s-S SPACES

BY GERARD P. PROTOMASTRO

1. Introduction

A projection in a Banach space is any linear operator P in the space with the property that $P^2 = P$. One of the main problems connected with the notion of projections in Banach spaces is the following: Given a Banach space X , under what conditions does there exist a projection onto *X* of any space $Z \supseteq X$? Moreover, what may be said of the norms of such projections? Two important concepts in this connection are the P and S spaces. A Banach space X is said to be a P space if for every Banach space **Z** containing X there exists a projection P from **Z** onto X; moreover, if P can always be taken so that $||P|| \leq \lambda$, we say that X is a P_{λ} space. If in the above we consider X and Z to be separable Banach spaces, then *X* is called a *S* space and S_λ space, respectively.

In this present paper we consider a class of spaces, namely *s-S* spaces, which properly contains the class of S spaces. A separable Banach space X is said to be a *s-S space* if for every separable Banach space Z containing *X* there is a subspace X_1 of X such that X_1 is isomorphic to X and X_1 is complemented in Z (i.e., there exists a projection P from Z onto X_1); moreover, if *P* can always be taken so that $||P|| \leq \lambda$, we say that *X* is a *s*-*S*_{λ} space. In section 2 we investigate some properties of s-S spaces. In section 3 we show that (c) , the space of convergent sequences, is a $s-S_1$ space. We conclude the paper with some open problems.

All Banach spaces and subspaces under discussion are assumed to be infinite dimensional. All linear operators are assumed to be bounded.

2. **Properties of s-S Spaces**

THEOREM 2.1. If X is a s-S space and X is isomorphic to Y , then Y is a *s -S space.*

Proof. Let **Z** be a separable Banach space containing *Y* and let i be an isomorphism from X onto Y . By [4, p. 166] there exists a separable Banach space Z_1 containing X and an isomorphic extension I of i from Z_1 onto Z. Since X is a $s-S$ space there is a subspace X_1 of X such that X_1 is isomorphic to X and X_1 is complemented in Z. Let P_{X_1} be the projection from Z onto X_1 . The subspace $Y_1 = i(X_1)$ of *Y* is isomorphic to *Y* and Y_1 is complemented in **Z** since $P_{Y_1} = iP_{X_1}I^{-1}$ is a projection from **Z** onto Y_1 . Hence *Y* is a *s*-*S* space.

COROLLARY 2.2. If X is isometrically isomorphic to Y and X is a $s-S_{\lambda}$ space, *then Y is a s-S_{* λ *} space.*

Proof. In the proof of theorem 2.1 we can choose P_{x_1} such that $|| P_{x_1} || \leq \lambda$. Thus $\| P_{Y_1} \| = \| i P_{X_1} I^{-1} \| \leq \lambda.$

THEOREM 2.3. *If X is a s-S space, then*

(1) *X contains a subspace isomorphic to* (c), *and*

(2) *X cannot be isomorphic to a conjugate space of a Banach space.*

Proof. (1) Since X is separable we may embed it onto a subspace Y of $C[0, 1]$. By theorem 2.1 *Y* is a $s-S$ space, and thus there exists a subspace Y_1 of *Y* complemented in $C[0, 1]$. It follows by $[2, p. 221]$ that Y_1 must contain a subspace isomorphic to (c). Thus *Y,* and hence *X,* must contain a subspace isomorphic to (c) .

(2) Suppose that X is isomorphic to a conjugate space \mathbb{Z}^* of a Banach space **Z.** In part (1) Y_1 is isomorphic to X and thus Y_1 is also isomorphic to \mathbb{Z}^* . It follows by $[2, p. 221]$ that Y_1 , and hence X , must contain a subspace isomorphic to (m) , where (m) is the space of bounded sequences. But since X is separable this is impossible.

COROLLARY 2.4. ℓ_p and $L_p[0, 1], 1 \leq p < \infty$, are not s-S spaces.

Conditions (1) and (2) of theorem 2.3 are necessary, but not sufficient, conditions of $s-S$ spaces. To show that condition (1) is not sufficient we consider a subspace (ℓ) of (c) constructed by Sobczyk in [5, p. 84]. (ℓ) has the property that it is not complemented in (c) , and thus it is not isomorphic to (c) by [2, p. 217]. (ℓ) contains a subspace isomorphic to (c), since every infinite dimensional subspace of (c) contains a subspace isomorphic to (c) . If (ℓ) is a *s*-S space, then there must be a subspace X of (ℓ) such that X is isomorphic to (ℓ) and complemented in (c) . This implies that X, and hence (ℓ) , is isomorphic to (c) , which is impossible. Thus (l) is not a *s-S* space. The space $L_1[0, 1]$, which is not a $s-S$ space by corollary 2.4, shows us that condition (2) is not sufficient.

Definition 2.5. A linear transformation $T: X \rightarrow Y$ is said to be of *Sobczyk type II-A* if the null space $N(T)$ of *T* has a closed complement N^c , and if *T* restricted to N^c is an isomorphism of N^c onto the range $R(T)$ of T.

THEOREM 2.6. *If X is a s-S space, then for every separable Banach space* **Z** *containing X there exists a linear transformation T of Sobczyk type* II-A *from* **Z** *onto X.*

Proof. Since *X* is a *s-S* space, there exists a subspace *Y* of *X* such that *Y* is isomorphic to *X,* say under *I,* and *Y* is complemented in Z. Let *P* be a projection from Z onto Y. We define $T = IP$. We note $N(T) = N(P)$, so that $N(T)$ has a closed complement, namely *Y*. Furthermore, $T|_{Y} = I$ is an isomorphism of *Y* onto $R(T) = X$. Thus *T* is a linear transformation of Sobczyk type II-A from Z onto *X.*

3. $s-S_1$ Spaces

It is known that the class of S_1 spaces is empty. The next theorem shows that this is not the case with the class of *s-81* spaces.

THEOREM 3.1. *(c) is a s-S1 space.*

Proof. Let Z be a separable Banach space containing (c) . For each i, we define $d_i(x) = x_i$ for every $x \in (c)$, and note each d_i is a linear functional on (c) with $||d_i|| = 1$. Then it follows by the Hahn-Banach Theorem that each d_i can be extended to a linear functional z_i^* on **Z** such that $||z_i^*|| = ||d_i|| = 1$. Since **Z** is separable there exists a subsequence $\{z_{n_i}\}$ of $\{z_i\}$ which converges in the w^{*}-topology, i.e. $\{z_{n,i}\}$ is pointwise convergent, by [7, p. 209]. We then define X_1 to be the subspace of (c) of sequences x for which $x_{n_i} = x_{n_i+1} = \cdots$ $=x_{n_{i+1}-1}$ for every i and $x_n = 0$ for $n < n_1$. We also define $P: Z \to X_1$ by *P* : $z \to Pz$ where $(Pz)_n = z_{n_i}^*(z)$, if $n_i \leq n \lt n_{i+1}$, and $(Pz)_n = 0$, if $n \lt n_1$. It is clear that $P(Z) \subset X_1$. If $x \in X_1$, then $(Px)_n = z_{n_i}^*(x) = d_{n_i}(x) = x_{n_i}$ $= x_n$, for $n_i \leq n < n_{i+1}$, and $(Px)_n = 0 = x_n$, for $n < n_1$. Thus $Px = x$ for every $x \in X_1$. Furthermore, for $z \in Z$

$$
|| Pz || = \sup_n | (Pz)_n | \le ||z_{n_i}^*|| ||z|| = ||z||.
$$

Hence P is a projection from Z onto X_1 such that $\|P\| = 1$.

It remains to show that X_1 is isomorphic to (c). We define $I:(c) \to X_1$ by $I: x \longrightarrow Ix$ where $(Ix)_n = x_i$, if $n_i \leq n \leq n_{i+1}$, and $(Ix)_n = 0$, if $n \leq n_1$. Clearly $I(c) \subset X_1$ and we claim that I is onto. For let $x \in X_1$ and let $y \in (c)$ be defined by $y_i = x_{n_i}$. Then

$$
(Iy)_n = y_i = x_{n_i} = x_n, \text{ for } n_i \leq n < n_{i+1},
$$

and

$$
(Iy)_n = 0 = x_n, \text{ for } n < n_1.
$$

Thus $I y = x$ and *I* is onto as claimed. Finally we note for every $x \in (c)$

$$
|| Ix || = \sup_n | (Ix)_n | = \sup_i | x_i | = || x ||,
$$

i.e. $||Tx|| = ||x||$. Thus X_1 is isomorphic to (c) , and hence (c) is a *s*- S_1 space.

4. **Open Problems**

Definition 4.1. A set $\{x_n\}$ of elements of a Banach space X is called an uncon*ditional basis* of X if for every $x \in X$ there is a unique sequence of reals $\{a_n\}$ such that $x = \sum_{1}^{\infty} a_n x_n$ and this series converges unconditionally.

It is not hard to show, using results from [3, p. 100] and [1, p. 295], that a separable Banach space *X* with an unconditional basis is a *s-S* space if and only if X is isomorphic to a $C(H)$ space, where H is a compact metric space.

Problem 1. Let *X* be a separable Banach space. Is it true that *X* is a *s-S* space if and only if X is isomorphic to a $C(H)$ space, where H is a compact metric space?

If the above is not true, we could state the following general problem.

Problem 2. Characterize the *s-S* spaces.

The class of P_1 spaces has been completely characterized as those spaces which are isometrically isomorphic to a C(K) space, where *K* is compact and extremally disconnected. We have stated in section 3 that the class of S_1 spaces is empty.

Problem 3. Characterize the *s-S1* spaces.

Let $s[X] = \inf \{\lambda : X \text{ is a } s\text{-}S_{\lambda} \text{ space}\}\)$. Theorem 3.1 implies that $s[(c)] = 1$. Using a result from [6, p. 942], it follows that $s(c_0) \leq 2$, where (c_0) is the space of sequences which converge to 0.

Problem 4. Is it true that $s[(c_0)] = 2$? If $s[(c_0)] \neq 2$, then what is the value of $s[(c_0)]$?

We conclude this section by considering a generalization of *s-S* spaces.

Definition 4.2. The *density character* $\delta(X)$ of a Banach space X is defined as the smallest cardinal number such that there exists a dense subset of X having that cardinal number.

Definition 4.3. A Banach space *X* of density character Γ is said to be a s-S(Γ) *space* if for every Banach space Z containing X, where $\delta(Z) = \Gamma$, there is a subspace X_1 of X such that X_1 is isomorphic to X and X_1 is complemented in Z.

Problem 5. Characterize the $s-S(\Gamma)$ spaces.

ST. PETER'S COLLEGE JERSEY CITY, NEW JERSEY

REFERENCES

- [1] J. LINDENSTRAUSS AND A. PELCzyNsKI, *Absolutely summing operators in L-spaces and their applications,* Studia Math. 29(1968), 275-326.
- [2] A. PELCZYNSKI, *Projections in certain Banach spaces,* Studia Math. 19(1960), 209-28.
- [3] Z. SEMADENI, *Isomorphic properties of Banach spaces of continuous functions,* Studia Math., Serie Specjalna 1(1963), 93-108.
- [4] A. SoBCZYK, *On the extension of linear transformations,* Trans. Amer. Math. Soc. **66** (1944), 153-69.
- [5] A. SOBCZYK, *Projections in Minkowski and Banach spaces,* Duke Math. J. 8(1941), 78- 106.
- [6] A. SOBCZYK, *Projection of the space* (m) *on its subspace* (eo), Bull. Amer. Math. Soc. 47(1941), 938-47.
- [7] A. TAYLOR, Introduction to functional analysis, Wiley, New York, 1958.