A PROPERTY OF BAIRE FIRST CATEGORY SETS

By ALEXANDER ABIAN

Abstract. In this paper it is shown that every Baire first category set misses
a Cantor set in every interval and an example is given to show that the converse
does not hold.

In what follows every set which is mentioned is a subset of the set of all real
numbers.

Let us recall that a set is called nowhere dense if and only if it misses an in-
terval in every interval. Moreover, a set is called Baire first category (or simply,
first category) if and only if it is a countable union of nowhere dense sets. Thus,
it is reasonable to expect that a first category set would also miss infinitely many
points in every interval. Indeed, a first category set misses continuumly many
points in every interval since (as shown in the Theorem below) a first category
set misses a Cantor ternary set (or simply, a Cantor set) in every interval. How-
ever, a8 also shown below, the property of missing continuumly many points in
every interval does not characterize a set of first category.

TrEOREM 1. Let F be a set of first category and I an interval. Then there exists a
Cantor set C such that C C (I — F).

Proof. From the definition of a first category set it follows that
(1) F=N0UN1UN2UUN1U°U)’Lth’LEw

where N ; is a nowhere dense set for every z € w.

Since a nowhere dense set misses an interval in every interval, it is clear that
every nowhere dense set misses two disjoint closed intervals in every closed
interval.

Let €y be a closed interval such that Co C I. In view of the above, Ny misses
two disjoint closed subintervals Cy and Cy of Cp. Similarly, N, misses two
disjoint closed subintervals Cog and Cop of Coo, and, N; misses two disjoint
closed subintervals Cyo and Con of Coi. Again, N, misses two digjoint closed
subintervals Copo and Cogr of Cogo, and, N» misses two disjoint closed subin-
tervals Cooo and Coen of Con, and, N, misses two disjoint closed subintervals
Cooo and Cpo of Cor, and, N, misses two disjoint closed subintervals Cone and
Com of Coy . Continuing in this way, we see that N.,; misses 2°* pairwise dis-
joint closed subintervals of the 2°"* closed intervals which are missed by N .
But then from (1) it follows that the intersection K of all these closed subin-
tervals is missed by F. Thus, K C (I — F). However, it is obvious that C & K
for some Cantor set C. Hence the Theorem is proved.
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CoroLrARY (Baire category theorem). No set containing an interval is of first.
category. ‘

Proof. Let S be a set such that I & S for some interval I. If S were of first
category then Theorem 1 would imply [ $ S which would contradict I < 8.

Next, we prove that the converse of Theorem 1 does not hold.

TurorEM 2. There exists a set A such that A misses a Cantor set in every in-
terval and such that A 1s not of first category.

Proof. Let I be an interval. By ([1], Theorem 1.6) the interval I is a disjoint
union of a set F of first category and a set 4 of zero Lebesgue measure. Clearly,
A is not of first category (because otherwise, F U A = I would be of first cate-
gory contradicting the Corollary above). On the other hand, A being of zero
Lebesgue measure misses a closed set of positive Lebesgue measure in every
interval. Thus, a priori 4 misses a Cantor set in every interval. Consequently,
A i3 a set which satisfies the conclusion of the Theorem.
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