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1. Introduction 
The object of this paper is to give a generalization of the following result due 

to L. Fejer [4]. (See also [2], p. 67). 

FEJERS LEMMA:lff~Li (]-1r,1r[, dx) hasperiod21randgisabounded measura-
ble function of period 21r, then 

(1.1) f~,,. g(tx)f(x) dx = L f~,,. g(x) dx .f~,,. f(x) dx. 

The result we prove here (Theorem 2.1) is stated under the more general hy-
pothesis that g and f are functions ·defined on Rn, with g an n-tuply perioqic 
essentially bounded function and fan integrable function. There is no periodicity 
condition on f. The idea of the proof of Theorem 2.1 is essentially the one given 
in [2]: One checks formula ( 2.2) for a dense class of functions in Li (Rn, dx), 
and then one proves the general case by taking limits. But unlike in [2], where 
the class of all step functions in ]-1r, 1r[ is used, we found more convenient for 
the proof of our general result, to use the class of all continuous functions in Rn 
with compact support. However, we would like to remark that we could have 
used the class of all step functions on Rn as well. Another consequence of The-
orem 2.1 will be the well known: 

RIEMANN-LEBESGUE LE~MA: If f e L1 (Rn, dx) then its Fourier transform 

(1.2) J(t) = (2:)n/ 2 f Rnf(x) exp (-it.x) dx, t.x = ti Xi + · · · + tn Xn 

is a function which vanishes at infinite i.e., 

(1.3) /(t) = 0, 

where It I denotes the Euclidean norm of the vector t = (ti, • • • , tn). 

In section 3 we rephrase. Theorem 2.1 within the framework of probability 
theory (Corollary 3.1) and explore some of its consequences. 

2. The Main Result 
Let us recall that for a real or complex valued function cJ> on Rn a "period" 

is a vector peRn such that cJ>(x + p) = cJ>(x), xeRn. 

It is well known [3] that the set of periods of cJ> forms an additive subgroup of 
Rn, which is closed if cJ> is continuous, and there are (n + 1) ( n + 2) /2 catego-
ries of such closed subgroups of Rn. If pi, • • • , Pn are n linearly independent 
vectors in Rn, the set of all linear combinations mipi + · · · + mnPn with integer 
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coefficients m1 , • • • , mn represents an imp,ortant subgroup. A fu'nction on R" 
where each element of such subgroup is a period is called "n-tuply periodic" 
i.e., iI> satisfies. 

(2.1) 

where the m;'s are arbitrary integers. 

THEOREM 2 .1 : Suppose ip is an n-tuply periodic function on Rn and let 

B = {r1p1 + · · · + rnPn IO ri 1, i = 1, 2, • • • , n} 

be the "fundamental parallelepiped" spanned by the periods Pi , • • • , Pn . If iI>eL 00 

(R", dx), then for every feL1(R", dx) one has 

(2.2) fR" iI>1(x)f(x) dx = J!I fBiI>(x) dxfRnf(x) dx, 

where 4>1(x) = iI>(t1X1, • • • , tnXn), t :a: (t1, • • • , tn), m(t) = mint;, 1 i n 
and I B I denotes the n-d'imensional volume of the fundamental parallelepiped B. 

Proof: Without loss of generality we can assume that iI> and fare real valued 
functions, also that 

(2.3) 

considering the n-tuply periodic function w(x) = iI>(x) - c, where 

I 
c = fB7 f BiI>(x) dx. 

The proof is divided in two steps. 

Step I: Suppose first that 

(2.4) Pl= e1 = (1,0, .•. ,0), ... ,Pn = e,. = (O, ••• ,0, I). 

If f = cf>, where cf> is a continuous function with compact support, then there is 
an integer N > 0 such that 

(2.5) 

For i 

supp (ct>) C ]-N, N[~X • • • X ]-N, N[ = QN. 

1, 2, • • • , n we partition the interval [-N, N] into the subintervals 

[-N, -N[t;]/t;], [k;/ti, (k; + I)/t;], ki = -N[t;], • • • , 
(2.6) 

- 1,0, 1, • • • , N[t;] - I, [N[t;]/t;, N], 

where [t] denotes the "greatest integer" function. 

Note that the first and last intervals in (2.6) are reduced to a point when 
t; is a positive integer and, in this case, (2.6) gives a partition of [-N, N] into 
2Nti subintervals of equal length. Also since 

[t]/t = I 
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we have 

(2.7) . supp (,f>) C ]-N[t1l/t1, N[t1]/t1[X • • • X]-N[t,.]/t,. ,N[tnl/tn[ 

when m(t) > 0 is large enough. 

Now (2.6) induces a subdivi'sion of the closure QN of QN into closed subblocks 
Qk1 , ••. ,k,. whose interiors are pairwise disjoint 

(2.8) 

If all the t/s_ are positive integers, then all the subblocks Qk1, ... ,k,. in (2.8) have 
volume equal to 

Since if>eL 00 (Rn, dx), there is a number aeR such that 
(2.9) if>(x) 2:'.: a a.e. in Rn. 

Hence if we let 
(2.10) 
then we have 
I(t) = f i1N if>i(x),f>(x) dx = Lki,··· ,k,. f Qki,· .. ,k" if>i(x),f>(x) dx 

= Lk 1,···,k,. f Qk1,---,k,. [if>i(x) - a],f>(x) dx + Lki,··•,k,. f Qk1,--·,k,. a,f>(x) dx. 
From (2.9) and the mean value theorem for integrals [5] we have 

I(t) = Lk1,--·,k,.ef>(Yk1,•--,k,.) IQkt,""",kn [if>i(x) - a] dx + afQN,f>(x) dx, 

where Yk,, ... ,k,. eQk,, ... ,k,. . 

If we make use of (2.1), (2.3), (2.4) and (2.7) we see that for m(t) > 0 
large enough one has 

I(t) = - aI:k,, ... ,k,.,f>(yk,, ... ,k,.) I Qk,,. .. ,k,. I+ a rijN,f>(x)dx, 
and since ,f> is Riemann integrable onQN we must have 

limm(t)-+oo I(t) = 0. 
Suppose now that feL1(Rn, dx) is any integrable function. Since the set of 

all continuous functions ,f> with compact support is dense in L 1(Rn, dx) [6]. 
Given e > 0 there is a such ,f> with 

(2.11) Iii- ef>i11 = JR" lf(x) - ,f>(x) I dx < 211;rr:, · 
Using (2.11) we obtain 

I J R"if>i(x)f(x) dx I::;; If Rnif>i(x)[f(x) - ,f>(x)] dx I+ If Rnif>t(x),f>(x) dx I 
::;; lliJ>ll'?llf - if>ll1 +If R,.if>i(x),f>(x) dx I 

E € h < 2 + 2 = e, if m(t) > 0 is large enoug . 
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Step II: Suppose now that the lineariy independenf peridds p
arbitrary. Th~n there is a non~singular liriear transformation 1P:'1ti•± +·Rn such 
that T(eS'~ Pi/Y. ::S; i ::S; n. From the change of variables formula for Lebesgue 
integrals [5] w1·pa,Y

Jn,.if:>1 (x)f(x) dx = I det TI f nnif:>1°T(x)foT(x) dx. 

Clearly if:>1oT is an n-tuply periodic function satisfying the hypothesis of Step I 
andfoT E L1 (Rn, dx). Thus (2.2) holds. 

As a consequence of the previous theorem we have the following result which 
includes Fejers lemma and the one-dimensional Riemann-Lebesgue lemma as 
particular cases: 

COROLLARY 2.2: Suppose cl> is a periodic function on R with period p > 0. 
If cl> EL~ (R, dx), then for every f eL1(R, dx) one has 

(2.12) 

Proof: In view of Theorem 2.1 it suffices to prove (2.12) for the case t ._ - oo, 
and this is easily done. 

The proof of the n-dimensional Riemann-Lebesgue lemma using Corollary 
2.2 is straightforward (See, for example, [7], p. 316). 

3. Some Consequences of fhe Main Result 

Let ffi(Rn) denote the u-algebra of all Borel subsets of Rn and let a be any 
u-algebra of Lebesgue measurable subsets of Rn with CB(R") a. Then we have: 

COROLLARY 3.1: Let µ: a --t R be a measure with µ (Rn) = 1 and dµ < < dx. 
If cl> is a bounded n-tuply periodic function on Rn and if <l>eL1(Rn,dµ), then 

(3.1) f R" cl>1(x) dµ(x) = 1!1 f B <l>(x) dx. 

Proof: Since dµ< <dx, then it follows from the Lebesgue-Radon-Nikodym 
theorem [6] that there exists a nonnegative a-measurable function f on R" 
such that 

(3.2) 

and 

(3.3) 

In particular 

f nn<l>1(x) dµ(x) = f R" <l>1(x)f(x) dx 

f R" f(x) dx = µ(Rn) = 1 

implies feL1(Rn, dx) and the result follows from (3.2) and Theorem 2.1. 
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We can put this last result in a probabilistic framework as follows: Let (n, 5=, P) 
be a probability space i.e., n is any set, ff is a u-algebra of subsets of n and P 
is a measure on ff with P(n) = 1. Then it is well known [1] that if 

X = (X1, • • • , Xn) :n - Rn 

is a "random vector" i.e., each X,:n - R, 1 ,::; i ,::; n is an 5=-measurable func-
tion, there is a probability measure Px on ili(Rn) induced by the random vec-
tor X given by 

Px(A) = P {wen I X(w)eA}, AeCB(Rn). 

If X:n - Rn is a random vector, g:R" - R is a Borel measurable function 
and if 

E(goX) = f 11 (goX)(w) dP(w) 

is the "expected value" of goX, then 

(3.4) E(g 0X) = f R" g(x) dPx(x). 

In the sense that if either integral exists, so does the other, and the two are 
equal. 

It is said that a random vector X on n has a "density" if dPx < < dx. In this 
case we see, as in the proof of Corollary 3.1, that there is a nonnegative, Borel 
measurable function f on Rn such that dPx = f(x) dx. We call f the "density 
function" of X. 

Using these facts we can now prove the following: 

COROLLARY 3.2: Let (n, ff, P) be a probability space and let X: n - R" be a 
random vector with density. If <I> is a bounded Borel measurable, n-tuply periodic 
function and if <I> e V(R", dPx), then 

(3.5) E(<I>0X,) = I iJ I f B <I>(x) dx, 

where X1 = (t1X1, • • • , t,.Xn). 
Proof: From (3.4) we have 

E(<I>0X,) = f R" <I>,(x) dPx(x). 

The result follows from Corollary 3.1. 
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