
A MODEL OF BRANCHING PROCESSES WITH 
RANDOM ENVIRONMENTS 

BY JuAN F. CoRONA-BURGUE:&o 

O. Introduction 

Smith and Wilkinson (1969) have formulated a model for a branching process 
with random environments. Their model may be described as follows. Let 
{ 71., i = 0, 1, 2, · · ·} be a sequence of independent identically distributBd 
(i.i.d.) random variables taking values in some space El. Associated with each 
0 E E> there is a probability generating function (p.g.f.) 

fe(s) = I:i=o pg(o)i. 

For each realization of the process { 71;, i = 0, 1, 2, • • •} there evolves a popula
tion Zn, n = 0, 1, 2, • • • , in the following way. Suppose the zero-th generation 
consists of Zo objects. Each one of these objects, independently of the others, 
creates offspring according to the p.g.f. f~0 (s), forming in this way the Z1 ob
jects of the first generation, i.e., 

where X1,1, X1,2, • • • , X1,z 0 are i.i.d. random variables with p.g.f. f~/s). The 
second generation consists of the progeny of the Z1 objects in the first generation, 
and its number Z2 is given by 

where X2,1 , X2,2 , • • • , X2,z 1 are i.i.d. random variables with p.g.f. f~1 ( s). The 
process continues in this way. In this model, thanks to the fact that the "en
vironmental process" { 71;, i = 0, 1, 2, • • •} consists of i.i.d. random variables, 
the process { Zn , n = 0, l, 2, • • •} just described is a Markov process. 

In order to generalize Smith and Wilkinson's model, Athreya and Karlin 
( 1971) considered a model described similarly to that of Smith and Wilkinson, 
except that the environmental process {,,,i , i = 0, 1, 2, • • ·} is allowed to be 
more general, e.g. a stationary ergodic process or a Markov chain. 

Both of these models are for a discrete time environmental process. Kaplan 
( 1973) considered a branching process with random environments, in which the 
environment changes continuously in time according to a continuous time sta
tionary ergodic process. 

In this paper we consider a continuous time branching process with a random 
environment, in which the environment changes according to a continuous time 
Markov chain v(t). More specifically, suppose there are Z0 particles at time 0, 
and that these particles start branching following a law of reproduction associ
ated with the initial state v(O) of the chain. When the chain jumps to some other 
state, then the existing particles at the time of the jump change their law of 
reproduction to another one associated with the new state of the chain. Proceed-
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ing in this manner, the particles change their law of reproduction when the 
chain v(t) jumps, and this law is associated with the state of the chain at that 
time. The idea of considering this model is based on the concept of a random 
evolution. 

Random evolutions were defined by Griego and Hersh ( 1969), roughly as 
follows. Assume we are given an n-state continuous time Markov chain v(t), 
and a system which evolves in time with n different possible laws of evolution. 
When v(t) is in state i, the system evolves according to its i-th law of evolution, 
and changes its law of evolution to the j-th one when v(t) jumps to state j. 
For a comprehensive study of the theory of random evolutions and its develop
ment, the reader may refer to Griego and Hersh (1971), Hersh (1974) and 
Pinsky ( 197 4). 

As we can see, the concept of a random evolution and that of a branching 
process with a random environment considered in this paper are very similar. 
So, it can be expected that one can use results and techniques· of random evolu
tions to answer some questions concerning branching processes with random 
environments. 

In this paper we study: 
i) Extinction probabilities, 

ii) Expected size of the population at time t, and 
iii) Limit theorems. 

1. Notation and preliminaries 

Branching Processes. 

We consider only branching processes with stationary transition probabilities. 
Following Harris (1963) we have the following definition. 

Definition 1.1. A continuous time Markov branching process is a Markov 
chain {X(t), t ~ O} whose transition probabilities <P;;(t) are a solution of the 
forward equations 

d<P,,k(t) kb ( ) b~k-1-l . ( ) 
~ = - <P;,k t + ~j=l)<P;,; t Pk--i+l ' 

where b is a positive real number, and the p; are non-negative real numbers 
satisfying P1 = 0 and E~o p. = 1. o,,k is the Kronecker delta function defined 
by 

{O if i~k 
Oi,k = 1 if i = k. 

Now, let us definef(s) = E7=o p;si, Is I ::;; 1 and h(s) = b(f(s) - s). Also 
let F,(s, t) = E7=o <P;,;(t)i be the probability generating function of the 
process {X(t), t ~ O}, satisfying X(O) = i. F1(s, t) will be denoted just by 
F(s, t). Let 
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then 

E[X(t) I X(0) = 1] = !s F(s, t) ls=l = it. 

(See [7], chap. VII, sect. 6). 

Random Evolutions. Griego and Hersh (1969) introduced the concept of ran
dom evolution in the following way. Let {v(t), t 2 O} be a continuous time 
stationary Markov chain with state space { 1, • • • , N}, and infinitesimal transi
tion probability matrix Q = (q;f), Let { T;(t), t 2 O}, i = 1, · • • , N, be a family 
of strongly continuous semigroups of bounded linear operators defined on a 
Banach space ill. Let Tf be the time of the j-th jump of v(t), and N(t) be the 
number of jumps of the chain before time t. 

Definition 1.2. The random evolution M = {M(t), t 2 0} associated with the 
semigroups {T<i\t), t 2 O}, j = l, ···, N, and with the Markov chain v(t) 
s defined by 

M(t) = T(v(O))(-r1)TM•il\-r2 - -r1) · · · r<v(,N(t)))(t - TN(t))-

Let ffi be the N-fold cartesian product of CB with itself. An element in ci'3 will 
be denoted by J = (11 , • • • , fN ). We equip ffi with any appropriate norm so 
that II J II - 0 as 11 J; II ---. 0, j = l, 2, • • • , N. A semigroup T(t) on ffi is defined 
componentwise by (T(t)]) 3 = E;[M(t)fv<tJ], where Ei denotes expectation 
with respect to the probability Pi which assigns probability 1 to the set of sample 
paths of {v(t), t 2 0) which satisfy v(0) = j. Griego and Hersh called the semi
group {'I'(t), t 2 O}, the "expectation semigroup" of M, and they proved that 
-0-(t) = T(t)J solves 

(1.1) 

for each j 1, · • · , N, where AU> is the infinitesimal generator of Tw. This 
result is an operator-theoretical version of the classical Feynman-Kac formula, 
and we will refer to it as the Feynman-Kac formula. 

Branching processes with global environmental changes (BPGEC). 

Let {X<kl(t), t 2 0}, k = l, 2, • • •, N, be N continuous time Markov branch
ing processes. We assume that for each one of these processes we have defined 
the different parameters associated with them, that are described before. We 
will use superscripts to distinguish the parameters belonging to one process 
from those of another, e.g., F/,.'(s, t), i = 0, 1, 2, • • • , denote the p.g.f. of 
x<k\t), P;l>(t) denote its transition probabilities, etc. Throughout this paper, 
we will assume P1,/k>(t) + P 1,1<k>(t) < 1 fort 2 0 and all k = l, 2, • · · , N. 

Let v(t), t 2 0, be a right-continuous Markov chain with stationary transition 
probabilities, and state space {1, 2, · · ·, N}. Let Q = (q;i) be its matrix of 
infinitesimal transition probabilities. Define -r; as the time of the i-th jump of 
v(t), and N(t) as the number of jumps of v(t) before time t. 

The model considered in this paper is described as follows. Let t and Z(t) 
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denote the total elapsed time and the number of particles in the population at 
time t, respectively. Assume there are Zo particles at time t = 0. Each one of 
these particles reproduces, independently of the others, according to the p.g.f. 
p<v<o)\s, t). They keep this law of reproduction until the chain v(t) jumps to 
another state v( r 1). Then each one of the particles existing at time r1 changes 
its law of reproduction to that given by the p.g.f. p<v<ri)\s, t - r 1). Hence the 
change in the environment affects all the particles equally, i.e., the environ
mental change is global. Inductively, if there are Z( rn) particles at the time of 
the n-th jump of the chain, then each one of these particles starts branching 
following the law of reproduction given by the p.g.f. F<v<'n)\s, t - Tn), and 
continues reproducing in this manner until the chain jumps to the state v( Tn+1). 
At that time, r,,+1, all the existing particles, Z( r,,+1), change their law of re
production to that given by the p.g.f. p<v<,n+il) (s, t - Tn+1). 

Notice that the process {Z(t), t :2: 0} is not, in general, a Markov process. 
However, the two-component process ((v(t), Z(t)), t :2: 0} does constitute a 
Markov process. 

This model just described in words can be defined rigorously by "piecing out" 
the different branching processes at the jump times of v(t). This was done for 
random evolutions by Griego and Moncayo (1970). 

Each one of the branching processes (X<J)(t), t :2: 0} is a Markov process, 
hence there is a semigroup {S<J\t), t :2: 0} associated with it. This semigroup 
is defined on the space of bounded sequences loo = (f:I --,. R, f bounded} by 

(S<JJ(t)f)(i) = L;-oPi,k 3")(t)f(k), 

for i E I. Here I denotes the set (0, 1, 2, 3, • • • l, and R denotes the set of real 
numbers. 

Let ~(t) be the random evolution associated with the semigroups 
(s<i\t), t :2: 0},j = 1, • • • , N, and with the Markov chain v(t), i.e., 

~(t) = s<v(O)ic T1)S(v(ri))( T2 - T1) • • · s<v(TN(t))\t - TN(t)), 

Griego and Moncayo (1970) showed that the Markov semigroup associated 
with the pieced process ((v(t), Z(t)), t :2: 0} is equal to the expectation semi
group of the random evolution ~(t). In fact they proved that for a bounded 
real-valued function i,o defined on { 1, 2, • • · , N} X I, the equality 

(1.2) Eu,;)[i,o(v(t), Z(t))] = E;[~(t)i,o(v(t), i)] 

holds. The expectation in the left hand side refers to the pieced process starting 
in state (j, i), and the expectation in the right hand side refers to the chain 
starting in state j. 

Let c<JJ denote the infinitesimal generator of SU) ( t), j = 1, · · · , N; by the 
Feynman-Kac formula (1.1), we know that 

U;(i, t) = E;[~(t)i,o(v(t), i)] 
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solves 

(1.3) au1 Ou)u (. ) + "N u (. ) iJt = .i i, t L.,k=l qjk k i, t , 

Uh, o+) = cp(j, i). 

Let G/i)(s, t) denote the p.g.f. of Z(t) under the conditions v(0) = j and 
Z(O) = i. As usual, GU\s, t) will denote G/i\s, t). Now, for fixed s E (0, 1], 
define cp.: /1, 2, .. • , N} X I - R by cp,(j, i) = si. By (1, 2) we obtain 

Eu,;)[sz<t)] = Ei[;JU(t)st 

Hence G/i)(s, t) = Ei[;JU(t)st and by (1.3), G/i\s, t) satisfies 
(j) 

(1.4) oG; ai 8' t) = c<j)oY\s, t) + Lf=1 q1kG/k)(s, t), 

G;<i\s, o+) = Si. 

It should be remarked that C(f) acts on GY\s, t) considering this as a func-
• f • M 'fi all 'f cu> ( <i)) th t10n O i. ore spec1 C Y, 1 = amn m,n=0,1,2, ••• , en 

(1.5) C(f)G/ 1\s, t) = L:=o a;n(i)G/i)(s, t). 

The property that characterizes branching processes is that the particles 
reproduce independently of each other. Thus, if there are n particles at time 
t = 0, then the population evolves probabilistically as the combined sum of n 
populations, each with one initial parent. From this branching property we 
obtain Gn<i\s, t) = (G<i)(s, t))11t. 

Therefore, we cari write ( 1.5) as 

(1.5') c<1)G}j)(s, t) = L:=o a;n<i\O<1\s, t)r. 

By substituting this in (1.4) and then letting i = 1, we obtain that G(f)(s, t) 
satisfies 

(1.4)' 

(j) 

aG (s, t) ="co-a (j)(G(j)(s t))n + ~N= q· G(k)(s t) 
i)[ L.,n-0 ln , L.,k 1 Jk , 

(j = 1, 2, • • • , N). 

In the proof of the Feynman-Kac formula, Griego and Hersh (1971) showed 
that the expectation semigroup satisfies a renewal equation. Namely, Ui(i, t) 
= E;[;JU(t)cp(v(t), i)] satisfies 

(1.6) U1(i, t) = s(i\t)cp(j, i)e°jjt + n s(j\r) Lk;o'i Uk(i, t - r)qjke"j/ dr. 

Byagainchoosingcp,(j,i) = s\weobtainU;(i,t) = G/1>(s,t), 

S(j)( ) ( • ') ~co p (j)(t) n l cp, J, i = L.,n=D i,n 8 , 

and 
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By substituting these in ( 1.6) and then letting i = 1, we obtain 

G(j\ s, t) = "'E,:=0 P1,n <i\t)sne"jjt 
(1.7) 

+ :Ek;o<i f~ "'E,:=0P1,n<i\r)(G<k\s, t - r))nq;ke"W dr. 

We should note that equations (1.4') and (1.7) are two equivalent equations 
for a<il ( s, t). Both involve the infinitesimal transition probability matrix Q of 
the Markov chain v(t), but the latter involves the semigroup {S<i>(t), t ;::: 0} 
and the former involves the infinitesimal generator c<il of { s<i> (t), t ;::: 0}, i.e., 
(1.7) is the integral equation corresponding to (1.4'). To conclude this section 
we note that equation (1.7) can be written as 

G<i\s t) = p<i\s, t)/iit 

(1.7') ' + " ft p<i)(G(k)( t ) ) Ojj' d L...,k""i O s, - r , r q;ke r. 

2. Extinction probabiJities 

Let's consider the BPGEC { Z ( t), t ;::: O} described in the preceding section, 
and define 

B = {Z(t) = 0 for some t ;::: 0}, and 

s; = P[B I v(0) = j, Z(0) = 1], j = 1, 2, • • ·, N. 

We refer to B as the set of eventual extinction, and to s1, s2, • • · , SN as the 
probabilities of eventual extinction. 

If we define Et = {Z(t) = 01, and s;(t) = P[B1 I v(0) = j, Z(0) = 1], then 
the sets Bt increase to B, and limt-+OO s ;(t) = !: ; , j = 1, 2, • • • , N. 

On the other hand, the probability Si(t) is also given by t;(t) = a<j)(0, t), 
hence L = lim1-,oo G<JJ(0, t). 

Now, letting s -. 0 in the renewal equation (1.7'), and using the dominated 
convergence theorem we obtain that GU\o, t), or, equivalently, s i(t) satisfies 

(2.1) r/t) = P1,o(j\t)/ii' + :Ek;# n pU\sk(t - r), r)q;ke"W dr. 

From this, to obtain an equation for Lall we have to do is let t-. oo in (2.1). 
To avoid degenerate cases we will assume q;; ~ 0 for i = 1, 2, • · · , N. Thus, 
by the dominated convergence theorem, we obtain from (2.1) 

" f"° (j) qjj' Si = L...,k""j o F (Sk, r)qjke dr. 

Summarizing, we have proved the following 

THEOREM 2.1. If the chain v(t) does not have absorbing states, i.e., q;; < 0 
for j = 1, 2, • • • , N, then the extinction probabilities s; = P[Z(t) = 0 for some 
t I v(0) = j, Z(0) = 1] satisfy 

j = 1, 2, • • ·, N. 
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This theorem has the following interesting 

COROLLARY. If v(t) is irreducible, then, either t; = 1 for j = 1, 2, • · • , N, or 
s"; < 1 for j = 1, 2, • • • , N. 

Proof. Suppose r i < 1 for some i. THe:ti pui (f i , r) < 1 for &ii r ~ d and all 
j = 1, 2, • • • , N, and by (2.2), 

" J"' (") q··r !;; = £..,kr'-i O F 1 (!:k,r)q;ke 11 dr 

< Lkr'-i qik J; /ii' dr = -( Lk;,<J q;k )q;;- 1 = 1 

Thus, if one of the!; 1 is less than 1, then all of them are less than 1. The hypothe
sis of irreducibility is needed to obtain the inequality. Q.E.D. 

From this corollary, we can say that there are two possible cases concerning 
extinction. The process, independently of the initial environment, either dies 
with probability one or lives forever with positive probability. Theorem 2.2 . ,. 
gives a criterion which discriminates between the two possibilities; The method 
was suggested to us by Norman Kaplan and the proof is based on the following 
theorem, which we state without proof. 

THEOREM: A (Athreya and Karlin (1971), Theorem 4). Concerning the model 
of Athreya and Karlin described in the Introduction, the following is true: suppose 
the environmental process { 1/i, i = 0, 1, 2, • • ·} is an irreducible, positive recurrent 
stationary Markov chain with state space (E>, CB). For each 0 E e, let 

fe ( s) = I:,':=o Pk( 0)i 

be the p.g.f. associated with 0, and {P(B I 0), 0 E e, B E CB}, be the family of 
transition probabilities of the chain. Assume 

P[""2:,7=ojp;(rJ;) < oo; 0 ~ po(rJ;) + P1(1J;) < 1 for all i] = 1. 

Let P be _the unique stationary measure of { rJ;, i = 0, 1, 2, • • •} i.e., 

P(B) = J 0 P(B I 0) dP(0) for B E CB. 

Furthermore, assume 

J 0 I Log (1 - fe(O)) I dP(0) 

and 

J e I Log (1 - Po(0)) I dP(0) < oo, 

f e Log (fe'(l)) dP(0) < oo. 

Then the population becomes extinct with probability 1 if and only if 

J 0 Log (f/(1)) dP(0) ~ 0. 

Now, let's return to our model. 

THEOREM: 2.2. Let 'A ui be the expectation parameter of the j-th branching process 
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j = 1, 2, • • ·, N. 

Assume v( t) is an irreducible stationary Markov chain, and let { 'lf'k , 

k = 1, • • • , N} be its stationary initial distribution. Then, the extinction of the 
BPGEC is certain if and only if 

Proof. We want to use Theorem A, but this theorem applies when the environ
mental process is a discrete parameter Markov chain. Thus, we have to look 
at our process not "continuously" in time but "discretely". Hence, the idea 
is to "observe" the process only at the jump times of the chain v( t). 

Let us recall that r; is the time of the i-th jump of v(t), i = 1, 2, • • • , and 
let ro = 0. Let T; be the waiting time of v(t) in state v( r;), i.e., T; = Ti+I - r;, 
i = 0, 1, 2, · · · . , 

Define a discrete time Markov chain { 77;:i = 0, 1, 2, · • ·} with state space 
E> = {1, 2, • • • , N} X R, equipped with the a--algebra 

CB= {(A,B):A c {1,2, ••• ,N},andBisaBorelsetinR}, 

by 

i = 0, 1, 2, • • • . 

Now, associate to each 7/, a p.g.f. by means of the mapping 

f ( ) F (V(Ti))( T) 
7/i -Jo ~i s = s, ; . 

Next, consider the model of Athreya and Karlin corresponding to the Markov 
chain { 71;, i = 0, 1, 2, • • •} and to the family of p.g.f. {!1, , i = 0, 1, 2, • • ·}. 

Clearly, the extinction of this branching process in a random environment 
is certain if and only if the extinction for our BPGEC is certain. 

Let P: CB -Jo R be the stationary initial distribution of the chain { 77;, i = 0, 
1, 2, • • ·}. By Theorem A, the extinction is certain if and only if 

f 0 Log (f/(1)) dF'(0)::;; 0, 

i.e., if and only if, writing U, t) irnstead of 0, 

f 0 Log (:s p<il(s, t) ls-1) dP(j, t) ::;; 0, 

or equivalently, if and only if 

f 0 Log ( /- 0 ' 1) dP(j, t) = f C1) 'A <i>tdf>(j, t) :::;; 0. 

To obtain P, we proceed as follows: for j E /1, 2, • • • , N} and Ba Borel set 
in R, define 
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where IA denotes the indicator function of the set A. Rn(j, B) is the average 
number of times the chain { ,,,. , i = 0, 1, 2, • • ·} visits the set (j, B) up to time 
r,.. Let O ~ r, 1 < r; 2 < · · · < r.,.,n ~ r,. be the times when v(t) visits the 
state j within its filrst n jumps. Then 

R,.(j, B) = ! 1::1{> IB(T.k) = (n(j)/n) Erl{> IB(T.k)/n(j). 
n 

Now, let t-. oo. Since in a finite state space irreducible Markov chain all states 
are positive recurrent (cf. Breim.an (1969), Cor. 6.31), then we have n(j)/n 
-. it(j), where {fr(J°), j = 1, 2, • • • , N} is the stationary initial distribution 
of the first jump transition probabilities of v(t) (cf. Breiman (1969), p. 213). 
From this and the strong law of large numbers, we obtain R,.(j, B) 
-. it(j)P[W(j) E B] a.s. as n -. oo, where W(j) denotes the waiting time of 
v(t) in statej. Therefore we claim that P(j, B) = it(j)P[W(j) E B]. 

To prove that this is correct, we have to show that 

P(j,B) = f 8 P[(j,B) I (k,t)]dP(k,t), 

where 

{P[(j, B) I (k, t)], 1 ~ j ~ N, 1 ~ k ~ N, t ~ 0, and Ba Borel set in R} 

are the transition probabilities of { ,,,. , i = 0, 1, 2, • • ·}. From the definition of 
11•, we have 

P[(j, B) I (k, t)] = p(j I k)P[W(j) E B], 
where 

{p(j I k), j = 1, 2, .. • , N, k = 1, 2, .. • , N, j ¢ k} 

are the first jump transition probabilities of v(t). 

Therefore 

f 9 P[(j, B) I (k, t)] dP(k, t) = Ef=-1 f R p(j I k)P[W(j) E B]it(k)P[W(k) E dt] 

= P[W(j) E B]EZ°=1PUlk)it(k) f RP[W(k) E dt] 

= P[W(j) E B]ir(J°) = P(j, B) 

which proves the claim. 

Hence, going back to the problem of extinction we have 

I 9 h c,,tdP(j, t) = Ef=1 fr(j)X (j) IR tP[W(j) E dt] 

= Ef=1 it(j)XwE[W(j)] = Ef=1 x<1>fr(j)/q1, 

but it(j)/q; = c1r;, where c > 0 is the appropriate normalizing constant. Thus 

f 0 x<i>tdP(j, t) = Ef=1c1r;Xw. 

Hence, the extinction is certain if and only if Ef=11r; x<,, ~ 0. Q.E.D. 
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3. Expected number of particles at time t 

Let us recall that G/il(s, t) denotes the p.g.f. of Z(t) under the condition 
v(O) = j and Z(O) = i, and G/i\s, t), which is simply written as Gu\s, t), 
satisfies 

(3.1) a<1\s, t) = pU\s, t)/ii 1 + Lk,,;j n pU\G(k)(s, t - r), r)q;k/ii" dr. 

Let M;(t) denote the expected number of particles at time t, if the process 
started with one particle in environment j, i.e., 

M 1(t) = :8 a<JJ(s, t) i•=l· 

Before obtaining MJ(t) from equation (3.1), note, by using the chain rule, that 

j__ pU)(G(k)( t - ) ) I = )l.(ilrM (t - ) s, r , r •=l e k r , 
as 

where WE:) have used a<kl(l, t - r) = 1 and a/as pU\s, r) l,=1 e'en, (see 
Theorem 2.2). Therefore, by differentiating both sides of (3.1), we obtain 

M ·(t) - (>.(il+q;;)t + " . ft M (t - ) . (>.(il+q;;)r d 
J - e ~k,,; 3 0 k r q1ke r, 

or, by a change of variable, 

M i(t) - (>.<il+q1;)t + " . . (l\(il+qii)t ft -(>.Ci)+q;;)rM ( ) d 
- e ~k,,; 3 q 3ke O e k r r. 

j = 1, 2, • • ·, N. 

Let 

(3.3) 

,_(1) + qu 

(3.4) A = 

(N) 
qNl qN2 A + qNN 

• A Q + h d' ( <tJ <2l <m) 1.e., = A, w ere A = iag A , A , • • • , A . 
Then, we can write (3.2) as 

~ M(t) = AM(t), M(O) = i, 
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where 

The solution of this differential equation is 

_M(t) = eA\i), 

where {eA', t ~ O} is the semigroup generated by A. 

Summarizing this section, we have 

THEOREM 3.1. Let M;(t) be the expected number of particles at time t given 
that v(O) = j and Z(O) = 1, j = 1, 2, · • • , N. Let .M(t) and A be defined by 
(3.3) and (3.4) respectively, then 

M(t) = eA'(i) 

where i is the column vector with all its entries equal to 1, and {eA', t ~ O} is the 
semigroup generated by A. 

4. Limit theorems 

In this section two limit theorems concerning our model are obtained. The 
first one results by a direct application of a known theorem about random evolu
tions and, roughly speaking, says that if the time scale is "speeded up", i.e., 
if the Markov chain jumps faster and faster, then the corresponding BPGEC 
behaves more and more.as a single branching process in an environment which 
is the "weighted average" of the different enviro:q.ments. The weights are placed 
according to the stationary initial distribution of the Markov chain. The second 
theorem gives the rate of growth of Z(t) and it is obtained by constructing from 
our process a nonnegative martingale and applying the martingale convergence 
theorem. 

For ease of reference, we state without proving the following theorem. 

THEOREM B (Kurtz (1972), Theorem 2.1). Let {X(t), t ~ O} be a pure jump 
process with state space S. Suppose S is a separable, locally compact metric space, 
and there is a measureµ on the Borel subsets of S such that µ(S) = 1, and 

P[limt➔oo}JJg(X(u)du)= Jsg(x)µ(dx)] = 1 

for every real, bounded, continuous function g on [O, oo ) . For each x E S, 
let {T.,(t), t ~ O} be a semigroup of linear operators on a Banach space L, with 
infinitesimal operator A.,, which satisfies II T.,(t) II ~ eat for some a independent 
of x. Let D be the set off E L such that A,.j: S - L is a bounded continuous function 
of x, and define A on D by 

Af = Js A,.jµ (dx). 
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If D is dense in L, and the range ofµ - A is also dense in L for some µ > a, then 
the closure of A is the infinitesimal operator of a strongly continuous semigroup 
{ T(t), t ~ O} defined on L, and 

P[lim>._,"' T>.(t)f = T(t)fj = I for every f E L, 

where 

to , h , t2 , • • • is the succession of states visited by X ( t), and .1o , .11 , .12 , • • • 
are the respective sojourn times in each state, N(t) is the number of transitions of 
X(t) before time t, and .1t = t - I:f~i)-l .1k. 

We now state and prove the aforementioned theorems about our model. 

THEOREM 5.1. If the Markov chain v(t) is irreducible and stationary, with 
{ 1r i} i=t as its stationary initial distribution, then A = I:f=1 1r ic<il is the infini
tesimal generator of a strongly continuous semigroup {S(t), t ~ O}, defined on t"', 
and 

lim._,o s<•(O)) ( ET1) s<•<ri)) ( E ( T2 

with probability I. 

) ) S(V(TN( t/ ,))) (t ) 
TI O 

• • - ETN(t/•) S(t) 

Proof. This theorem follows immediately from Theorem B, just by noticing 
that the semigroups {s<i\t), t ~ O},j = 1, 2, • · · , N, are contraction semigroups, 
and the stationary initial di•stribution {1ri\ i=t of v(t) satisfi'es, by the ergodic 
theorem, 

limt--,oo} f~ g(v(u)) du = E .. [g(v(O) )] 

with probability 1. Here E .. denotes expectation with respect to the measure 
{1r;} i=t• Q.E.D. 

For the second limit theorem, let us define 

W(t) = Z(t)/exp p .. <•<O))(r1) + A(v(,il\r2 - r1) + · · · + A(v(,N(tl))(t - Tn(t))}, 

where A <il was defined in Theorem 2.2, let ijt be the u-algebra generated by 
{Z(s), 0 ~ s ~ t} and {v(s), s ~ O}, let Wn = W( Tn), and ijn = ij,n. 

THEOREM 5.2. {Wn, ijn}n::::: 1 is a nonnegative martingale. 

Proof. All we have to show is the martingale property. Let v(O) = j, then we 
have to prove EifWn I ijr.-1] = Wn-1. 

E;[Wn I ijn-1] 

= Ej[Z(rn)/exp {A(v(O)\r1) + · · · + A(v<,n-i))(Tn - Tn-1)} I ijn-1] 
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By the martingale convergence theorem, we obtain from the theorem just 
proved 

THEOREM 5.3. limn➔oo Wn = W exists with probability 1. 
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