LIMITS OF INTEGRALS INVOLVING n-TUPLY PERIODIC FUNCTIONS

By José A. CANAVATI

1. Introduction

The object of this paper is to give a generalization of the following result due to L. Fejér [4]. (See also [2], p. 67).

FEJÉRS LEMMA: If $f \epsilon L^1(] - \pi, \pi[, dx)$ has period 2π and g is a bounded measurable function of period 2π , then

(1.1)
$$\lim_{t\to\pm\infty} \int_{-\pi}^{\pi} g(tx) f(x) \ dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} g(x) \ dx \int_{-\pi}^{\pi} f(x) \ dx.$$

The result we prove here (Theorem 2.1) is stated under the more general hypothesis that g and f are functions defined on \mathbb{R}^n , with g an n-tuply periodic essentially bounded function and f an integrable function. There is no periodicity condition on f. The idea of the proof of Theorem 2.1 is essentially the one given in [2]: One checks formula (2.2) for a dense class of functions in L^1 (\mathbb{R}^n , dx), and then one proves the general case by taking limits. But unlike in [2], where the class of all step functions in $]-\pi$, π [is used, we found more convenient for the proof of our general result, to use the class of all continuous functions in \mathbb{R}^n with compact support. However, we would like to remark that we could have used the class of all step functions on \mathbb{R}^n as well. Another consequence of Theorem 2.1 will be the well known:

RIEMANN-LEBESGUE LEMMA: If $f \in L^1(\mathbb{R}^n, dx)$ then its Fourier transform

(1.2)
$$\hat{f}(t) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} f(x) \exp(-it x) dx, \quad t = t_1 x_1 + \dots + t_n x_n$$

is a function which vanishes at infinite i.e.,

(1.3)
$$\lim_{|t|\to\infty} \hat{f}(t) = 0,$$

where |t| denotes the Euclidean norm of the vector $t = (t_1, \dots, t_n)$.

In section 3 we rephrase Theorem 2.1 within the framework of probability theory (Corollary 3.1) and explore some of its consequences.

2. The Main Result

Let us recall that for a real or complex valued function Φ on \mathbb{R}^n a "period" is a vector $p \in \mathbb{R}^n$ such that $\Phi(x + p) = \Phi(x)$, $x \in \mathbb{R}^n$.

It is well known [3] that the set of periods of Φ forms an additive subgroup of \mathbb{R}^n , which is closed if Φ is continuous, and there are (n + 1) (n + 2)/2 categories of such closed subgroups of \mathbb{R}^n . If p_1^*, \dots, p_n are n linearly independent vectors in \mathbb{R}^n , the set of all linear combinations $m_1p_1 + \cdots + m_np_n$ with integer

coefficients m_1, \dots, m_n represents an important subgroup. A function on \mathbb{R}^n where each element of such subgroup is a period is called "*n*-tuply periodic" i.e., Φ satisfies.

(2.1)
$$\Phi(x + m_1 p_1 + \cdots + m_n p_n) = \Phi(x), x \in \mathbb{R}^n$$

where the m_i 's are arbitrary integers.

THEOREM 2.1: Suppose Φ is an n-tuply periodic function on \mathbb{R}^n and let

$$B = \{r_1p_1 + \cdots + r_np_n \mid 0 \le r_i \le 1, i = 1, 2, \cdots, n\}$$

be the "fundamental parallelepiped" spanned by the periods p_1, \dots, p_n . If $\Phi \epsilon L^{\infty}$ (R^n, dx) , then for every $f \epsilon L^1(R^n, dx)$ one has

(2.2)
$$\lim_{m(t)\to\infty}\int_{\mathbb{R}^n}\Phi_t(x)\,f(x)\,dx=\frac{1}{|B|}\int_B\Phi(x)\,dx\int_{\mathbb{R}^n}f(x)\,dx,$$

where $\Phi_i(x) = \Phi(t_1x_1, \dots, t_nx_n), t = (t_1, \dots, t_n), m(t) = \min t_i, 1 \leq i \leq n$ and |B| denotes the n-dimensional volume of the fundamental parallelepiped B.

Proof: Without loss of generality we can assume that Φ and f are real valued functions, also that

(2.3)
$$\int_{B} \Phi(x) \, dx = 0,$$

considering the *n*-tuply periodic function $\Psi(x) = \Phi(x) - c$, where

$$c=\frac{1}{|B|}\int_{B}\Phi(x)\ dx.$$

The proof is divided in two steps.

Step I: Suppose first that

(2.4)
$$p_1 = e_1 = (1, 0, \dots, 0), \dots, p_n = e_n = (0, \dots, 0, 1).$$

If $f = \phi$, where ϕ is a continuous function with compact support, then there is an integer N > 0 such that

(2.5)
$$\operatorname{supp}(\phi) \subseteq]-N, N[\times \cdots \times]-N, N[= Q_N.$$

For $i = 1, 2, \dots, n$ we partition the interval [-N, N] into the subintervals

(2.6)
$$[-N, -N[t_i]/t_i], [k_i/t_i, (k_i+1)/t_i], k_i = -N[t_i], \cdots, \\ -1,0, 1, \cdots, N[t_i] - 1, [N[t_i]/t_i, N],$$

where [t] denotes the "greatest integer" function.

Note that the first and last intervals in (2.6) are reduced to a point when t_i is a positive integer and, in this case, (2.6) gives a partition of [-N, N] into $2Nt_i$ subintervals of equal length. Also since

$$\lim_{t\to\infty} [t]/t = 1$$

we have

(2.7)
$$\operatorname{supp}(\phi) \subseteq \left[-N[t_1]/t_1, N[t_1]/t_1\right] \times \cdots \times \left[-N[t_n]/t_n, N[t_n]/t_n\right]$$

when m(t) > 0 is large enough.

Now (2.6) induces a subdivision of the closure \bar{Q}_N of Q_N into closed subblocks Q_{k_1,\ldots,k_n} whose interiors are pairwise disjoint

(2.8)
$$\bar{Q}_N = \bigcup_{k_1, \dots, k_n} Q_{k_1, \dots, k_n}$$

If all the t_i 's are positive integers, then all the subblocks Q_{k_1,\ldots,k_n} in (2.8) have volume equal to

$$|Q_{k_1,\ldots,k_n}|=\frac{1}{t_1\,t_2\,\cdots\,t_n}.$$

Since $\Phi \epsilon L^{\infty}(\mathbb{R}^n, dx)$, there is a number $a \epsilon \mathbb{R}$ such that

(2.9)
$$\Phi(x) \ge a \text{ a.e. in } R^n.$$

Hence if we let

(2.10)
$$I(t) = \int_{R_n} \Phi_t(x)\phi(x) dx,$$

then we have

$$I(t) = \int_{\bar{Q}_N} \Phi_t(x)\phi(x) \, dx = \sum_{k_1,\dots,k_n} \int_{Q_{k_1},\dots,k_n} \Phi_t(x)\phi(x) \, dx$$

= $\sum_{k_1,\dots,k_n} \int_{Q_{k_1},\dots,k_n} [\Phi_t(x) - a]\phi(x) \, dx + \sum_{k_1,\dots,k_n} \int_{Q_{k_1},\dots,k_n} a\phi(x) \, dx.$

From (2.9) and the mean value theorem for integrals [5] we have

$$I(t) = \sum_{k_1, \dots, k_n} \phi(y_{k_1, \dots, k_n}) \int_{\mathcal{Q}_{k_1}, \dots, k_n} [\Phi_t(x) - a] dx + a \int_{\overline{\mathcal{Q}}_N} \phi(x) dx,$$

where $y_{k_1,\ldots,k_n} \epsilon Q_{k_1,\ldots,k_n}$.

If we make use of (2.1), (2.3), (2.4) and (2.7) we see that for m(t) > 0 large enough one has

$$I(t) = -a \sum_{k_1, \dots, k_n} \phi(y_{k_1, \dots, k_n}) | Q_{k_1, \dots, k_n} | + a \int_{\overline{\mathfrak{Q}}_N} \phi(x) dx,$$

and since ϕ is Riemann integrable on \bar{Q}_N we must have

$$\lim_{m(t)\to\infty}I(t)=0.$$

Suppose now that $f \epsilon L^1(\mathbb{R}^n, dx)$ is any integrable function. Since the set of all continuous functions ϕ with compact support is dense in $L^1(\mathbb{R}^n, dx)$ [6]. Given $\epsilon > 0$ there is a such ϕ with

(2.11)
$$||f - \phi||_1 = \int_{\mathbb{R}^n} |f(x) - \phi(x)| \, dx < \frac{\epsilon}{2 ||\Phi||_{\infty}}.$$

Using (2.11) we obtain

$$\begin{split} |\int_{\mathbb{R}^n} \Phi_t(x) f(x) \ dx | &\leq |\int_{\mathbb{R}^n} \Phi_t(x) [f(x) - \phi(x)] \ dx | + |\int_{\mathbb{R}^n} \Phi_t(x) \phi(x) \ dx | \\ &\leq \|\Phi\|_{\infty} \|f - \phi\|_1 + |\int_{\mathbb{R}^n} \Phi_t(x) \phi(x) \ dx | \\ &< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon, \quad \text{if} \quad m(t) > 0 \text{ is large enough.} \end{split}$$

Step II: Suppose now that the linearly independent periods p_1, \dots, p_n are arbitrary. Then there is a non-singular linear transformation $T: \mathbb{R}^{n} \to \mathbb{R}^n$ such that $T(e_i) = p_i, 1 \leq i \leq n$. From the change of variables formula for Lebesgue integrals [5] we have

$$\int_{\mathbb{R}^n} \Phi_t(x) f(x) \, dx = |\det T| \int_{\mathbb{R}^n} \Phi_t \circ T(x) f \circ T(x) \, dx.$$

Clearly $\Phi_t \circ T$ is an *n*-tuply periodic function satisfying the hypothesis of Step I and $f \circ T \epsilon L^1(\mathbb{R}^n, dx)$. Thus (2.2) holds.

As a consequence of the previous theorem we have the following result which includes Fejérs lemma and the one-dimensional Riemann-Lebesgue lemma as particular cases:

COROLLARY 2.2: Suppose Φ is a periodic function on R with period p > 0. If $\Phi \epsilon L^{\infty}(R, dx)$, then for every $f \epsilon L^{1}(R, dx)$ one has

(2.12)
$$\lim_{t\to\pm\infty}\int_{-\infty}^{\infty}\Phi(tx)f(x)\ dx=\frac{1}{p}\int_{0}^{p}\Phi(x)\ dx\int_{-\infty}^{\infty}f(x)\ dx.$$

Proof: In view of Theorem 2.1 it suffices to prove (2.12) for the case $t \to -\infty$, and this is easily done.

The proof of the *n*-dimensional Riemann-Lebesgue lemma using Corollary 2.2 is straightforward (See, for example, [7], p. 316).

3. Some Consequences of the Main Result

Let $\mathfrak{B}(\mathbb{R}^n)$ denote the σ -algebra of all Borel subsets of \mathbb{R}^n and let \mathfrak{A} be any σ -algebra of Lebesgue measurable subsets of \mathbb{R}^n with $\mathfrak{B}(\mathbb{R}^n) \subseteq \mathfrak{A}$. Then we have:

COROLLARY 3.1: Let $\mu: \mathfrak{A} \to R$ be a measure with μ $(\mathbb{R}^n) = 1$ and $d\mu \ll dx$. If Φ is a bounded n-tuply periodic function on \mathbb{R}^n and if $\Phi \epsilon L^1(\mathbb{R}^n, d\mu)$, then

(3.1)
$$\lim_{m(t)\to\infty}\int_{\mathbb{R}^n}\Phi_t(x)\ d\mu(x)=\frac{1}{|B|}\int_B\Phi(x)\ dx.$$

Proof: Since $d\mu < \langle dx$, then it follows from the Lebesgue-Radon-Nikodým theorem [6] that there exists a nonnegative α -measurable function f on \mathbb{R}^n such that

(3.2)
$$\int_{\mathbb{R}^n} \Phi_t(x) \, d\mu(x) = \int_{\mathbb{R}^n} \Phi_t(x) f(x) \, dx$$

and

(3.3)
$$\mu(A) = \int_A f(x) \, dx, \, A \, \epsilon \alpha.$$

In particular

$$\int_{\mathbb{R}^n} f(x) \, dx = \mu(\mathbb{R}^n) = 1$$

implies $f \in L^1(\mathbb{R}^n, dx)$ and the result follows from (3.2) and Theorem 2.1.

We can put this last result in a probabilistic framework as follows: Let $(\Omega, \mathfrak{F}, P)$ be a probability space i.e., Ω is any set, \mathfrak{F} is a σ -algebra of subsets of Ω and P is a measure on \mathfrak{F} with $P(\Omega) = 1$. Then it is well known [1] that if

$$X = (X_1, \cdots, X_n) : \Omega \to \mathbb{R}^n$$

is a "random vector" i.e., each $X_i: \Omega \to R$, $1 \leq i \leq n$ is an \mathfrak{F} -measurable function, there is a probability measure P_X on $\mathfrak{B}(\mathbb{R}^n)$ induced by the random vector X given by

$$P_{\mathbf{X}}(A) = P \{ \omega \epsilon \Omega \mid X(\omega) \epsilon A \}, A \epsilon \mathfrak{G}(\mathbb{R}^n).$$

If $X:\Omega \to \mathbb{R}^n$ is a random vector, $g:\mathbb{R}^n \to \mathbb{R}$ is a Borel measurable function and if

$$E(g \circ X) = \int_{\Omega} (g \circ X)(\omega) \, dP(\omega)$$

is the "expected value" of $g \circ X$, then

$$(3.4) E(g \circ X) = \int_{\mathbb{R}^n} g(x) \, dP_X(x).$$

In the sense that if either integral exists, so does the other, and the two are equal.

It is said that a random vector X on Ω has a "density" if $dP_X < < dx$. In this case we see, as in the proof of Corollary 3.1, that there is a nonnegative, Borel measurable function f on \mathbb{R}^n such that $dP_X = f(x) dx$. We call f the "density function" of X.

Using these facts we can now prove the following:

COROLLARY 3.2: Let $(\Omega, \mathfrak{F}, P)$ be a probability space and let $X: \Omega \to \mathbb{R}^n$ be a random vector with density. If Φ is a bounded Borel measurable, n-tuply periodic function and if $\Phi \in L^1(\mathbb{R}^n, dP_x)$, then

(3.5)
$$\lim_{m(t)\to\infty} E(\Phi \circ X_t) = \frac{1}{|B|} \int_B \Phi(x) \, dx,$$

where $X_t = (t_1X_1, \dots, t_nX_n)$. *Proof*: From (3.4) we have

$$E(\Phi \circ X_t) = \int_{\mathbb{R}^n} \Phi_t(x) \, dP_X(x).$$

The result follows from Corollary 3.1.

Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas Universidad Nacional Autónoma de México

References

R. B. ASH, Real Analysis and Probability, Academic Press, New York, 1972.
N. K. BARY, A Tratise on Trigonometric Series, Pergamon Press, New York, 1964.

- [3] N. BOURBAKI, Elements of Mathematics, General Topology. Part 2. Addison-Wesley Pub. Co., Reading, Massachusetts, 1966.
- [4] L. FEJÉR, Untersuchungen über Fourierische Reihen. Math. Ann. 58 (1904), 501-09.
- [5] W. H. FLEMING, Functions of Several Variables. Addison-Wesley Pub. Co., Reading, Massachusetts, 1965.
- [6] E. HEWITT AND K. STROMBERG. Real and Abstract Analysis. Springer Verlag, New York, 1965.
- [7] T. KAWATA. Fourier Analysis in Probability Theory. Academic Press, New York, 1972.