THE COHOMOLOGY OF THE SPECTRUM bJ

BY DONALD M. DAVIS*

The spectrum *bJ* has been very useful in solving several classical questions in homotopy theory [5], [7]. Its homotopy groups follow immediately from **[1]** and [3]; in this paper we compute the α -module $H^*(bJ)$ and $\text{Ext}_{a}(H^*(bJ), Z_2)$. (All cohomology groups have Z_2 coefficients.)

Let α_n denote the subalgebra of the Steenrod algebra α generated by $Sq¹$, \cdots , Sq^{2^n} . Ext_a (Z_2, Z_2) has been computed in [6] to be a bigraded algebra over *Z2* with 13 generators and 54 relations. Among the generators are elements h_0 , h_1 , ω of bidegree $(s, t) = (1, 1)$, $(1, 2)$ and $(4, 12)$, respectively. If M is a graded a_2 -module, we picture $\operatorname{Ext}_{a_2}^{s_1 t_2}(M, Z_2)$ on a graph with horizontal coordinate $t - s$ and vertical coordinate s , letting vertical lines denote Yoneda multiplication by h_0 and diagonal lines denote multiplication by h_1 , and similarly for α -modules. A "tower" is a subset of $Ext^{s, t}(M, Z_2)$ consisting of elements *x*, h_0x , h_0^2x , \cdots for some *x*.

Then $\text{Ext}_{\alpha_2}^{s, t}$ (Z_2, Z_2) begins as in Table 1. Our main result is

THEOREM 1. i) $H^*(bJ)$ *is the 0-module with generators* g_0 *and* g_7 *(of degree 0)* and **7**, respectively) and relations Sq^1g_0 , Sq^2g_0 , Sq^4g_0 , $Sq^8g_0 + Sq^1g_7$, $S^{7g}g_7$, and $(Sq^4Sq^6 + Sq^7Sq^3)g_7$.

ii) $\text{Ext}_{\mathfrak{a}}^{s,t}(H^*bJ, Z_2) \approx A^{s,t} \oplus B^{s+2,t+1}$, *where* $A^{s,t} \approx \text{Ext}_{\mathfrak{a}_2}^{s,t}(Z_2, Z_2)$ *without* $the \; towers \; h_0^* \omega^{2j+1}, \; i, \; j \; \geq \; 0, \; and \; B^{s,t} \; \approx \; Ext_{\boldsymbol{a_2}}^{s,t}(Z_2 , \; Z_2) \; without \; \omega^* x^{s,t} \; for \; all$ $x^{s,t}$ such that $t - s \leq 3$, and with infinite towers built upon $\omega^{2s+1} h_2^2$ and towers of *height four built upon* $\omega^2 h_2^2$.

Thus $\text{Ext}_{a}^{s,t}(H^*(bJ), Z_2)$ begins as in Table 2. Note that there will be many nonzero differentials in the Adams spectral sequence for $\pi_*(bJ)$. Part (i) implies that $H^*(bJ)$ is a free $\frac{\alpha}{\alpha_3}$ -module, and hence $\text{Ext}_{\alpha}(H^*bJ, Z_2) \approx \text{Ext}_{\alpha_3}$. (M, Z_2) , where M has the generators and relations as in part (i).

As in $[8]$ *bo* and *bsp* denote the connected Ω -spectra whose $(8k)$ th spaces are $BO(8k, \infty)$ and $BSp(8k, \infty) = \Omega^4BO(8k + 4, \infty)$, respectively. All spaces are localized at 2. *(bsp* was denoted by *bo4* in [5] and [7]). The Adams operation ψ^3 - 1 induces a map *bo* $\stackrel{\theta}{\rightarrow} \Sigma^4$ *bsp. bJ* is defined to be the fibre of θ . From [1; 5.2, 8.1], the homotopy sequence of θ , and [3; 1.3] we easily see

PROPOSITION 2.

$$
\pi_i(bJ) = \begin{cases}\n0 & i \equiv 4, 5, 6 (8) \\
Z_2 & i \equiv 0, 2 (8) (except i = 0) \\
Z_2 \oplus Z_2 & i \equiv 1 (except i = 1) \\
Z_2 j & i+1 = 2^{j-1} \text{ odd } (j \geq 3).\n\end{cases}
$$

* This research supported in part by NSF Grant GP25335 and by the Centro de Investigaci6n del IPN.

Proof of Theorem 1. $H^*(b\sigma)$ and $H^*(b\sigma)$ are well-known [10] to be α/α_1 and $\alpha/\alpha(Sq^1, Sq^5)$, respectively. $Ext_{\alpha}(H^*(bo), Z_2)$ and $Ext_{\alpha}(H^*(bsp), Z_2)$ are easily computed as in [8; Section I].

LEMMA 3. The map bo $\stackrel{\theta}{\rightarrow} \Sigma^4$ bsp satisfies $\theta^*(\iota_4) = Sq^4(\iota_0)$, where ι_4 and ι_0 gen*erate* $H^4(\Sigma^4 bsp)$ and $H^0(bo)$, respectively.

Proof. This is proved as [8; Lemma 3.4]. We give a more elementary proof. If Lemma 3 were not true, then $\theta^*(\mu) = 0$, and so there would exist a short exact sequence of α -modules

$$
0 \to \alpha \; / / \alpha_1 \to H^*(bJ) \to s^3 \alpha / \alpha (Sq^1, Sq^5) \to 0,
$$

(where s^* denotes the increase of degrees by i), and hence a long exact sequence in $\text{Ext}_{\mathfrak{a}}(\quad, Z_2)$. This would imply $\text{Ext}_{\mathfrak{a}}^{s,s+3}(H^*(bJ), Z_2) = Z_2$ for $s = 0, 1, 2, 3$, and the Adams spectral sequence converging to $\pi_*(bJ)$ would imply that 16 divides the order of $\pi_3(bJ)$, contradicting Proposition 2.

Let R_{sq^4} denote right multiplication by Sq^4 and let $K = \text{ker}(s^4 \alpha / \alpha (Sq^1, Sq^5)$. $\frac{R_{sq^4}}{\sqrt{a_1}}$, Since the cokernel of this homomorphism is $\frac{\alpha}{a_2}$, we obtain

a short exact sequence

$$
0 \to \alpha / / \alpha_2 \to H^*(bJ) \to s^{-1}K \to 0 \tag{1}
$$

Since $Sq^1 Sq^4$, $Sq^7 Sq^4$, and $(Sq^4 Sq^6 + Sq^7 Sq^3)Sq^4$ lie in $\alpha(Sq^1, Sq^5)$, and $Sq^4 Sq^4 \in$ $a(Sq^1, Sq^2)$, there is a homomorphism

$$
R_{sq^4}: s^8\alpha/\alpha(Sq^1, Sq^7, Sq^4Sq^6 + Sq^7Sq^3) \to K.
$$
 (2)

To show this is an isomorphism, let

I = image $(R_{sq^4}: s^4 \alpha/\alpha(S_q^1, S_q^6) \rightarrow \alpha/\alpha_1)$. There are short exact sequences of a-modules

$$
0 \to I \to \alpha'/\alpha_1 \to \alpha'/\alpha_2 \to 0
$$

$$
0 \to K \to s^4 \alpha/\alpha (Sq^1, Sq^5) \to I \to 0
$$

and applying Ext_{a} (, Z_{2}) yields long exact sequences

$$
\rightarrow\mathrm{Ext}_{{\mathfrak{a}_2}}^{s,t}(Z_2\,,Z_2)\stackrel{\varphi}{\longrightarrow}\mathrm{Ext}_{{\mathfrak{a}_1}}^{s,t}(Z_2\,,Z_2)\rightarrow\mathrm{Ext}_{{\mathfrak{a}}}^{s,t}(I,\,Z_2)\\\rightarrow\mathrm{Ext}_{{\mathfrak{a}_2}}^{s+1,t}(Z_2\,,\,Z_2)\rightarrow
$$

and

$$
\to \operatorname{Ext}_{{\mathfrak a}}^{s,t}(I,\,Z_2) \stackrel{\psi}{\longrightarrow} \operatorname{Ext}_{{\mathfrak a}}^{s,t}(s^4\alpha/\alpha(Sq^1,\,Sq^5),\,Z_2) \to \operatorname{Ext}_{{\mathfrak a}}^{s,t}(K,\,Z_2) \to.
$$

The image of ϕ consists of the elements of $\text{Ext}_{a_1}^{s,t}(Z_2, Z_2)$ for which $t - s \neq 4(8)$. Thus $\text{Ext}_{a}(I, Z_2)$ is easily described in terms of $\text{Ext}_{a_2}(Z_2, Z_2)$; it begins as in Table 3. By low-level minimal resolution computations together with the compatibility of ψ with Yoneda multiplication by the periodicity element ω (see [2]), one shows that the image of ψ consists of the elements for which $t - s \neq 0$ 0(8). Thus $\text{Ext}_{a}^{s,t}(K, Z_2)$ is $\text{Ext}_{a_2}^{s+2,t}(Z_2, Z_2)$ without $\omega^i x^{s,t}$ for all $x^{s,t}$ such that $t - s \leq 3$, without $\omega^i c_0$ and $\omega^i h_1 c_0$, where c_0 is the nonzero element with bi-

degree $(3, 11)$, and with infinite towers built upon $\omega^i h_i^2$. In particular

$$
\operatorname{Ext}_{\mathbf{a}}^{0,t}(K,Z_2) \approx \begin{cases} Z_2 & t = 8 \\ 0 & t \neq 8 \end{cases} \text{ and } \operatorname{Ext}_{\mathbf{a}}^{1,t}(K,Z_2) \approx \begin{cases} Z_2 & t = 9, 15, 18 \\ 0 & \text{otherwise.} \end{cases}
$$

Thus K is an α -module on one generator and three relations; it is easily verified that R_{sq4} in (2) sends generator to generator and relation to relation and hence is an isomorphism.

Thus (1) becomes

$$
0 \to \alpha/\alpha_2 \to H^*(bJ) \to s^7\alpha/\alpha (Sq^1, Sq^7, Sq^4Sq^6 + Sq^7Sq^3) \to 0
$$
 (3)

and its long exact $\text{Ext}_{a}(\, , Z_{2})$ -sequence shows that

$$
\text{Ext}_{a}^{0,t}(H^*bJ, Z_2) =\begin{cases} Z_2 & t = 0, 7 \\ 0 & \text{otherwise} \end{cases} \text{ and }
$$
\n
$$
\text{Ext}_{a}^{1,t}(H^*bJ, Z_2) =\begin{cases} Z_2 & t = 1, 2, 4, 8, 14, 17 \\ 0 & \text{otherwise.} \end{cases} \text{ Using this together}
$$

with (3) shows that $H^*(bJ)$ has generators g_0 and g_7 with the only relations being Sq^1g_0 , Sq^2g_0 , Sq^4g_0 , $Sq^1g_7 + \theta_8g_0$, $Sq^7g_7 + \theta_1g_0$, and $(Sq^4Sq^6 + Sq^7Sq^3)g_7 +$ $\theta_{17}g_0$, where $\theta_8 \in (\alpha)/(\alpha_2)_8 = \{0, Sq^8\}, \theta_{14} \in (\alpha//(\alpha_2)_{14} = \{0, Sq^{14}\}, \text{ and } \theta_{17} \in \mathbb{R}$ $(\alpha/\alpha_2)_{17} = \{0\}$. $\theta_{14} = 0$ because $Sq^1Sq^7 = 0$ but $Sq^1Sq^{14} \neq 0 \in \alpha/\alpha_2$. If $\theta_8 = 0$, then there would be an isomorphism $\text{Ext}_{a}^{s,t}(H^{*}bJ, Z_2) \approx \text{Ext}_{a}^{s,t}(Z_2, Z_2) \oplus$ $\text{Ext}_{a}^{s,t}(s^7a/\alpha(Sq^1, Sq^1, Sq^4Sq^6 + Sq^7Sq^3))$ and then the Adams spectral sequence would imply that 32 divides the order of $\pi_7(bJ)$, contradicting Proposition 2; hence $\theta_8 = Sq^8$, proving part (i).

To prove part (ii) it remains to compute the boundary homomorphisms $\text{Ext}_{\mathfrak{a}_2}^{s-1,\iota}(Z_2, Z_2) \xrightarrow{d} \text{Ext}_{\mathfrak{a}}^{s,\iota}(s^7\alpha/\alpha(Sq^1, Sq^7, Sq^4Sq^6 + Sq^7Sq^3)).$ By inspection the only possible elements not in the kernel of *d* are $h_0^{\bar{k}_{\omega}i+1}(i \geq 0)$. We shall show below that $d(h_0^k \omega^{i+1})$ is nonzero if and only if i is even, proving part (ii) . $Sq¹$ acts as a differential on an α -module *M*, so that we can define $H_{*}(M; Sq^{1})$.

LEMMA 4. There is a 1 - 1 correspondence between infinite towers in $\text{Ext}_{a}^{*,t}$. (M, Z_2) *and a basis for* $H_t(M; Sq^1)$.

Proof. We define an epimorphism of α -modules $N \stackrel{\phi}{\rightarrow} M$ inducing an isomorphism $I^I_*(N; Sq^1) \xrightarrow{\phi^*} H^*(M; Sq^1)$ by letting $N = \bigoplus \alpha \oplus \beta \oplus \alpha / \alpha_0$, where the first sum corresponds to (and the generators map to) a set of α -generators of M, and the second sum corresponds to (and the generators map to) a basis for $H_*(M; Sq^1)$. Let $L = \ker(\phi)$; then $H_*(L, Sq^1) = 0$, so by [2; Theorem 2.1] $\text{Ext}_{a}^{s,t}(L, Z_2) = 0$ if $3s \geq t+6$. Thus $\text{Ext}_{a}^{s,t}(M, Z_2) \to \text{Ext}_{a}^{s,t}(N, Z_2)$ is an isomorphism for $3s \geq t + 6$.

But
$$
\operatorname{Ext}_{\mathfrak{a}}^{s,t}(\mathfrak{d}, Z_2) = \begin{cases} Z_2 & s = t = 0 \\ 0 & \text{otherwise} \end{cases}
$$
 and
 $\operatorname{Ext}_{\mathfrak{a}}^{s,t}(\mathfrak{a}/\mathfrak{a}, Z_2) = \begin{cases} Z_2 & t = s \\ 0 & \text{otherwise} \end{cases}$ so the Lemma follows.

Let $Sq(i_1, \dots)$ denote elements in the Milnor basis [9] and χ denote the canonical antiautomorphism [9]. By computing in $\chi((\alpha/(\alpha_2))^*)$ as in [4; Section 6], we find that a basis for $H_*(\alpha/\langle \alpha_2; S_q^1 \rangle)$ consists of all $\chi(S_q(8i, 4j))$ and a basis for $H_*(\alpha/\alpha(Sq^1, Sq^7, Sq^4Sq^6 + Sq^7Sq^3); Sq^1)$ consists of $\chi(Sq(8i) +$ $Sq(8i - 6, 2)$ and $\chi(Sq(8i + 6, 4j) + Sq(8i, 4j + 2))$. For example,

$$
Sq^{1}(\chi(Sq(8i) + Sq(8i - 6, 2)))
$$

 $= \chi(Sq(8i-6))Sq^{7} + (\chi(Sq(8i) + Sq(8i-6,2)))Sq^{1}$

because $Sq(8i)Sq^{1} + Sq(8i - 6, 2)Sq^{1} = \chi(Sq^{7})Sq(8i - 6) + Sq^{1}(Sq(8i) +$ $Sq(8i - 6, 2)$.

Under the correspondence of Lemma 4, the tower $h_0^k \omega^{i+1}$ corresponds to $x(Sq(8i + 8))$. Hence $d(h_0^k \omega^{i+1})$ is nonzero if and only if the tower is not present in $\text{Ext}_{a}(H^*bJ, Z_2)$ if and only if $\chi(Sq(8i + 8))g_0 \in im(Sq^1)$ if and only if $\chi(Sq(8i + 8))g_0 = Sq^1(\chi(Sq(8i) + Sq(8i - 6, 2)))g_1$.

The above example shows that $Sq^1(\chi(Sq(8i) + Sq(8i - 6, 2)))g_7 =$ $\chi(Sq(8i) + Sq(8i - 6, 2))Sq^{1}g_{7} = \chi(Sq(8i) + Sq(8i - 6, 2))Sq^{8}g_{9}$. Thus to show d is as claimed it is equivalent to show $\chi(Sq(8i) + Sq(8i - 6, 2))Sq^{8} =$ $Sq(8i + 8)$ + other Milnor basis elements if and only if i is even. But this follows easily since

$$
\langle \xi_1^{8i+8}, \chi(Sq(8i) + Sq(8i - 6, 2))Sq^8 \rangle
$$

= $\langle \xi_1^{8i+8} \rangle \langle \xi_1^{8i}, \chi(Sq(8i) + Sq(8i - 6, 2)) \rangle$
= $\langle \xi_1^{8i+8} \rangle \langle \chi(\xi_1)^{8i}, Sq(8i) + Sq(8i - 6, 2) \rangle$ = $\langle \xi_1^{8i+8} \rangle$

which is a nonzero element of Z_2 if and only if i is even.

Let \overline{bJ} denote the cofibre of the map $S^{\circ} \to bJ$. $\pi_*(\overline{bJ})$ is the subgroup of the 2-primary stable homotopy of spheres complementary to the image of the J-homomorphism (plus the Adams elements μ_r [3; 1.3]). By techniques similar to those used in proving Theorem 1 we can prove.

 $\text{THEOREM 5. } H^*(bJ)$ has minimal generating set g_7 and $g_{_2n}(n \geq 4)$ and minimal s et of relations $\dot{Sq}^2Sq^1g_7$, \dot{Sq}^7g_7 , $\ddot{Sq}^8Sq^4g_7$, $\ddot{Sq}^4Sq^6 + \ddot{Sq}^7g_4^3g_9^3g_7$ and $R(i, j)$ $(0 \leq i < j-1 \text{ or } i = j, j \geq 4)$, where $R(i, j)$ corresponds to the Adem relation $for Sq^{2*}Sq^{2*}$, with the final Sq^{2*} in each term replaced by

$$
\begin{cases} 0 & k = 0, 1, 2 \\ Sq^1g_7 & k = 3 \\ g_{2^k} & k \geq 4. \end{cases}
$$

LEHIGH UNIVERSITY

REFERENCES

- [1] J. F. ADAMS, *Vector fields on spheres,* Ann. Math. **75** (1962), 603-32.
- [2] J. F. ADAMS, *A periodicity theorem in homological algeqra,* Proc. Cambr. Phil. Soc. **62** (1966), 365-77.
- [3] **J.** F. ADAMS, *On the qroups* J(X)-IV, Topology **6** (1966), 21-71.
- [4] D. ANDERSON, E. BROWN AND F. P. PETERSON, *The structure of the spin cobordism ring*, Ann. Math. 86 (1967), 271-98.
- [5] D. M. DAVIS AND M. MAHOWALD, *A strong non-immersion theorem for RP⁸¹⁺⁷*, Bull. Amer. Math. Soc. **81** (1975), 155-56.
- [6] A. lwAr AND N. SHIMADA, *On the cohomology of some Hopf algebras,* Nagoya Math. J. **30** (1967), 103-11.
- [7] M. E. MAHOWALD, *The order of the image of the J-homomorphism.* Bull. Amer. Math. Soc. 76 (1970), 1310-13.
- [8] R. J. MILGRAM, *The Steenrod algebra and its dual for connective K-theory*. Proc Homotopy Conf., Evanston, Ill. 1974, Monograph of the Mexican Mathematical Society.
- [9] J. MILNOR, *The Steenrod algebra and its dual,* Ann. of Math 67 (1958), 150-71.
- [10] R STONG, *Determination of* $H^*(BO(k, \infty); Z_2)$, Trans. Amer Math. Soc. 107 (1963), 526-44.