THE COHOMOLOGY OF THE SPECTRUM b]J
By Donawp M. Davis*

The spectrum bJ has been very useful in solving several classical questions
in homotopy theory [5], [7]. Its homotopy groups follow immediately from [1]
and [3]; in this paper we compute the@-module H*(bJ) and Extq (H*(bJ), Z3).
(All cohomology groups have Z, coefficients.)

Let @, denote the subalgebra of the Steenrod algebra G generated by
Sq', -+, 8¢ Exta, (Zs, Z2) has been computed in [6] to be a bigraded algebra
over Z, with 13 generators and 54 relations. Among the generators are elements
ho, hi , w of bidegree (s, t) = (1, 1), (1, 2) and (4, 12), respectively. If M is a
graded @;-module, we picture Exta,” * (M, Z;) on a graph with horizontal co-
ordinate ¢ — s and vertical coordinate s, letting vertical lines denote Yoneda
multiplication by %y, and diagonal lines denote multiplication by h;, and simi-
larly for G-modules. A “tower” is a subset of Ext™ ‘(M, Z.) consisting of ele-
ments z, hox, ho'x, - - - for some z.

Then Exta,” * (Z,, Z,) begins as in Table 1.

Our main result is

TarorEM 1. 1) H*(bJ) s the @-module with generators go and g; (of degree 0
and 7, respectively) and relations Sq'ge , Sqg0 , S¢'g0 , S¢’ge + Sq'gr, 8™ ¢z , and
(8¢'Sq” + Sq'Sq")gr -

ii) Exta"*(H*DJ, Zs) ~ A" @ B where A®' ~ Extq,"'(Z:, Z2) without
the towers how™ ', 4,7 > 0, and B"* ~ Exta,"'(Z:, Z2) without w'e”* for all
2" such that t — s < 3, and with infinite towers budlt upon o' 'hy* and towers of
height four built upon Ry

Thus Exte " '(H*(bJ), Z:) begins as in Table 2. Note that there will be many
nonzero differentials in the Adams spectral sequence for m4(bJ). Part (i) im-
plies that H*(bJ) is a free @//Gs-module, and hence Extq(H*bJ, Zz) & Exta,-
(M, Z,), where M has the generators and relations as in part (i).

As in [8] bo and bsp denote the connected Q-spectra whose (8k)th spaces are
BO(8k, ) and BSp(8k, ©») = Q'BO(8k + 4, =), respectively. All spaces are
localized at 2. (bsp was denoted by bo* in [5] and [7]). The Adams operation

¢’ — 1 induces a map bo —0-> =*bsp. bJ is defined to be the fibre of 6. From [1;
5.2, 8.1], the homotopy sequence of 4, and [3; 1.3] we easily see

ProrosiTION 2.
, =4, 5,6 (8)
= 0,2 (8) (except © = 0)

1 (excepti = 1)
Zsj i4+1=2""0dd (> 3).
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Proof of Theorem 1. H*(bo) and H*(bsp) are well-known [10] to be G//Gy
and @/&(Sql,_ 8¢°), respectively. Exto(H*(bo), Z,) and Extq(H*(bsp), Z:) are
easily computed as in [8; Section 1].

LemMmA 3. The map bo _ﬁ) >*bsp satisfies 6" (1) = Sq¢’(w), where u and v gen-
erate H*(Z*bsp) and H'(bo), respectively.

Proof. This is proved as [8; Lemma 3.4]. We give a more elementary proof.

If Lemma 3 were not true, then 6*(i)) = 0, and so there would exist a short
exact sequence of @-modules

0— @ //a,— H*(bJ) — s’a/a(8q", S¢°) — 0,

(where s° denotes the increase of degrees by i), and hence a long exact sequence
in Exte( , Z»). This would imply Exte’ "™ (H*(bJ), Z:) = Zyfors =0, 1,2, 3,
and the Adams spectral sequence converging to m4(bJ) would imply that 16
divides the order of m3(bJ), contradicting Proposition 2. [l

Let Rsq+ denote right multiplication by Sq¢* and let K = ker(s'@/@(Sq", S¢°) -

—E&@/ /@1). Since the cokernel of this homomorphism is @//G,, we obtain
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a short exact sequence
0 —@//@; — H*(bJ) — s 'K —0 (1)
Since S¢'Sq*, Sq'Sq’, and (8¢*Sq¢® + Sq'Sq’) 8¢’ lie in@ (8¢, S¢°), and S¢*Sq¢* €
@(8q", 8¢*), there is a homomorphism
Rsg: $0/a(8q", 8¢, S¢'S¢* + S¢'S¢*) — K. (2)
To show this is an isomorphism, let
I = image (Rsg: s'@/@(Sq', 8¢°) —@//@1). There are short exact sequences of
@-modules
01 -—)@//@1 —>@//(£2 -0
0 — K —s'e/a(Sq¢, S¢") = I —0
and applying Exte( , Z,) yields long exact sequences

s Bxta," (Zs , Zs) —2— Exta,""(Zs, Zs) — Exta“(I, Zy)

- EXta;-H't(Zz y Zz) b

and
— Exto’'(I, Z,) v, Ext.”'(s'e/a (8¢, 8¢°), Z,) — Exta"*(K, Zs) — .

The image of ¢ consists of the elements of Extq,”"'(Z, , Z;) for which t — s 5£4(8).
Thus Exte(I, Z,) is easily described in terms of Extq,(Z., Z,); it begins as in
Table 3. By low-level minimal resolution computations together with the com-
patibility of ¢ with Yoneda multiplication by the periodicity element w (see
[2]), one shows that the image of ¥ consists of the elements for which { — s £
0(8). Thus Ext. *(K, Z:) is Extqe,”™*(Z,, Z;) without w'a™* for all z™' such
that t — s < 3, without w'co and w'hsc , where ¢ is the nonzero element with bi-

t— s
Table 3: Exte®* (I, Z3)
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degree (3, 11), and with infinite towers built upon w’h,”. In particular

t=28 Zy, t=09,15,18
1 #8 0 otherwise.

Thus K is an @-module on one generator and three relations; it is easily verified
that Rge in (2) sends generator to generator and relation to relation and hence
is an isomorphism.

Thus (1) becomes

0 —G//G, — H*(bJ) —s'6/6.(8q", 8¢, 8¢'S¢° + 8¢'S¢") -0  (3)

Ext (K, Z,) ~ {02 and Extq' (K, Z») ~ {

and its long exact Exto( , Z:)-sequence shows that

(Z, t=0,7
Ext ' (H*bJ, Zs) =i and

0 otherwise

Exte"'(H'bJ, Z,) = Using this together

Zy, t=1,24,8, 14, 17
0 otherwise.

with (3) shows that H*(bJ) has generators go and g; with the only relations
being Sq'go , 8’0 , Sq'g0 , Sq'gr + Bago , S¢'g7 + bugo , and (S¢*Sq’ + S¢'Sq")g +
fugo , where 5 € (G//G2)s = {0, 8¢}, 6u € (@//G)u = {0, S¢}, and 6y €
(@//G2)1r = {0}. 6 = 0 because S¢'Sq’ = 0 but S¢"S¢" = 0 €a@//a,.If 6 = 0,
then there would be an isomorphism Ext.’‘(H*bJ, Z,) = Ext'(Z,, Z:) &
Ext."'(s'a/a (8¢, Sq', 8¢’S¢" + Sq'Sq*)) and then the Adams spectral sequence
would imply that 32 divides the order of m(bJ), contradicting Proposition 2;
hence 8 = S¢°, proving part (i).

To prove part (ii) it remains to compute the boundary homomorphisms

Exto,” (%2, Z,) i Exte"'(s'a/a(Sq", 8¢, 8¢'S¢’ + S¢'S¢’)). By inspection
the only possible elements not in the kernel of d are ho'w’ (i > 0). We shall
show below that d(ho*w™) is nonzero if and only if ¢ is even, proving part ().

Sq* acts as a differential on an@-module M, so that we can define H(M; S¢').

Lemma 4. There s a 1 — 1 correspondence between infinite towers in Ext,™"-
(M, Z,) and a basis for H,(M; Sq').

Proof. We define an epimorphism of @-modules N %M inducing an iso-

morphism 174(N; Sq') O, g (M; Sq") by letting N = ® @ & @ @//G, where
the first sum corresponds to (and the generators map to) a set of G-generators
of M, and the second sum corresponds to (and the generators map to) a basis
for Hy(M; S¢'). Let L = ker(); then Hy(L, S¢*) = 0, so by [2; Theorem 2.1]
Exte"(L, Z5) = 0if 3s > t + 6. Thus Exts"'(M, Z:) — Exts"*(N, Z;) is an
isomorphism for 3s > ¢ -+ 6.
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8,t _ Zy, s=1t=0 and
But Exte™ (2, Z:) = {0 otherwise
Zy, t=s so the Lemma follows.

8,t _
Exto™ (G//0, Z2) = IO otherwise,

Let Sq(#, ---) denote elements in the Milnor basis [9] and x denote the
canonical antiautomorphism [9]. By computing in x((®//@:)*) as in [4; Section
6], we find that a basis for H«(@//@,; Sq') consists of all x(Sq(8%, 45)) and a
basis for H«(@/@(Sq'", Sq', Sq¢'S¢® + Sq¢'Sq¢’); Sq') consists of x(Sq(8) +
Sq(8 — 6, 2)) and x(Sq(8. + 6, 47) + Sq(8, 47 + 2)). For example,
Sq'(x(8q¢(84) + Sq(8 — 6, 2)))

= x(Sq(8i — 6))Sq’ + (x(8q(8:) + Sq(8i — 6,2)))S¢"
because Sq(84)Sq" + Sq(8 — 6, 2)S¢" = x(Sq")Sq(8; — 6) + Sq'(Sq(8i) +
Sq(87 — 6, 2)). )

Under the correspondence of Lemma 4, the tower ho'w™ corresponds to
x(Sq(8¢ + 8)). Hence d(he’w™") is nonzero if and only if the tower is not
present in Exta(H*l_)J, Z,) if and only if x(Sq(8 4 8))go € im(Sq") if and
only if x(Sq(8¢ + 8))g = Sq'(x(Sq(8i) + Sq(8i — 6,2)))gx .

The above example shows that Sg¢'(x(Sg(8) + Sq(8 — 6, 2)))gn =
x(Sq(87) + Sq(8 — 6, 2))S¢'g: = x(Sq(85) + Sq(85 — 6, 2))Sq’go. Thus to
show d is as claimed it is equivalent to show x(Sq(8i) + Sq(8 — 6,2))8¢° =
Sq(87 + 8) + other Milnor basis elements if and only if 7 is even. But this
follows easily since

<&H", x(8q(81) + Sq(8: — 6,2))8¢">
= (") <&" x(Sq(81) + Sq(8 — 6,2))>
= (%) <x(@)* Sa(®) + Sa(si—6,2)> = (¥ FF)
which is a nonzero element of Z, if and only if < is even.
Let bJ denote the cofibre of the map S° — bJ. m(bJ) is the subgroup of the
2-primary stable homotopy of spheres complementary to the image of the

J-homomorphism (plus the Adams elements g, [3; 1.3]). By techniques similar
to those used in proving Theorem 1 we can prove.

TuroreM 5. H*(bJ) has minimal generating set g7 and g, (n > 4) and minimal
set of relations Sq’Sq'gr, Sq'gr, S¢°Sq'gr, (S¢'Sq" + Sq'S¢’)gn and R(3, )
(0<i<j—1lori=yg,j>4), where R(4,]) corresponds to the Adem relation
forSq” S¢”, with the final S¢** in each term replaced by

0 k=0,1,2
Sg'gr k=3
ok k 2 4.

Lenica UNIVERSITY



THE COHOMOLOGY OF THE SPECTRUM bJ 11

REFERENCES

[1] J. F. Apawms, Vector fields on spheres, Ann. Math. 76 (1962), 603-32.

[2] J. F. Apawms, 4 periodicily theorem in homological algegra, Proc. Cambr. Phil. Soc.
62 (1966), 365-77.

{3] J. F. Apawms, On the groups J(X)-1V, Topology 5 (1966), 21-71.

{4] D. AnpERrsoN, E. BRown anD F. P. PrrersoN, The siructure of the spin cobordism ring,
Ann. Math. 86 (1967), 271-98.

[5] D. M. Davis aNpD M. ManowaLp, A sirong non-immerston theorem for RP8+7 Bull.
Amer. Math. Soc. 81 (1975), 155-56.

[6] A. Iwar anp N. Suimmapa, On the cohomology of some Hopf algebras, Nagoya Math. J.
30 (1967), 103-11.

[71 M. E. ManowaLp, The order of the image of the J-homomorphism. Bull. Amer. Math.
Soc. 76 (1970), 1310-13.

[8] R. J. MirarawM, The Steenrod algebra and its dual for connective K-theory. Proec Homo-
topy Conf., Evanston, Ill. 1974, Monograph of the Mexican Mathematical So-
ciety.

[9] J. MiNoR, The Steenrod algebra and its dual, Ann. of Math 67 (1958), 150-71.

[10] R Stong, Determination of H*(BO(k, «); Z,), Trans. Amer Math. Soc. 10T (1963),
526-44.





