LIMITS OF INTEGRALS INVOLVING n-TUPLY PERIODIC FUNCTIONS

BY JosE A. CANAVATI

1. Introduction

The object of this paper is to give a generalization of the following result due to L. Fejér [4]. (See also [2], p. 67).

FEJÉRS LEMMA: If $f \in L^1$ $(]-\pi, \pi[, dx)$ has period 2π and g is a bounded measura*ble function of period* 2π , *then*

(1.1)
$$
\lim_{t \to \pm \infty} \int_{-\pi}^{\pi} g(tx) f(x) \ dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} g(x) \ dx \int_{-\pi}^{\pi} f(x) \ dx.
$$

The result we prove here (Theorem 2.1) is stated under the more general hypothesis that g and f are functions defined on R^n , with g an *n*-tuply periodic essentially bounded function and f an integrable function. There is no periodicity condition on *f.* The idea of the proof of Theorem 2.1 is essentially the one given in [2]: One checks formula (2.2) for a dense class of functions in $L^1(R^n, dx)$, and then one proves the general case by taking limits. But unlike in [2], where the class of all step functions in $]-\pi$, π is used, we found more convenient for the proof of our general result, to use the class of all continuous functions in $Rⁿ$ with compact support. However, we would like to remark that we could have used the class of all step functions on $Rⁿ$ as well. Another consequence of Theorem 2.1 will be the well known:

RIEMANN-LEBESGUE LEMMA: If $f \in L^1$ (R^n, dx) then its Fourier transform

$$
(1.2) \quad \hat{f}(t) = \frac{1}{(2\pi)^{n/2}} \int_{R^n} f(x) \exp(-it \cdot x) \, dx, \quad t \cdot x = t_1 \, x_1 + \cdots + t_n \, x_n
$$

is a function which vanishes at infinite i.e.,

$$
\lim_{|t|\to\infty} \hat{f}(t) = 0,
$$

where $|t|$ *denotes the Euclidean norm of the vector* $t = (t_1, \dots, t_n)$.

In section 3 we rephrase. Theorem 2.1 within the framework of probability theory (Corollary 3.1) and explore some of its consequences.

2. **The Main Result**

Let us recall that for a real or complex valued function Φ on R^n a "period" is a vector $p \in R^n$ such that $\Phi(x + p) = \Phi(x)$, $x \in R^n$.

It is well known [3] that the set of periods of Φ forms an additive subgroup of R^n , which is closed if Φ is continuous, and there are $(n + 1)$ $(n + 2)/2$ categories of such closed subgroups of R^n . If p_1, \cdots, p_n are *n* linearly independent vectors in R^n , the set of all linear combinations $m_1p_1 + \cdots + m_np_n$ with integer coefficients m_1, \cdots, m_n represents an important subgroup. A function on R^n where each element of such subgroup is a period is called "*n*-tuply periodic" i.e., Φ satisfies.

(2.1)
$$
\Phi(x + m_1 p_1 + \cdots + m_n p_n) = \Phi(x), x \in \mathbb{R}^n
$$

where the m_i 's are arbitrary integers.

THEOREM 2.1: *Suppose* Φ *is an n-tuply periodic function on* \mathbb{R}^n *and let*

$$
B = \{r_1p_1 + \cdots + r_np_n \mid 0 \leq r_i \leq 1, i = 1, 2, \cdots, n\}
$$

be the "fundamental parallelepiped" spanned by the periods p_1, \cdots, p_n . If $\Phi \epsilon L^{\infty}$ (R^n, dx) , then for every $f \in L^1(R^n, dx)$ one has

(2.2)
$$
\lim_{m(t)\to\infty}\int_{R^n}\Phi_t(x)\,f(x)\,dx=\frac{1}{|B|}\int_B\Phi(x)\,dx\int_{R^n}f(x)\,dx,
$$

 $where \Phi_t(x) = \Phi(t_1x_1, \dots, t_nx_n), t = (t_1, \dots, t_n), m(t) = \min t_i, 1 \le i \le n$ and $|B|$ *denotes the n-dimensional volume of the fundamental parallelepiped B.*

Proof: Without loss of generality we can assume that Φ and f are real valued functions, also that

$$
\int_B \Phi(x) \ dx = 0,
$$

considering the *n*-tuply periodic function $\Psi(x) = \Phi(x) - c$, where

$$
c = \frac{1}{|B|} \int_B \Phi(x) \ dx.
$$

The proof is divided in two steps.

Step I: Suppose first that

$$
(2.4) \t p_1 = e_1 = (1, 0, \cdots, 0), \cdots, p_n = e_n = (0, \cdots, 0, 1).
$$

If $f = \phi$, where ϕ is a continuous function with compact support, then there is an integer $N > 0$ such that

(2.5)
$$
\text{supp }(\phi) \subseteq]-N, N[\times \cdots \times]-N, N[= Q_N.
$$

For $i = 1, 2, \dots, n$ we partition the interval $[-N, N]$ into the subintervals

(2.6)
$$
[-N, -N[t_i]/t_i], [k_i/t_i, (k_i + 1)/t_i], k_i = -N[t_i], \cdots,
$$

- 1,0, 1, \cdots, N[t_i] - 1, [N[t_i]/t_i, N],

where $[t]$ denotes the "greatest integer" function.

Note that the first and last intervals in (2.6) are reduced to a point when t_i is a positive integer and, in this case, (2.6) gives a partition of $[-N, N]$ into $2Nt_i$ subintervals of equal length. Also since

$$
\lim_{t\to\infty} [t]/t = 1
$$

we have

$$
(2.7) \qquad \text{supp } (\phi) \subseteq]-N[t_1]/t_1, N[t_1]/t_1[\times \cdots \times]-N[t_n]/t_n, N[t_n]/t_n[
$$

when $m(t) > 0$ is large enough.

Now (2.6) induces a subdivision of the closure \bar{Q}_N of Q_N into closed subblocks Q_{k_1}, \ldots, k_n whose interiors are pairwise disjoint

$$
\bar{Q}_N = \bigcup_{k_1,\ldots,k_n} Q_{k_1,\ldots,k_n}.
$$

If all the t_i 's are positive integers, then all the subblocks Q_{k_1}, \ldots, k_n in (2.8) have volume equal to

$$
|Q_{k_1,\cdots,k_n}|=\frac{1}{t_1\,t_2\,\cdots\,t_n}.
$$

Since $\Phi \in L^{\infty}(R^n, dx)$, there is a number $a \in R$ such that

(2.9) if>(x) 2:'.: *a* a.e. in *Rn.*

Hence if we let

$$
(2.10) \tI(t) = \int_{R_n} \Phi_t(x) \phi(x) dx,
$$

then we have

$$
I(t) = \int_{\bar{Q}_N} \Phi_t(x) \phi(x) dx = \sum_{k_1, \dots, k_n} \int_{Q_{k_1}, \dots, Q_{k_n}} \Phi_t(x) \phi(x) dx
$$

= $\sum_{k_1, \dots, k_n} \int_{Q_{k_1}, \dots, Q_{k_n}} [\Phi_t(x) - a] \phi(x) dx + \sum_{k_1, \dots, k_n} \int_{Q_{k_1}, \dots, Q_{k_n}} a \phi(x) dx.$

From (2.9) and the mean value theorem for integrals [5] we have

$$
I(t) = \sum_{k_1,\dots,k_n} \phi(y_{k_1,\dots,k_n}) \int_{Q_{k_1,\dots,k_n}} [\Phi_t(x) - a] dx + a \int_{\overline{Q}_N} \phi(x) dx,
$$

where y_{k_1,\ldots,k_n} $\epsilon Q_{k_1,\ldots,k_n}$.

If we make use of (2.1) , (2.3) , (2.4) and (2.7) we see that for $m(t) > 0$ large enough one has

$$
I(t) = -a \sum_{k_1,\ldots,k_n} \phi(y_{k_1,\ldots,k_n}) | Q_{k_1,\ldots,k_n} | + a \int \bar{Q}_N \phi(x) dx,
$$

and since ϕ is Riemann integrable on \bar{Q}_N we must have

 $\lim_{m(t)\to\infty} I(t) = 0.$

Suppose now that $f \in L^1(R^n, dx)$ is any integrable function. Since the set of all continuous functions ϕ with compact support is dense in $L^1(R^n, dx)$ [6]. Given $\epsilon > 0$ there is a such ϕ with

(2.11)
$$
\|f - \phi\|_1 = \int_{R^n} |f(x) - \phi(x)| dx < \frac{\epsilon}{2 \|\Phi\|_{\infty}}.
$$

Using (2.11) we obtain

$$
\begin{aligned} \left| \int_{R^n} \Phi_t(x) f(x) \, dx \right| &\leq \left| \int_{R^n} \Phi_t(x) [f(x) - \phi(x)] \, dx \right| + \left| \int_{R^n} \Phi_t(x) \phi(x) \, dx \right| \\ &\leq \|\Phi\|_{\infty} \|f - \phi\|_1 + \left| \int_{R^n} \Phi_t(x) \phi(x) \, dx \right| \\ &< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon, \quad \text{if} \quad m(t) > 0 \text{ is large enough.} \end{aligned}
$$

Step II: Suppose now that the linearly independent periods p_1, \dots, p_n are arbitrary. Then there is a non-singular linear transformation $T: \mathbb{R}^{n} \to \mathbb{R}^{n}$ such that $T(e_i) = p_i/Y \leq i \leq n$. From the change of variables formula for Lebesgue $integrals$ [5] we have

$$
\int_{R^n} \Phi_t(x) f(x) dx = | \det T | \int_{R^n} \Phi_t \circ T(x) f \circ T(x) dx.
$$

Clearly $\Phi_{i} \circ T$ is an *n*-tuply periodic function satisfying the hypothesis of Step I and $f \circ T \in L^1(R^n, dx)$. Thus (2.2) holds.

As a consequence of the previous theorem we have the following result which includes Fejers lemma and the one-dimensional Riemann-Lebesgue lemma as particular cases:

COROLLARY 2.2: Suppose Φ *is a periodic function on R with period p > 0. If* $\Phi \in L^{\infty}$ (R, dx) , then for every $f \in L^{1}(R, dx)$ one has

(2.12)
$$
\lim_{t\to\pm\infty}\int_{-\infty}^{\infty}\Phi(tx)f(x)\ dx = \frac{1}{p}\int_{0}^{p}\Phi(x)\ dx\int_{-\infty}^{\infty}f(x)\ dx.
$$

Proof: In view of Theorem 2.1 it suffices to prove (2.12) for the case $t \to -\infty$, and this is easily done.

The proof of the n-dimensional Riemann-Lebesgue lemma using Corollary 2.2 is straightforward (See, for example, [7], p. 316).

3. **Some Consequences of fhe Main Result**

Let $\mathfrak{B}(R^n)$ denote the σ -algebra of all Borel subsets of R^n and let α be any σ -algebra of Lebesgue measurable subsets of R^n with $\mathfrak{B}(R^n) \subseteq \mathfrak{C}$. Then we have:

COROLLARY 3.1: Let $\mu: \mathbb{R} \to \mathbb{R}$ be a measure with μ $(R^n) = 1$ and $d\mu \ll d\mu$. *If* Φ *is a bounded n-tuply periodic function on* R^n *and if* $\Phi \in L^1(R^n, d\mu)$, then

(3.1)
$$
\lim_{m(t) \to \infty} \int_{R^n} \Phi_t(x) \ d\mu(x) = \frac{1}{|B|} \int_B \Phi(x) \ dx.
$$

Proof: Since $d\mu \lt d x$, then it follows from the Lebesgue-Radon-Nikodým theorem [6] that there exists a nonnegative α -measurable function *f* on R^n such that

$$
(3.2) \qquad \qquad \int_{R^n} \Phi_t(x) \ d\mu(x) = \int_{R^n} \Phi_t(x) f(x) \ dx
$$

and

$$
\mu(A) = \int_A f(x) \ dx, A \in \mathbb{C}.
$$

In particular

$$
\int_{R^n} f(x) \ dx = \mu(R^n) = 1
$$

implies $f \in L^1(R^n, dx)$ and the result follows from (3.2) and Theorem 2.1.

We can put this last result in a probabilistic framework as follows: Let $(0, \mathfrak{F}, P)$ be a probability space i.e., Ω is any set, $\mathfrak F$ is a σ -algebra of subsets of Ω and P is a measure on $\mathfrak F$ with $P(\Omega) = 1$. Then it is well known [1] that if

$$
X = (X_1, \cdots, X_n) : \Omega \to R^n
$$

is a "random vector" i.e., each $X_i:\Omega \to R$, $1 \leq i \leq n$ is an 5-measurable function, there is a probability measure P_x on $\mathfrak{B}(R^n)$ induced by the random vector *X* given by

$$
P_X(A) = P\{\omega \in \Omega \mid X(\omega) \in A\}, A \in \mathcal{B}(R^n).
$$

If $X:\Omega \to \mathbb{R}^n$ is a random vector, $g: \mathbb{R}^n \to \mathbb{R}$ is a Borel measurable function and if

$$
E(g\circ X) = \int_{\Omega} (g\circ X)(\omega) dP(\omega)
$$

is the "expected value" of *goX,* then

$$
(3.4) \t\t\t E(g\circ X) = \int_{R^n} g(x) dP_X(x).
$$

In the sense that if either integral exists, so does the other, and the two are equal.

It is said that a random vector *X* on Ω has a "density" if $dP_x \ll dx$. In this case we see, as in the proof of Corollary 3.1, that there is a nonnegative, Borel measurable function *f* on R^n such that $dP_x = f(x) dx$. We call *f* the "density function" of X.

Using these facts we can now prove the following:

COROLLARY 3.2: Let $(\Omega, \mathfrak{F}, P)$ be a probability space and let $X: \Omega \to \mathbb{R}^n$ be a *random vector with density.* If Φ *is a bounded Borel measurable, n-tuply periodic function and if* $\Phi \in L^1(\mathbb{R}^n, dP_x)$, then

(3.5)
$$
\lim_{m(t)\to\infty} E(\Phi \circ X_t) = \frac{1}{|B|} \int_B \Phi(x) dx,
$$

where $X_t = (t_1 X_1, \cdots, t_n X_n)$. *Proof:* From (3.4) we have

$$
E(\Phi \circ X_t) = \int_{R^n} \Phi_t(x) dP_X(x).
$$

The result follows from Corollary 3.1.

lNSTITUTO DE lNVESTIGACIONES EN MATEMATICAS APLICADAS y EN SISTEMAS UNIVERSIDAD NAcIONAL AuT6NOMA DE MExICo

REFERENCES

(1] R. B. AsH, Real Analysis and Probability, Academic Press, New York, 1972. [2) N. K. BARY, **A** Tratise on Trigonometric Series, Pergamon Press, New York, 1964.

- [3] N. BOURBAKI, Elements of Mathematics, General Topology. Part 2. Addison-Wesley Pub. Co., Reading, Massachusetts, 1966.
- [4] L. FEJER, *Untersuchungen iiber Fourierische Reihen.* Math. Ann. **68** (1904), 501-09.
- [5] W. H. FLEMING, Functions of Several Variables. Addison-Wesley Pub. Co., Reading, Massachusetts, 1965.
- [6] E. HEWITT AND K. STROMBERG. Real and Abstract Analysis. Springer Verlag, New York, 1965.
- [7] T. KAWATA. Fourier Analysis in Probability Theory. Academic Press, New York, 1972.