A PROPERTY OF BAIRE FIRST CATEGORY SETS

BY ALEXANDER ABIAN

Abstract. In this paper it is shown that every Baire first category set misses a Cantor set in every interval and an example is given to show that the converse does not hold.

In what follows every set which is mentioned is a subset of the set of all real numbers.

Let us recall that a set is called *nowhere dense* if and only if it misses an interval in every interval. Moreover, a set is called *Baire first category* (or simply, *first category*) if and only if it is a countable union of nowhere dense sets. Thus, it is reasonable to expect that a first category set would also miss infinitely many points in every interval. Indeed, a first category set misses continuumly many points in every interval since (as shown in the Theorem below) a first category set misses a *Cantor ternary set* (or simply, a *Cantor set*) in every interval. However, as also shown below, the property of missing continuumly many points in every interval does not characterize a set of first category.

THEOREM 1. Let F be a set of first category and I an interval. Then there exists a Cantor set C such that $C \subseteq (I - F)$.

Proof. From the definition of a first category set it follows that

(1) $F = N_0 \cup N_1 \cup N_2 \cup \cdots \cup N_i \cup \cdots$ with $i \in \omega$

where N_i is a nowhere dense set for every $i \in \omega$.

Since a nowhere dense set misses an interval in every interval, it is clear that every nowhere dense set misses two disjoint closed intervals in every closed interval.

Let C_0 be a closed interval such that $C_0 \subseteq I$. In view of the above, N_0 misses two disjoint closed subintervals C_{00} and C_{01} of C_0 . Similarly, N_1 misses two disjoint closed subintervals C_{000} and C_{001} of C_{00} , and, N_1 misses two disjoint closed subintervals C_{010} and C_{011} of C_{01} . Again, N_2 misses two disjoint closed subintervals C_{0000} and C_{0001} of C_{000} , and, N_2 misses two disjoint closed subintervals C_{0000} and C_{0001} of C_{000} , and, N_2 misses two disjoint closed subintervals C_{0010} and C_{0011} of C_{001} , and, N_2 misses two disjoint closed subintervals C_{0100} and C_{0101} of C_{010} , and, N_2 misses two disjoint closed subintervals C_{0111} of C_{011} . Continuing in this way, we see that N_{i+1} misses 2^{i+2} pairwise disjoint closed subintervals of the 2^{i+1} closed intervals which are missed by N_i . But then from (1) it follows that the intersection K of all these closed subintervals is missed by F. Thus, $K \subseteq (I - F)$. However, it is obvious that $C \subseteq K$ for some Cantor set C. Hence the Theorem is proved.

This research partly supported by the Iowa State University SHRI.

ALEXANDER ABIAN

COROLLARY (Baire category theorem). No set containing an interval is of first. category.

Proof. Let S be a set such that $I \subseteq S$ for some interval I. If S were of first category then Theorem 1 would imply $I \not \subseteq S$ which would contradict $I \subseteq S$.

Next, we prove that the converse of Theorem 1 does not hold.

THEOREM 2. There exists a set A such that A misses a Cantor set in every interval and such that A is not of first category.

Proof. Let I be an interval. By ([1], Theorem 1.6) the interval I is a disjoint union of a set F of first category and a set A of zero Lebesgue measure. Clearly, A is not of first category (because otherwise, $F \cup A = I$ would be of first category contradicting the Corollary above). On the other hand, A being of zero Lebesgue measure misses a closed set of positive Lebesgue measure in every interval. Thus, a priori A misses a Cantor set in every interval. Consequently, A is a set which satisfies the conclusion of the Theorem.

IOWA STATE UNIVERSITY Ames, IOWA

Reference

1. J. C. OXTOBY, Measure and Category, Springer-Verlag (1970).