dz
and
(3.3) p(A) = [4f(z) dz, AeG.

In particular
[ f() dz = (R™) = 1

implies feL'(R", dz) and the result follows from (3.2) and Theorem 2.1.
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‘We can put this last result in a probabilistic framework as follows: Let (2, ¥, P)
be a probability space i.e., Q is any set, & is a o-algebra of subsets of Q@ and P
is a measure on & with P(2) = 1. Then it is well known [1] that if

X = (Xi, -, Xa):2— R"

is a “random vector” i.e., each X;:@ — R, 1 < 7 < n is an F-measurable func-
tion, there is a probability measure Px on ®&(R") induced by the random vec-
tor X given by

Px(4) = Plwe? | X(w)ed}, AecB(R").

If X:Q — R” is a random vector, g:R™ — R is a Borel measurable function
and if
E(geX) = [a (9oX)(w) dP(w)

is the “expected value” of goX, then
(34) B(@geX) = [ g(x) dPx(a).

In the sense that if either integral exists, so does the other, and the two are
equal.

It is said that a random vector X on Q has a “density” if dPx < < dz. In this
case we see, as in the proof of Corollary 3.1, that there is a nonnegative, Borel
measurable function f on R" such that dPx = f(z) dz. We call f the “density
function” of X.

Using these facts we can now prove the following:

CoroLLARY 3.2: Let (2, F, P) be a probability space and let X: Q2 — R* be a
random vector with density. If ® is a bounded Borel measurable, n-tuply periodic
Junction and if ® ¢ L'(R*, dPx), then

(3.5) B gyan B(®X,) = |_113"| [2%(z) da,

where X; = (X1, -+, 1 X0).
Proof: From (3.4) we have

E(¢°X;) = fRn @g(fl}) dPx(fE).
The result follows from Corollary 3.1.
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